6.2 多元函数的偏导数和全微分
- 格式:doc
- 大小:505.50 KB
- 文档页数:14
多元函数的全微分与偏导数多元函数是数学分析中非常重要的一个概念,它描述了多个自变量对应的函数值的变化规律。
全微分和偏导数则是研究多元函数性质的重要工具。
在本文中,我们将探讨多元函数的全微分与偏导数的定义、性质和应用。
一、全微分的概念与性质1.1 全微分的定义设函数 $f(x_1,x_2,\cdots,x_n)$ 在点$(x_{1_0},x_{2_0},\cdots,x_{n_0})$ 具有一阶连续偏导数,则在该点的全微分为:$$\mathrm{d} f=f_{x_1}\mathrm{d} x_1+f_{x_2}\mathrm{d}x_2+\cdots+f_{x_n}\mathrm{d} x_n$$其中 $f_{x_i}$ 表示 $f$ 对 $x_i$ 的偏导数,$\mathrm{d}x_i$ 表示 $x_i$ 的微小增量。
1.2 全微分的性质全微分具有以下性质:(1)全微分的值与路径无关。
即,从点 $A$ 到点 $B$ 的全微分值相等。
(2)全微分对各变量的求导顺序不影响结果。
(3)全微分的二阶导数与求导顺序无关。
二、偏导数的定义与求解方法2.1 偏导数的定义函数 $f(x_1,x_2,\cdots,x_n)$ 对自变量 $x_i$ 的偏导数定义为:$$\frac{\partial f}{\partial x_i}=\lim_{\Delta x_i\rightarrow0}\frac{f(x_1,x_2,\cdots,x_{i-1},x_i+\Delta x_i,x_{i+1},\cdots,x_n)-f(x_1,x_2,\cdots,x_n)}{\Delta x_i}$$偏导数表示 $f$ 在某一自变量上的变化率。
2.2 偏导数的求解方法对于多元函数 $f(x_1,x_2,\cdots,x_n)$,求偏导数的方法如下:(1)保持其他自变量不变,对于某个自变量求导数。
(2)对于每个自变量都求一遍偏导数。
6.2 多元函数的偏导数和全微分6.2.1 偏导数的概念与计算1.偏导数定义对于二元函数),(y x f z =,如果只有自变量x 变化, 而自变量y 固定, 这时它就是x 的一元函数, 这函数对x 的导数, 就称为二元函数),(y x f z =对于x 的偏导数。
定义:设函数),(y x f z =在点(x 0, y 0)的某一邻域内有定义, 当y 固定在y 0而x 在x 0处有增量∆x 时, 相应地函数有增量),(),(0000y x f y x x f -∆+ 如果极限xy x f y x x f x ∆-∆+→∆),(),(lim00000存在, 则称此极限为函数),(y x f z =在点(x 0,y 0)处对x 的偏导数, 记作:0y y x x xz ==∂∂,0y y x x xf ==∂∂,00y y x x xz ==,或),(00y x f x 。
即:xy x f y x x f y x f x x ∆-∆+=→∆),(),(lim),(0000000.类似地,函数),(y x f z =在点(x 0, y 0)处对y 的偏导数定义为:yy x f y y x f y ∆-∆+→∆),(),(lim00000,记作:0y y x x yz ==∂∂,0y y x x yf ==∂∂,00y y x x yz ==,或),(00y x f y 。
偏导函数:如果函数),(y x f z =在区域D 内每一点),(y x 处对x 的偏导数都存在, 那么这个偏导数就是x 、y 的函数, 它就称为函数),(y x f z =对自变量x 的偏导函数, 记作x z ∂∂, xf ∂∂, x z , 或),(y x f x 。
偏导函数的定义式:x y x f y x x f y x f x x ∆-∆+=→∆),(),(lim ),(0.类似地, 可定义函数),(y x f z =对y 的偏导函数, 记为y z ∂∂, yf∂∂, y z ,或),(y x f y 。
多元函数的偏导数与全微分的关系及计算方法一、多元函数的偏导数与全微分的定义和关系在多元函数中,每个自变量都可以对应一个偏导数。
偏导数表示在其他自变量保持不变的情况下,函数对某个自变量的变化的敏感程度。
而全微分则是函数在一个点附近的近似变化。
1. 偏导数的定义多元函数$f(x_1, x_2, \cdots, x_n)$关于$x_i$的偏导数,表示在$x_i$方向上的变化率,记作$\frac{\partial f}{\partial x_i}$。
其中,$\frac{\partial}{\partial x_i}$表示对$x_i$求偏导数的运算符。
2. 全微分的定义多元函数$f(x_1, x_2, \cdots, x_n)$在点$(x_1, x_2, \cdots, x_n)$处的全微分,表示函数在此点的一个近似变化,记作$df$。
全微分可以通过各个偏导数的线性组合表示,即$df = \frac{\partial f}{\partial x_1}dx_1 + \frac{\partial f}{\partial x_2}dx_2 + \cdots + \frac{\partial f}{\partial x_n}dx_n$。
3. 偏导数与全微分的关系根据全微分的定义可以得到以下关系:$$df = \frac{\partial f}{\partial x_1}dx_1 + \frac{\partial f}{\partial x_2}dx_2 +\cdots + \frac{\partial f}{\partial x_n}dx_n$$这说明全微分$df$可以看作各个偏导数乘以相应自变量的微小变化量的累加。
二、多元函数的偏导数与全微分的计算方法计算多元函数的偏导数和全微分需要运用一些特定的计算方法,下面将介绍一些常用的方法。
1. 隐函数求导当多元函数以隐函数的形式给出时,可以通过隐函数求导的方法来计算偏导数。
高中数学备课教案多元函数的偏导数与全微分的计算高中数学备课教案:多元函数的偏导数与全微分的计算一、引言在微积分中,多元函数的偏导数与全微分是重要的概念和计算方法。
它们在解决实际问题和优化函数时起着关键作用。
本教案将重点介绍多元函数的偏导数和全微分的计算方法,以帮助学生深入理解和掌握这一内容。
二、多元函数的偏导数2.1 一元函数的导数回顾我们首先回顾一下一元函数的导数概念。
对于函数 $y = f(x)$,其在点 $x_0$ 处的导数 $f(x_0)$ 定义为:$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$2.2 多元函数的偏导数定义对于多元函数 $z = f(x, y)$,我们可以将其变为一元函数的形式来定义偏导数。
