人教版初一数学有理数除法6
- 格式:ppt
- 大小:706.00 KB
- 文档页数:11
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。
本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。
通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。
但是,对于除法运算,学生可能还存在一些困惑和误解。
因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。
三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。
2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。
四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。
2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。
3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。
六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。
2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。
有理数的除法【知识梳理】1、有理数除法法则:两个有理数相除,同号得正,异号得负,绝对值相除.0除以任何非0的数都得0.(注意:0不能作除数.)2、除法的法则也可以这样说,除以一个数,就等于乘以这个数的倒数.(注意:0没有倒数,即0不能作除数.)3、如何求一个数的倒数互为倒数的两个数乘积为1,所以知道其中一个数,求它的倒数就用1除以这个数即可. 如:求53-的倒数,1÷(53-)=35- 所以35-是53-的倒数. 4.几个非0的有理数相除,商的符号怎样确定?几个非0的有理数相除,商的符号由负数的个数决定:当负数的个数为奇数时,商为负;当负数的个数为偶数时,商为正.如:(-12)÷(-2)÷(-3)——三个负数相乘取负=-(12÷2÷3)=-2(-12)÷2÷(-3)——两个负数相乘取正=+(12÷2÷3)=2【重点、难点】有理数的除法法则、倒数的求法【典例解析】例1、 计算:(1)—42÷(—6);(2)25.1)1212(÷- 解:(1)—42÷(—6)=7;(2)25.1)1212(÷-=35541225-=⨯-. 说明: 不能整除的情况下,特别当除数是分数时,应将除法化为乘法来做.例2、求下列各数的倒数,并用“>”连接. -32,-2,|21|,3,-1分析:用“1÷此数”的方法,求这个数的倒数,再将所有的倒数从大到小连接起来. 解:1÷(-32)=-23 -32的倒数是-231÷(-2)=-21 -2的倒数是-21|21|=21,1÷21=2,21的倒数是2 1÷3=31 3的倒数是311÷(-1)=-1 -1的倒数是-1.∴2>31>-21>-1>-23注意:“-32的倒数是-23”,不能用“=”连接-32和-23,因为它们是不相等的,所以一般来说互为相反数的两个数不能用“=”连接,除了-1和1这两个数和它们的倒数外.例3、计算:(-5)÷(-7)÷(-15)分析:三个数连除,先确定商的符号——利用负数的个数;再将除法变为乘法——除以一个数等于乘以这个数的倒数;最后利用乘法法则进行运算.解:(-5)÷(-7)÷(-15)=-(5÷7÷15)——先确定符号 =-(5×71×151)——再将除法变乘法除数变为倒数 =-211例4、计算:72×(-8)÷(-12)点拨:乘除法是同级运算,它们进行混合时,可从左至右逐步计算,注意符号.还可以将式子中的除法变为乘法,直接进行乘法运算.注意:除法没有结合律,即“a ÷b ÷c =a ÷(b ÷c )”是错误的.解法一:72×(-8)÷(-12)——从左到右先乘法再除法逐步计算.=-(72×8)÷(-12)=-576÷(-12)=+48.解法二:72×(-8)÷(-12) =+(72×8×121)——确定符号,除法变乘法=48【过关试题】一、填空题:1、 -2的倒数是 ;-0.2的倒数是 ,负倒数是 。
人教版数学七年级上册1.2《有理数的除法》教学设计3一. 教材分析《有理数的除法》是人教版数学七年级上册第一章第二节的内容,本节内容是在学生已经掌握了有理数的加法、减法、乘法的基础上进行学习的。
有理数的除法是数学中基本的运算之一,它在日常生活和工农业生产中有着广泛的应用。
本节内容主要让学生了解有理数除法的基本法则,并能正确进行计算。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加法、减法、乘法有一定的了解。
但是,学生在学习有理数的除法时,可能会对负数的除法产生困惑。
因此,在教学过程中,教师需要引导学生理解有理数除法的基本法则,并通过大量的练习让学生熟练掌握。
三. 教学目标1.理解有理数除法的基本法则,能正确进行有理数的除法计算。
2.培养学生的逻辑思维能力和解决问题的能力。
3.提高学生对数学的兴趣,增强学生的自信心。
四. 教学重难点1.教学重点:有理数除法的基本法则和计算方法。
2.教学难点:理解负数除法的过程和计算方法。
五. 教学方法1.采用问题驱动法,引导学生通过思考和探索来理解有理数除法的基本法则。
2.使用案例分析法,通过具体的例子让学生理解负数除法的计算方法。
3.采用练习法,让学生在实践中巩固所学知识,提高计算能力。
六. 教学准备1.准备相关的教学案例和练习题,以便在课堂上进行讲解和练习。
2.准备课件,以便在课堂上进行演示和讲解。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数的加法、减法、乘法,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过课件展示有理数除法的基本法则,并用具体的例子进行讲解。
例如,教师可以讲解一个正数除以一个正数、一个负数除以一个正数、一个正数除以一个负数、一个负数除以一个负数的情况。
3.操练(15分钟)教师让学生在课堂上进行相关的除法计算练习,并及时给予指导和反馈。