偏导数是指在某一点上,对其中一个自变量求导时,将其他自变量视为常数。
具体地,对于函数 $z = f(x, y)$,其关于 $x$ 的偏导数记作 $\frac{\partial z}{\partial x}$,表示在点 $(x, y)$ 处,将 $y$ 视为常数,对 $x$ 求导。
$$\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$同样地,我们可以定义关于 $y$ 的偏导数 $\frac{\partial z}{\partial y}$。
偏导数的计算方法与一元函数的导数类似,需要注意将其他自变量视为常数。
2.3 偏导数的求解示例现在我们通过一个实例来计算多元函数的偏导数。
考虑函数 $z =x^2 + 2xy + y^2$,计算其关于 $x$ 和 $y$ 的偏导数。
对于 $\frac{\partial z}{\partial x}$,我们将 $y$ 视为常数,所以可以直接对 $x$ 求导。
高考数学多元函数:偏导数与全微分解析在高考数学中,多元函数是一个重要的知识点,而其中的偏导数与全微分更是理解和解决多元函数问题的关键。
对于许多同学来说,这部分内容可能会感到有些抽象和难以掌握,但只要我们深入理解其概念和原理,并通过大量的练习来巩固,就能够在考试中应对自如。
首先,让我们来了解一下什么是多元函数。
简单来说,多元函数就是指有两个或两个以上自变量的函数。
比如,我们常见的二元函数\(z = f(x, y)\),这里\(x\)和\(y\)就是两个自变量。
偏导数是多元函数中的一个重要概念。
当我们对一个多元函数中的某个自变量进行求导,而把其他自变量看作常数时,所得到的导数就称为偏导数。
以二元函数\(z = f(x, y)\)为例,如果我们对\(x\)求偏导数,就记作\(\frac{\partial z}{\partial x}\),此时把\(y\)看作常数;对\(y\)求偏导数,记作\(\frac{\partial z}{\partial y}\),把\(x\)看作常数。
为了更好地理解偏导数,我们来看一个具体的例子。
假设函数\(z= x^2 + 3xy + y^2\),那么对\(x\)求偏导数\(\frac{\partial z}{\partial x}\),就是对\(x\)的每一项分别求导。
\(x^2\)对\(x\)求导为\(2x\),\(3xy\)对\(x\)求导为\(3y\)(因为\(y\)看作常数),\(y^2\)对\(x\)求导为\(0\)(因为不含\(x\)),所以\(\frac{\partial z}{\partial x} = 2x + 3y\)。
同样地,对\(y\)求偏导数\(\frac{\partial z}{\partial y}\),\(x^2\)对\(y\)求导为\(0\),\(3xy\)对\(y\)求导为\(3x\),\(y^2\)对\(y\)求导为\(2y\),所以\(\frac{\partial z}{\partial y} = 3x + 2y\)。
多元函数的偏导数与全微分在实际问题中的应用研究在数学中,多元函数的偏导数与全微分是研究函数在不同变量方向上的变化率和函数的局部线性化的重要工具。
它们不仅在纯数学领域有重要的应用,也在实际问题中具有广泛的应用。
本文将探讨多元函数的偏导数与全微分在实际问题中的应用。
一、多元函数的偏导数在实际问题中的应用1. 最优化问题最优化问题是应用数学中的一个重要问题,其在经济、工程、物理等领域中都有广泛的应用。
求解最优化问题时,常常需要利用多元函数的偏导数。
偏导数可以告诉我们函数在不同变量方向上的变化率,进而帮助我们找到函数的最大值或最小值。
通过对多元函数的各个变量求偏导数,并将偏导数等于零的点带入函数中,可以求解出函数的极值点,从而解决最优化问题。
2. 方向导数与梯度方向导数是多元函数在某一给定方向上的变化率。
在实际问题中,我们常常需要知道函数在某一特定方向上的变化率,以便做出合理的决策。
方向导数可以用多元函数的偏导数来求解,通过计算某一方向上的偏导数,即可得到多元函数在该方向上的方向导数。
梯度是多元函数在某一点上取得最大方向导数的方向。
梯度的方向指向函数值增大最快的方向,对于最优化问题的求解具有重要意义。
3. 曲面与曲线的切线与法线在三维空间中,曲面与曲线的切线与法线是研究曲线曲面性质的重要概念。
对于多元函数而言,通过求解偏导数,我们可以得到某点处曲面或曲线的切线与法线的斜率。
这对于研究曲面或曲线的几何性质、求解切线方程、判断切线与法线的位置关系等问题都非常有用。
二、多元函数的全微分在实际问题中的应用1. 近似计算全微分可以用来近似计算多元函数的微小变化。
在实际问题中,我们通常会遇到一些复杂的多元函数,求解其精确的变化量往往困难重重。
通过使用全微分,我们可以将多元函数在某一点展开为一线性函数,从而在该点附近进行近似计算。
全微分的线性性质使得我们可以利用一次函数、二次函数等简单的函数来近似计算,大大简化了计算的复杂性。
多元函数的偏导数与全微分的概念及推导多元函数是指含有多个自变量的函数,偏导数是研究这类函数时常用的工具,而全微分则是近似表示函数的变化率。
本文将介绍多元函数的偏导数与全微分的概念,并进行相应的推导。
一、多元函数的偏导数多元函数的偏导数是指对于含有多个自变量的函数,我们在求解函数变化率时,只关注一个自变量的变化而将其他自变量视为常数。
具体而言,对于函数$f(x_1,x_2,...,x_n)$,其关于自变量$x_i$的偏导数表示为$\frac{\partial f}{\partialx_i}$,表示$f$对$x_i$的变化率。
对于二元函数$z=f(x,y)$,其偏导数分为偏导数和混合偏导数两种情况。
偏导数$\frac{\partial z}{\partial x}$表示$z$对$x$的变化率,$\frac{\partial z}{\partialy}$表示$z$对$y$的变化率。
混合偏导数$\frac{\partial^2 z}{\partial x\partial y}$表示先对$x$求偏导再对$y$求偏导。
对于多元函数的偏导数计算,可以通过求偏导的方式逐个计算。
具体而言,对于多元函数$f(x_1,x_2,...,x_n)$,求关于$x_i$的偏导数时,将其他自变量视为常数,对$x_i$进行求导即可。
重复这个过程,可以得到所有的偏导数。
二、多元函数的全微分多元函数的全微分是函数的微小变化量。
对于二元函数$z=f(x,y)$,其全微分$\mathrm{d}z$表示$z$的微小变化量。
全微分可以通过偏导数来表示,即$\mathrm{d}z=\frac{\partial z}{\partial x}\mathrm{d}x+\frac{\partial z}{\partialy}\mathrm{d}y$。
全微分的求解可以用来计算函数的变化率及其对应的方向,通过对全微分展开可以得到函数的线性逼近形式。
因此,全微分在数学分析和物理学中有着广泛的应用。
多元函数的偏导数与全微分多元函数是指含有多个自变量的函数。
在研究多元函数时,我们经常需要考虑函数在各个自变量上的变化情况。
而偏导数就是用来描述多元函数在某个自变量上的变化率。
偏导数的定义如下:对于多元函数f(x1, x2, ..., xn),在某个点P(x1,x2, ..., xn)处,对第i个自变量求导得到的导数称为偏导数,记作∂f/∂xi。
偏导数表示了函数在某一方向上的变化率。
如果函数f是可微的,那么全微分df可以表示为df = ∂f/∂x1 * dx1 + ∂f/∂x2 * dx2 + ... + ∂f/∂xn * dxn,其中dx1, dx2, ..., dxn是自变量的微小变化量。
偏导数与方向导数之间存在一定的联系。
方向导数表示了函数在某一特定方向上的变化率,偏导数是方向导数在坐标轴方向上的特例。
具体来说,对于函数f(x1, x2, ..., xn)在点P(x1, x2, ..., xn)处的方向向量为d,则方向导数可以表示为Df = ∂f/∂x1 * dx1 + ∂f/∂x2 * dx2 + ... +∂f/∂xn * dxn。
当d为坐标轴方向(例如d = (1, 0, 0, ..., 0))时,方向向量的每个分量只有一个非零分量,其他分量为0,此时方向导数就变成了偏导数。
在求解多元函数的偏导数时,常常使用链式法则和求导法则。
链式法则用于求解复合函数的导数,求导法则则是求解一些特定函数的导数公式。
多元函数偏导数在实际问题中有着广泛的应用。
例如,在经济学中,我们经常研究生产函数来描述生产过程中的变化率;在物理学中,偏导数可以用来表示速度、加速度等物理量的变化率。
总结一下,多元函数的偏导数是用来描述函数在某个自变量上的变化率。
全微分则是将多个自变量的偏导数通过线性组合得到的。
偏导数与方向导数密切相关,是方向导数在坐标轴方向上的特例。
在实际问题中,偏导数有着重要的应用价值。
以上就是关于多元函数的偏导数与全微分的相关内容,希望能够帮助你更好地理解和应用多元函数的求导方法。
多元函数的偏导数与全微分的应用研究首先,我们来了解一下多元函数的偏导数的概念。
对于一个多元函数,偏导数表示在某个给定的点上,函数在各个自变量方向上的变化率。
偏导数的计算方法与一元函数的导数类似,只需要将其他自变量视为常数进行求导即可。
在多元函数中,偏导数可以用来求解函数在某个点的梯度,从而帮助我们判断这个点是极大值还是极小值。
当函数的偏导数在某一点处为零,我们称之为临界点。
通过计算临界点的偏导数和二阶偏导数可以判断该点是否为极值点。
具体的判定方法可以通过求解海森矩阵的特征值来进行。
其次,我们来了解一下多元函数的全微分。
全微分是指对于一个多变函数,其各个自变量的微小变化引起的函数值的变化量。
全微分与偏导数之间存在一定的关系。
全微分可以看作是偏导数的线性组合,通过对各个偏导数的加权平均来表示对于每个自变量的微小变化的贡献。
全微分可以帮助我们近似地计算函数值的变化量,从而在实际问题中有重要的应用。
现代工程和科学领域中,多元函数的偏导数和全微分广泛应用于各种问题的求解中。
其中,最常见的应用包括:1. 约束条件下的最优化问题:在优化问题中,我们通常面临着一个目标函数以及一系列约束条件。
通过求解目标函数的偏导数,我们能够确定目标函数的极值点。
然而,这些极值点可能受到约束条件的限制,所以我们需要更进一步的分析。
通过引入拉格朗日乘子法,我们可以将约束条件融入到目标函数中,并通过求解函数的梯度来确定最优解。
2. 经济学中的边际分析:在经济学中,我们经常使用多元函数来描述经济模型。
通过计算多元函数的偏导数,我们可以分析经济模型中的边际效应。
例如,在成本函数中,我们可以计算边际成本的偏导数来确定最优产量。
这些边际效应对于经济决策和政策制定具有重要意义。
3. 物理学中的力学问题:力学问题常常涉及多个变量之间的关系。
通过计算多元函数的偏导数,我们可以确定物体的运动轨迹以及受力情况。
例如,在多体系统中,我们可以通过计算势能函数的梯度来确定受力方向和力的大小。
多元函数的偏导数和全微分多元函数是数学中非常重要的一类函数,它可以同时依赖于多个变量。
在研究多元函数时,我们需要关注其偏导数和全微分这两个重要概念。
一、偏导数的定义和性质偏导数是指多元函数在某个变量上的导数。
对于二元函数f(x, y),其偏导数可以定义为在某一点上,分别关于x和y的导数。
记作∂f/∂x 和∂f/∂y。
同样地,在三元函数中,我们可以定义三个偏导数∂f/∂x,∂f/∂y 和∂f/∂z。
偏导数的计算方法和一元函数的导数类似,只需要固定其他变量,将多元函数当作一元函数对某个变量求导即可。
偏导数有很多重要性质,以下是其中的一些:1. 混合偏导数的次序可以颠倒,即∂²f/(∂x∂y) = ∂²f/(∂y∂x)。
这个性质称为克拉默条件。
2. 如果混合偏导数∂²f/(∂x∂y) 和∂²f/(∂y∂x) 在某个点处连续,那么这两个偏导数必然相等。
3. 如果多元函数的所有偏导数都连续,那么它在定义域内必然是光滑的,也就是处处可微的。
二、全微分的概念和计算方式全微分是多元函数在某个点上的线性近似。
对于二元函数f(x, y),全微分可以表示为df = ∂f/∂x * dx + ∂f/∂y * dy。
在三元函数中,全微分可以表示为df = ∂f/∂x * dx + ∂f/∂y * dy + ∂f/∂z * dz。
在计算全微分时,我们将偏导数乘以对应的变量的微分,并将它们相加。
全微分可以帮助我们近似计算函数在某个点的微小变化量。
如果一个函数在某点处连续且具有光滑的偏导数,那么全微分也是唯一确定的。
三、应用举例偏导数和全微分在实际问题中有广泛的应用。
以下是一些例子:1. 梯度下降法:在机器学习中,我们常常需要优化一个目标函数。
通过计算目标函数关于各个变量的偏导数,可以确定梯度的方向,进而采取适当的步长进行迭代,最终找到目标函数的最小值。
2. 经济学中的边际效用:在经济学中,边际效用是指额外增加或减少一单位某种物品所带来的效用变化。
多元函数的偏导数与全微分在数学分析中,偏导数与全微分是研究多元函数的重要概念。
本文将从理论和实际的角度探讨多元函数的偏导数与全微分的定义、性质和应用。
一、偏导数的定义与性质偏导数是用来描述多元函数在某一变量上的变化率。
对于一个函数f(x₁, x₂, ..., xn),偏导数是指在其他变量固定的情况下,关于某一变量的导数。
设有函数f(x₁, x₂, ..., xn),其中x₁, x₂, ..., xn是变量,对于i = 1,2,...,n,f对xᵢ的偏导数记作∂f/∂xᵢ。
偏导数的计算方法与一元函数类似,可以通过求极限的方式得到。