教师可以设置不同难度的题目,让学生逐步提高计算能力。
4.巩固(10分钟)教师通过提问方式检查学生对有理数除法的基本法则和计算方法的掌握情况,并对学生的错误进行纠正。
有理数的乘除法年级:七年级学科:数学执笔:内容:有理数的除法(1)课型:新授课时间:【教案目标】1、了解有理数的除法法则以及有理数除法符号法则,并会用公式:a ÷b=a×1 (b≠0)进行简单的有理数的除法运算。
2、经历有理数除法法则的推理过程,加强概括问题的能力和逆向思维能力,运用法则进行计算,加强综合运算能力和解决问题的能力。
【教案重点】正确而熟练地运用除法法则进行有理数的除法计算。
【教案难点】利用乘法与除法互为逆运算理解有理数的除法法则以及除法的符号法则。
【教学过程】一、学前准备:1、学前疑难摘要:。
2、计算:(1)(-4)×(-8)=(2)(-3)×(-2)=(3)-5×(-6)=(4)8×(-3)=3、填空:(1)()×(-2)=8(2)9×()=-36(3)()×(-)=-25(4)×()=10二、探究活动:(一)独立思考,解决问题:A组:(1)()×(-2)=8B组:(1)8÷(-2)=()=8×()(2)9×()=-36(2)-36÷9=()=-36×()(3)()×(-)=-25(3)-25÷(-)=()=-25×()(4)×()=10(4)10÷=()=10×()完成上面两组填空观察对比后你能得到关于有理数除法的什么结论?2、有理数除法法则:除以一个()的数,等于乘以这个数的()。
这个法则也可以表示为:a÷b=a×(b≠0)(二)、师生探究,合作交流:1、【例题】计算:(1)(-36)÷9=(2)(-5)÷(-0.6)=(3)2÷(-9)=(4)0÷(-8)=在计算有理数除法时,你首先确定商的(),然后再算商的()。
1.4.2 有理数的除法第1课时 有理数的除法法则学习目标:1.会将有理数的除法转化成乘法2.会进行有理数的乘除混合运算3.会求有理数的倒数4.认识有理数的除法,经历除法的运算过程.5.理解除法法则,体验除法与乘法的转化关系.6.掌握有理数的除法及乘除混合运算.教学重点:正确进行有理数除法的运算,正确求一个有理数的倒数教学难点:如何进行有理数除法的运算,求一个负数的倒数教与学互动设计:一、情境导入1.计算:(1)25×0.2=________; (2)12×(-3)=________;(3)(-1.2)×(-2)=________;(4)(-125)×0=________. 2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________. 观察上面的算式及计算结果,你有什么发现?换一些算式再试一试.(一)创设情境,导入新课1.小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?(50×20=1000) 放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?(1000÷50=20).2.从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?一、知识链接1.填一填:2.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘. 一个数同0相乘,仍得________.3.进行有理数乘法运算的步骤:(1)确定_____________;(2)计算____________.二、新知预习1.根据除法是乘法的逆运算填空:(+2)×(+3)=+6(+6)÷(+2)=_________,对162+⨯=__________.(-2)×(-3)=+6(+6)÷(-2)=_________,比16()2+⨯-=__________.2.对比观察上述式子,你有什么发现?(二)合作交流,解读探究1.比较大小:8÷(-4)8×(-);(-15)÷3 (-15)×;(-1)÷(-2)(-1)×(-).小组合作完成上面题目的填空,探讨并归纳出有理数的除法法则.2.运用法则计算:(1)(-15)÷(-3);(2)(-12)÷(-);(3)(-8)÷(-).观察商的符号及绝对值同被除数和除数的关系,探讨归纳有理数除法法则的另一种说法.3.师生共同完成课本P34例5,P35例6、例7.乘除混合运算该怎么做呢?通过课本P36例7的学习,由学生自己叙述计算的方法:先将除法转换为乘法,然后确定积的符号,最后求出结果.(三)应用迁移,巩固提高1.计算:(1)(-36)÷9;(2)(-63)÷(-9);(3)(-)÷;(4)0÷3;(5)1÷(-7);(6)(-6.5)÷0.13;(7)(-)÷(-);(8)0÷(-5).2.化简下列分数:(1);(2);(3);(4).(四)总结反思,拓展升华本节课大家一起学习了有理数除法法则.有理数的除法计算有2种方法:一是根据“除以一个数等于乘以这个数的倒数”,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种方法.(五)课堂跟踪反馈夯实基础1.选择题(1)如果一个数除以它的倒数,商是1,那么这个数是()A.1B.2C.-1D.±1(2)若两个有理数的商是负数,那么这两个数一定是()A.都是正数B.都是负数C.符号相同D.符号不同提升能力2.计算题(1)(-2)÷(-);(2)3.5÷÷(-1);(3)-÷(-7)÷(-);(4)(-1)÷(+)÷(-).板书设计有理数除法法则:1.任何数除以一个不为0的数,等于乘以这个数的倒数,即a ÷b =a ×1b(b ≠0). 2.(1)两个数相除,同号为正,异号得负,并把绝对值相除.(2)0除以任何一个不为0的数,都得0.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计是可以采用课本的引例做为探究除法法则的导入.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.教学时应该使学生掌握除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解;2.在多个有理数进行除法运算或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.。