偏导数具有以下性质:1.线性性质:对于常数α, β和函数f, g,有∂(αf + βg)/∂x = α(∂f/∂x) + β(∂g/∂x)。
2.交换性质:对于任意的i, j,有∂(∂f/∂xᵢ)/∂xⱼ = ∂(∂f/∂xⱼ)/∂xᵢ。
3.对称性质:对于任意的i, j,如果混合偏导数∂²f/(∂xᵢ∂xⱼ)和∂²f/(∂xⱼ∂xᵢ)在某个区域内存在且连续,那么它们相等。
二、全微分的定义与性质全微分是用来描述多元函数在某一点处的增量与变量之间的关系。
对于一个函数f(x₁, x₂, ..., xn),在某个点(x₁₀, x₂₀, ..., xn₀)处的全微分df记作:df = (∂f/∂x₁)dx₁ + (∂f/∂x₂)dx₂ + ... + (∂f/∂xn)dxn全微分的计算方法与一元函数类似,通过对每个变量求偏导数并乘以对应的微小增量得到。
全微分具有以下性质:1.线性性质:对于常数α, β和函数f,有d(αf + βg) = αdf + βdg。
2.链式法则:对于复合函数z = f(g(x₁, x₂, ..., xn)),其全微分可以表示为dz = (∂z/∂x₁)dx₁ + (∂z/∂x₂)dx₂ + ... + (∂z/∂xn)dxn。
3.二阶全微分:如果函数f具有二阶连续偏导数,那么df的全微分可以进一步求导得到d²f = (∂²f/∂x₁²)dx₁² + 2(∂²f/∂x₁∂x₂)dx₁dx₂ + ... + (∂²f/∂xn²)dxn²。
偏导数与全微分偏导数和全微分是微积分中非常重要的概念和工具。
它们在求解多元函数的极值、优化问题以及微分方程的应用中起到了关键作用。
本文将介绍偏导数和全微分的定义、性质以及在实际应用中的意义和应用。
一、偏导数偏导数是对多元函数在某一变量上求导的一种推广。
对于函数f(x₁, x₂, ..., xn),其关于变量 xi 的偏导数表示为∂f/∂xi,即对变量 xi 进行微小变化时,函数 f 的变化量与 xi 的变化量之间的比率。
如果 f 在某一点处的偏导数存在,那么它就是该点的切线斜率。
偏导数可以用几何上的切线来理解,它告诉我们函数在每个变量方向上的变化率。
偏导数的计算方法和一元函数的导数类似,只需将其他变量视为常数进行求导。
例如,对于函数 f(x, y) = x² + 2xy + y²,在求∂f/∂x 时,将y 视为常数,得到∂f/∂x = 2x + 2y。
同理,求∂f/∂y 时,将 x 视为常数,得到∂f/∂y = 2x + 2y。
偏导数不仅可以求一阶偏导数,还可以求高阶偏导数。
二阶偏导数表示对函数的一阶偏导数再次求导,例如∂²f/∂x² 表示对 x 的偏导数再对 x 求导。
高阶偏导数也有类似的定义。
二、全微分全微分是在偏导数的基础上推广出来的概念。
对于函数 f(x₁, x₂, ..., xn),它的全微分表示为df = ∂f/∂x₁dx₁ + ∂f/∂x₂dx₂ + ... + ∂f/∂xndxn。
全微分可以看作是多元函数的线性逼近。
在某一点处,函数值的增量可以近似表示为各个自变量的增量与其对应的偏导数之积的总和。
全微分的重要性在于它可以帮助我们理解函数的微小变化对应的函数值的变化。
在实际应用中,我们常常使用全微分来近似计算函数值的变化。
三、偏导数与全微分的应用1. 极值和最优化问题:偏导数和全微分可以帮助我们找到多元函数的极值点和最优化问题的解。
通过求解偏导数为零的方程组,我们可以找到函数的驻点,并通过二阶偏导数的正负判断是否为极值点。
多元函数的偏导数与全微分论述与应用一、多元函数的偏导数与全微分的定义多元函数是指具有多个自变量的函数。
对于一个具有n个自变量的函数f(x1,x2, ..., xn),其中xi表示第i个自变量,其偏导数指的是在每个自变量上分别求导,而将其他自变量视为常数。
偏导数表示函数在某个特定自变量上的变化率。
以二元函数f(x, y)为例,分别对x和y求偏导数,可以得到偏导数表示为∂f/∂x和∂f/∂y。
这表示当y是常数时,函数f关于x的变化率;当x是常数时,函数f关于y的变化率。
全微分是对于多元函数在某一点的线性近似表示。
对于一个二元函数f(x, y),全微分表示为df=f_x dx + f_y dy,其中f_x和f_y表示分别关于x和y的偏导数。
全微分可以用来描述函数在某一点处的微小变化量。
具体而言,对于自变量的微小变化dx和dy,函数f在该点产生的微小变化df可以通过全微分来表示。
二、多元函数偏导数的计算方法多元函数的偏导数的计算方法与一元函数的导数的计算方法类似,可以使用基本的微分法则进行计算。
对于一个具有n个自变量的函数f(x1, x2, ..., xn),分别对每个自变量求偏导数,可以按照以下步骤进行计算:1. 将所有与求导无关的自变量视为常数。
2. 对于每个自变量,分别对其求偏导数。
对于每个自变量x_i,偏导数表示为∂f/∂x_i。
3. 求得的偏导数可以用来计算函数在不同自变量上的变化率。
三、多元函数偏导数与全微分的应用1. 最优化问题:多元函数的偏导数可以用于最优化问题的求解。
通过对各个自变量求偏导数,可以找到函数的最大值或最小值。
这在经济学、工程学和物理学等领域有广泛的应用。
2. 偏导数与曲面切平面:偏导数可以用来表示曲面在某一点处的斜率,从而可以求出曲面在该点处的切平面。
这对于三维几何和图形绘制具有重要意义。
3. 方向导数:偏导数可以用来计算函数在给定方向上的变化率。
通过对每个自变量求偏导数,然后将其与给定方向的单位矢量相乘,可以得到函数在该方向上的方向导数。
多元函数偏导数与全微分多元函数的偏导数和全微分是微积分中非常重要的概念。
在研究多元函数的变化率和近似值时,偏导数和全微分起着至关重要的作用。
本文将对多元函数的偏导数和全微分进行详细讨论。
1. 偏导数偏导数是指多元函数对于其中某个变量的导数,其他变量视为常数。
以二元函数为例,设函数z=f(x,y),则函数f关于x的偏导数记为∂z/∂x,表示在给定y的值下,函数z对于x的变化率。
类似地,关于y的偏导数记为∂z/∂y。
对于多元函数来说,偏导数有多个,可以依次求取。
2. 偏导数的计算计算偏导数的方法与一元函数类似,将其他变量视为常数,对目标变量求导即可。
例如,对于函数z=x^2+y^2,我们分别求偏导数。
关于x的偏导数为∂z/∂x=2x,关于y的偏导数为∂z/∂y=2y。
求导的过程中,将其他变量视为常数,对目标变量进行求导计算。
3. 偏导数的几何意义偏导数在几何上有着重要的意义。
以二元函数为例,对于函数z=f(x,y),在点(x0,y0)处的偏导数∂z/∂x表示函数图像在该点处关于x轴的切线斜率,而∂z/∂y则表示关于y轴的切线斜率。
通过偏导数的计算,我们可以了解函数在不同方向上的变化率和趋势。
4. 全微分全微分是用线性逼近来描述函数值的微小变化。
对于函数z=f(x,y),其全微分可以表示为dz=∂z/∂x*dx+∂z/∂y*dy。
这里的dx和dy分别是自变量x和y的微小变化量。
全微分主要用于函数值的近似计算和误差分析。
5. 全微分与偏导数的关系全微分与偏导数之间存在着密切的关系。
对于二元函数而言,全微分dz可以表示为dz=∂z/∂x*dx+∂z/∂y*dy。
其中,∂z/∂x和∂z/∂y分别是偏导数,dx和dy是自变量的微小变化量。
可以看出,全微分dz与偏导数有着相似的表达形式,但全微分考虑了两个自变量的微小变化。
6. 全微分的应用全微分在实际问题中有着广泛的应用。
通过使用全微分,我们可以对函数值进行近似计算,从而得到函数在某一点的近似值。
多元函数中的偏导数与全微分推导在数学中,多元函数是指依赖于多个自变量的函数。
为了研究这样的函数,我们需要引入偏导数和全微分的概念。
本文将从基础概念出发,讲解多元函数中的偏导数和全微分的推导过程。
1. 偏导数的定义和性质偏导数是多元函数在某一点对某一自变量的偏导数,其他自变量保持不变。
对于二元函数 f(x,y),它的偏导数可以表示为∂f/∂x和∂f/∂y。
偏导数的定义如下:∂f/∂x = lim(h→0) [(f(x+h,y) - f(x,y))/h]∂f/∂y = lim(k→0) [(f(x,y+k) - f(x,y))/k]在计算偏导数时,我们需要先固定其他自变量,然后对目标变量进行求导。
偏导数有以下性质:- 常数的偏导数为零;- 若函数 f 为可微分函数,则对于任意自变量,其偏导数存在。
2. 全微分的定义和性质全微分是多元函数在某一点处的线性逼近,可以用来描述函数的微小变化。
对于二元函数 f(x,y),其全微分可以表示为df = ∂f/∂x dx + ∂f/∂y dy。
全微分的定义如下:df = f(x+Δx, y+Δy) - f(x,y)根据全微分的定义,我们可以得到以下性质:- 全微分是对函数变化的一种近似,当自变量的变化趋近于零时,全微分接近于函数的实际变化;- 若函数 f 为可微分函数,则全微分在每一点处存在。
3. 偏导数与全微分的关系偏导数与全微分之间存在一定的关系。
偏导数可以通过全微分进行计算。
对于二元函数 f(x,y),偏导数与全微分的关系可以表示为:∂f/∂x = (∂f/∂x)dx + (∂f/∂y)dy通过上述公式,我们可以将偏导数转化为全微分的形式。
在实际计算中,我们可以先计算全微分,再根据全微分的形式得到偏导数。
4. 全微分的性质全微分具有以下性质:- 全微分是函数的线性逼近;- 全微分在某一点处的值等于函数在该点局部变化的近似。
全微分的性质使得它成为研究多元函数的重要工具。
多元函数连续、偏导、全微分之间的关系多元函数是数学中最重要的一种概念,它是在多变量情况下函数的研究,以表示不同种类的变化现象而被广泛使用。
同样,连续、偏导、全微分也是一些重要的概念,它们之间有密切的联系,下面将对它们之间的关系进行一个介绍。
首先,多元函数的连续性研究是一个重要的研究内容,其定义可以定义为当某一多元函数的某一变量发生变化时,它的值随之发生连续的变化,而无中断。
连续性是多元函数的一个重要属性,只有它具备连续性,以便对函数进行更深入地分析。
其次,多元函数的偏导数研究也是一个很重要的研究内容,偏导数是指在多元函数中,以其中一个变量为焦点,求解它随另一变量变化时函数变化率的大小,以便更加深入地定义函数。
假定多元函数域上连续,则其偏导数的存在和连续性是一起的,这对多元函数的深入分析非常重要。
最后,多元函数的全微分也是一个重要的研究内容,全微分是指多元函数中随一个变量而变化时,此时函数的所有变量改变量所受到的影响,可以用全微分表示出来。
而且全微分又与偏导数有着密切的关联,只有当多元函数的偏导数存在且连续时,全微分才有意义。
综上所述,多元函数的连续、偏导、全微分之间都有着密切的联系,它们彼此的存在相互依赖,只有当它们一起存在时,多元函数的研究才能够更加深入。
因此,广大数学家都应该充分研究和理解这些概念,以推动多元函数研究的发展。
本文从对多元函数连续、偏导、全微分之间的关系进行了一个介绍,以便帮助读者更好地理解多元函数的特性。
最后,希望读者能够从中受益,深入地探索多元函数的知识,发展多元函数的研究。
6.2 多元函数的偏导数和全微分6.2.1 偏导数的概念与计算1.偏导数定义对于二元函数),(y x f z =,如果只有自变量x 变化, 而自变量y 固定, 这时它就是x 的一元函数, 这函数对x 的导数, 就称为二元函数),(y x f z =对于x 的偏导数。
定义:设函数),(y x f z =在点(x 0, y 0)的某一邻域内有定义, 当y 固定在y 0而x 在x 0处有增量∆x 时, 相应地函数有增量),(),(0000y x f y x x f -∆+ 如果极限xy x f y x x f x ∆-∆+→∆),(),(lim00000存在, 则称此极限为函数),(y x f z =在点(x 0,y 0)处对x 的偏导数, 记作:0y y x x xz ==∂∂,0y y x x xf ==∂∂,00y y x x xz ==,或),(00y x f x 。
即:xy x f y x x f y x f x x ∆-∆+=→∆),(),(lim),(0000000.类似地,函数),(y x f z =在点(x 0, y 0)处对y 的偏导数定义为:yy x f y y x f y ∆-∆+→∆),(),(lim00000,记作:0y y x x yz ==∂∂,0y y x x yf ==∂∂,00y y x x yz ==,或),(00y x f y 。
偏导函数:如果函数),(y x f z =在区域D 内每一点),(y x 处对x 的偏导数都存在, 那么这个偏导数就是x 、y 的函数, 它就称为函数),(y x f z =对自变量x 的偏导函数, 记作x z ∂∂, xf ∂∂, x z , 或),(y x f x 。
偏导函数的定义式:x y x f y x x f y x f x x ∆-∆+=→∆),(),(lim ),(0.类似地, 可定义函数),(y x f z =对y 的偏导函数, 记为y z ∂∂, yf∂∂, y z ,或),(y x f y 。
偏导函数的定义式:yy x f y y x f y x f y y ∆-∆+=→∆),(),(lim ),(0.2.偏导数的计算 求x f ∂∂时, 只要把y 暂时看作常量而对x 求导数;求yf ∂∂时, 只要把x 暂时看作常量而对y 求导数。
讨论:下列求偏导数的方法是否正确?0),(),(00y y x x x x y x f y x f ===,00),(),(00y y x x y y y x f y x f ===,]),([),(000x x x y x f dx d y x f ==,0]),([),(000y y y y x f dydy x f ==。
偏导数的概念还可推广到二元以上的函数. 例如三元函数u =f (x , y , z )在点(x , y , z )处对x 的偏导数定义为 xz y x f z y x x f z y x f x x ∆-∆+=→∆),,(),,(lim),,(0,其中(x , y , z )是函数u =f (x , y , z )的定义域的内点. 它们的求法也仍旧是一元函数的微分法问题. 例1 求z =x 2+3xy +y 2在点(1, 2)处的偏导数. 解y x xz 32+=∂∂, y x y z 23+=∂∂.8231221=⋅+⋅=∂∂==y x x z,7221321=⋅+⋅=∂∂==y x yz . 例2 求z =x 2sin 2y 的偏导数。
解y x xz2sin 2=∂∂;y x y z 2cos 22=∂∂。
例3 设)1,0(≠>=x x x z y , 求证: zyz x x z y x 2ln 1=∂∂+∂∂.证1-=∂∂y yx xz , x x y z y ln =∂∂.zx x x x xyx y x y z x x z y x y y y y 2ln ln 1ln 11=+=+=∂∂+∂∂-.例4 求222z y x r ++=的偏导数。
解r x z y x x x r =++=∂∂222;ry z y x y y r=++=∂∂222。
例5 已知理想气体的状态方程为pV =RT (R 为常数), 求证:1-=∂∂⋅∂∂⋅∂∂pTT V V p .证 因为VRT p =, 2V RT V p -=∂∂;p RT V =, p RT V =∂∂;RpV T =,R Vp T =∂∂; 所以12-=-=⋅⋅-=∂∂⋅∂∂⋅∂∂pV RT RV p R V RT p T T V V p .例5 说明的问题: 偏导数的记号是一个整体记号, 不能看作分子分母之商。
3.偏导数的几何意义一元函数在某点处的导数从几何上看表示曲线在该点处的切线斜率,那么二元函数的偏导在几何上表示什么呢?我们知道,二元函数),(y x f z =在空间中表示一曲面,在00(,)x y 处对x 求偏导时把y 看成常量,这时z 是关于x 的一元函数,所以00(,)x y z x∂∂表示曲面),(y x f z =与平面0y y =的交线在00(,)x y 处沿x 轴正向的切线斜率(如图).同理,00(,)x y z y∂∂表示曲面在该点处沿y 轴正向的切线斜率.4.偏导数与连续性对于多元函数来说, 即使各偏导数在某点都存在, 也不能保证函数在该点连续. 例如⎪⎩⎪⎨⎧=+≠++=000 ),(222222y x y x y x xy y x f在点(0, 0)有, f x (0, 0)=0, f y (0, 0)=0, 但函数在点(0, 0)并不连续. 提示: 0)0 ,(=x f , 0) ,0(=y f ; 0)]0 ,([)0 ,0(==x f dxd f x , 0)] ,0([)0 ,0(==y f dy d f y.当点P (x , y )沿x 轴趋于点(0, 0)时, 有00lim )0 ,(lim ),(lim)0,0(),(===→→→x x y x x f y x f ;当点P (x , y )沿直线y =kx 趋于点(0, 0)时, 有22222022 )0,0(),(1lim lim kk x k x kx y x xy x kxy y x +=+=+→=→.因此, ),(lim )0,0(),(y x f y x →不存在, 故函数f (x , y )在(0, 0)处不连续.6.2.2 全微分1.全微分的定义根据一元函数微分学中增量与微分的关系, 有偏增量与偏微分:x y x f y x f y x x f x ∆≈-∆+),(),(),(,),(),(y x f y x x f -∆+为函数对x 的偏增量, x y x f x ∆),(f x (x , y )∆x 为函数对x 的偏微分;y y x f y x f y y x f y ∆≈-∆+),(),(),(,),(),(y x f y y x f -∆+为函数)对y 的偏增量,y y x f y ∆),(为函数对y 的偏微分。
全增量:),(),(y x f y y x x f z -∆+∆+=∆计算全增量比较复杂, 我们希望用∆x 、∆y 的线性函数来近似代替之. 定义 如果函数z =f (x , y )在点(x , y )的全增量 ),(),(y x f y y x x f z -∆+∆+=∆ 可表示为) )()(( )(22y x o y B x A z ∆+∆=+∆+∆=∆ρρ,其中A 、B 不依赖于∆x 、∆y 而仅与x 、y 有关, 则称函数z =f (x , y )在点(x , y )可微分, 而称A ∆x +B ∆y 为函数z =f (x , y )在点(x , y )的全微分, 记作dz , 即 y B x A dz ∆+∆=如果函数在区域D 内各点处都可微分, 那么称这函数在D 内可微分.2.可微与连续可微必连续, 但偏导数存在不一定连续. 这是因为, 如果z =f (x , y )在点(x , y )可微, 则 ∆z = f (x +∆x , y +∆y )-f (x , y )=A ∆x +B ∆y +o (ρ), 于是 0lim 0=∆→z ρ,从而),(]),([lim ),(lim 0)0,0(),(y x f z y x f y y x x f y x =∆+=∆+∆+→→∆∆ρ.因此函数z =f (x , y )在点(x , y )处连续. 3.可微条件 定理1(必要条件)如果函数z =f (x , y )在点(x , y )可微分, 则函数在该点的偏导数x z ∂∂、yz ∂∂必定存在, 且函数z =f (x , y )在点(x , y )的全微分为:y yz x x z dz ∆∂∂+∆∂∂=。
证 设函数z =f (x , y )在点P (x , y )可微分. 于是, 对于点P 的某个邻域内的任意一点P '(x +∆x , y +∆y ), 有∆z =A ∆x +B ∆y +o (ρ). 特别当∆y =0时有 f (x +∆x , y )-f (x , y )=A ∆x +o (|∆x |)上式两边各除以∆x ,再令∆x →0而取极限,就得A x y x f y x x f x =∆-∆+→∆),(),(lim,从而偏导数x z ∂∂存在, 且A xz =∂∂.同理可证偏导数y z ∂∂存在, 且B y z =∂∂.所以:y yz x x z dz ∆∂∂+∆∂∂=.偏导数x z ∂∂、yz ∂∂存在是可微分的必要条件, 但不是充分条件.例如,函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f 在点(0, 0)处虽然有f x (0, 0)=0及f y (0, 0)=0,但函数在(0, 0)不可微分, 即∆z -[f x (0, 0)∆x +f y (0, 0)∆y ]不是较ρ高阶的无穷小. 这是因为当(∆x , ∆y )沿直线y =x 趋于(0, 0)时,ρ])0 ,0()0 ,0([y f x f z y x ∆⋅+∆⋅-∆021)()()()(2222≠=∆+∆∆⋅∆=∆+∆∆⋅∆=x x x x y x y x .定理2(充分条件) 如果函数z =f (x , y )的偏导数x z ∂∂、yz ∂∂在点(x , y )连续, 则函数在该点可微分. 定理1和定理2的结论可推广到三元及三元以上函数.按着习惯, ∆x 、∆y 分别记作dx 、dy , 并分别称为自变量的微分, 则函数z =f (x , y )的全微分可写作 dy yz dx x z dz ∂∂+∂∂=. 二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理. 叠加原理也适用于二元以上的函数, 例如函数u =f (x , y , z ) 的全微分为 dzzu dy y u dx x u du ∂∂+∂∂+∂∂=.例1 计算函数z =x 2y +y 2的全微分. 解 因为xy xz 2=∂∂, y x y z 22+=∂∂,所以dz =2xydx +(x 2+2y )dy .例2 计算函数z =e xy 在点(2, 1)处的全微分. 解 因为xy ye xz =∂∂, xy xe y z =∂∂,212e x z y x =∂∂==, 2122e y z y x =∂∂==, 所以 dz =e 2dx +2e 2dy . 例3 计算函数yze y x u ++=2sin 的全微分. 解 因为1=∂∂xu , yz ze y y u +=∂∂2cos 21, yz ye z u =∂∂,所以 dz ye dy ze y dx du yz yz +++=)2cos 21(. *二、全微分在近似计算中的应用当二元函数z =f (x , y )在点P (x , y )的两个偏导数f x (x , y ) , f y (x , y )连续, 并且|∆x |, |∆y |都较小时, 有近似等式∆z ≈dz = f x (x , y )∆x +f y (x , y )∆y ,即 f (x +∆x , y +∆y ) ≈ f (x , y )+f x (x , y )∆x +f y (x , y )∆y . 我们可以利用上述近似等式对二元函数作近似计算.例4 有一圆柱体, 受压后发生形变, 它的半径由20cm 增大到20. 05cm , 高度由100cu 减少到99cm . 求此圆柱体体积变化的近似值.解 设圆柱体的半径、高和体积依次为r 、h 和V , 则有 V =π r 2h .已知r =20, h =100, ∆r =0. 05, ∆h =-1. 根据近似公式, 有 ∆V ≈dV =V r ∆r +V h ∆h =2πrh ∆r +πr 2∆h=2π⨯20⨯100⨯0. 05+π⨯202⨯(-1)=-200π (cm 3). 即此圆柱体在受压后体积约减少了200π cm 3. 例5 计算(1. 04)2. 02的近似值.解 设函数f (x , y )=x y . 显然, 要计算的值就是函数在x =1.04, y =2.02时的函数值f (1.04, 2.02).取x =1, y =2, ∆x =0.04, ∆y =0.02. 由于f (x +∆x , y +∆y )≈ f (x , y )+f x (x , y )∆x +f y (x , y )∆y=x y +yx y -1∆x +x y ln x ∆y ,所以(1.04)2. 02≈12+2⨯12-1⨯0.04+12⨯ln1⨯0.02=1.08.例6 利用单摆摆动测定重力加速度g 的公式是224Tlg π=.现测得单摆摆长l 与振动周期T 分别为l =100±0.1cm 、T =2±0.004s. 问由于测定l 与T 的误差而引起g 的绝对误差和相对误差各为多少?解 如果把测量l 与T 所产生的误差当作|Δl |与|ΔT |, 则利用上述计算公式所产生的误差就是二元函数224Tlg π=的全增量的绝对值|Δg |. 由于|Δl |, |ΔT |都很小, 因此我们可以用dg 来近似地代替Δg . 这样就得到g 的误差为||||||T T g l l g dg g ∆∂∂+∆∂∂=≈∆ Tl T gl g δδ⋅∂∂+⋅∂∂≤|||| )21(4322T l Tl T δδπ+=, 其中δl 与δT 为l 与T 的绝对误差. 把l =100, T =2, δl =0.1, δT =0.004代入上式, 得g 的绝对误差约为)004.02100221.0(4322⨯⨯+=πδg )/(93.45.022s cm ==π.002225.0210045.0=⨯=ππδg g. 从上面的例子可以看到, 对于一般的二元函数z =f (x, y ), 如果自变量x 、y 的绝对误差分别为δx 、δy , 即|Δx |≤δx , |Δy |≤δy , 则z 的误差||||||y y z x x z dz z ∆∂∂+∆∂∂=≈∆||||||||y yz x x z ∆⋅∂∂+∆⋅∂∂≤y x y z x z δδ⋅∂∂+⋅∂∂≤||||; 从而得到z 的绝对误差约为 yx z y z x z δδδ⋅∂∂+⋅∂∂=||||;z 的相对误差约为yx z z yz z x zz δδδ∂∂+∂∂=||.6.2.3 方向导数1.方向导数的定义现在我们来讨论函数z =f (x , y )在一点P 沿某一方向的变化率问题.设l 是xOy 平面上以P 0(x 0, y 0)为始点的一条射线, e l =(cos α, cos β)是与l 同方向的单位向量. 射线l 的参数方程为x =x 0+t cos α, y =y 0+t cos β (t ≥0).设函数z =f (x , y )在点P 0(x 0, y 0)的某一邻域U (P 0)内有定义, P (x 0+t cos α, y 0+t cos β)为l 上另一点, 且P ∈U (P 0). 如果函数增量f (x 0+t cos α, y 0+t cos β)-f (x 0, y 0)与P 到P 0的距离|PP 0|=t 的比值ty x f t y t x f ),()cos ,cos (0000-++βα当P 沿着l 趋于P 0(即t →t 0+)时的极限存在, 则称此极限为函数f (x , y )在点P 0沿方向l 的方向导数, 记作),(00y x lf ∂∂, 即),(00y x lf ∂∂ty x f t y t x f t ),()cos ,cos (lim 00000-++=+→βα.从方向导数的定义可知, 方向导数),(00y x lf ∂∂就是函数f (x , y )在点P 0(x 0, y 0)处沿方向l 的变化率.2.方向导数的计算定理 如果函数z =f (x , y )在点P 0(x 0, y 0)可微分, 那么函数在该点沿任一方向l 的方向导数都存在, 且有),(00y x lf ∂∂βαcos ),(cos ),(0000y x f y x f y x +=,其中cos α, cos β是方向l 的方向余弦. 简要证明: 设∆x =t cos α, ∆y =t cos β, 则f (x 0+t cos α, y 0+t cos β)-f (x 0, y 0)=f x (x 0, y 0)t cos α+f y (x 0, y 0)t cos β+o (t ). 所以 ty x f t y t x f t ),()cos ,cos (lim 00000-+++→βαϕϕsin ),(cos ),(0000y x f y x f y x +=.这就证明了方向导数的存在, 且其值为),(00y x lf ∂∂βαcos ),(cos ),(0000y x f y x f y x +=.提示: ),(),(0000y x f y y x x f -∆+∆+))()((),(),(220000y x o y y x f x y x f y x ∆+∆+∆+∆=. ∆x =t cos α, ∆y =t cos β,t y x =∆+∆22)()(.讨论: 函数z =f (x , y )在点P 沿x 轴正向和负向, 沿y 轴正向和负向的方向导数如何? 提示:沿x 轴正向时, cos α=1, cos β=0,x f l f ∂∂=∂∂; 沿x 轴负向时, cos α=-1, cos β=0, xfl f ∂∂-=∂∂.例1 求函数z =xe 2y 在点P (1, 0)沿从点P (1, 0)到点Q (2, -1)的方向的方向导数. 解 这里方向l 即向量→)1 ,1(-=PQ 的方向, 与l 同向的单位向量为)21 ,21(-=l e .因为函数可微分, 且1)0,1(2)0,1(==∂∂ye xz, 22)0,1(2)0,1(==∂∂yxe yz ,所以所求方向导数为22)21(2211)0,1(-=-⋅+⋅=∂∂l z .对于三元函数f (x , y , z )来说, 它在空间一点P 0(x 0, y 0, z 0)沿e l =(cos α , cos β , cos γ)的方向导数为),,(000z y x lf ∂∂tz y x f t z t y t x f t ),,()cos ,cos ,cos (lim 0000000-+++=+→γβα.如果函数f (x , y , z )在点(x 0, y 0, z 0)可微分, 则函数在该点沿着方向e l =(cos α , cos β , cos γ)的方向导数为),,(000z y x lf ∂∂γβαcos ),,(cos ),,(cos ),,(000000000z y x f z y x f z y x f z y x ++=例2求f (x , y , z )=xy +yz +zx 在点(1, 1, 2)沿方向l 的方向导数, 其中l 的方向角分别为60︒, 45︒, 60︒.解 与l 同向的单位向量为e l =(cos60︒, cos 45︒, cos60︒))21 ,22 ,21(=. 因为函数可微分, 且f x (1, 1, 2)=(y +z )|(1, 1, 2)=3, f y (1, 1, 2)=(x +z )|(1, 1, 2)=3, f z (1, 1, 2)=(y +x )|(1, 1, 2)=2, 所以)235(21212223213)2,1,1(+=⋅+⋅+⋅=∂∂lf .3.梯度设函数z =f (x , y )在平面区域D 内具有一阶连续偏导数, 则对于每一点P 0(x 0, y 0)∈D , 都可确定一个向量f x (x 0, y 0)i +f y (x 0, y 0)j ,这向量称为函数f (x , y )在点P 0(x 0, y 0)的梯度, 记作grad f (x 0, y 0), 即 grad f (x 0, y 0)= f x (x 0, y 0)i +f y (x 0, y 0)j . 梯度与方向导数:如果函数f (x , y )在点P 0(x 0, y 0)可微分, e l =(cos α , cos β )是与方向l 同方向的单位向量, 则),(00y x lf ∂∂βαcos ),(cos ),(0000y x f y x f y x +=,= grad f (x 0, y 0)⋅e l=| grad f (x 0, y 0)|⋅cos(grad f (x 0, y 0),^ e l ).这一关系式表明了函数在一点的梯度与函数在这点的方向导数间的关系. 特别, 当向量e l 与grad f (x 0, y 0)的夹角θ=0, 即沿梯度方向时, 方向导数),(00y x lf ∂∂取得最大值, 这个最大值就是梯度的模|grad f (x 0, y 0)|. 这就是说: 函数在一点的梯度是个向量, 它的方向是函数在这点的方向导数取得最大值的方向, 它的模就等于方向导数的最大值. 讨论:lf∂∂的最大值; 结论: 函数在某点的梯度是这样一个向量, 它的方向与取得最大方向导数的方向一致, 而它的模为方向导数的最大值. 4.等值线我们知道, 一般说来二元函数z =f (x , y )在几何上表示一个曲面, 这曲面被平面z =c (c 是常数)所截得的曲线L 的方程为 ⎩⎨⎧==c z y x f z ),(.这条曲线L 在xOy 面上的投影是一条平面曲线L *, 它在xOy 平面上的方程为 f (x , y )=c .对于曲线L *上的一切点, 已给函数的函数值都是c , 所以我们称平面曲线L *为函数z =f (x , y )的等值线.若f x , f y 不同时为零, 则等值线f (x , y )=c 上任一点P 0(x 0, y 0)处的一个单位法向量为 )),(),,((),(),(10000002002y x f y x f y x f y x f y x y x +=n .这表明梯度grad f (x 0, y 0)的方向与等值线上这点的一个法线方向相同, 而沿这个方向的方向导数nf∂∂就等于|grad f (x 0, y 0)|, 于是 n nfy x f ∂∂=),(00grad .这一关系式表明了函数在一点的梯度与过这点的等值线、方向导数间的关系. 这就是说: 函数在一点的梯度方向与等值线在这点的一个法线方向相同, 它的指向为从数值较低的等值线指向数值较高的等值线, 梯度的模就等于函数在这个法线方向的方向导数.梯度概念可以推广到三元函数的情形. 设函数f (x , y , z )在空间区域G 内具有一阶连续偏导数, 则对于每一点P 0(x 0, y 0, z 0)∈G , 都可定出一个向量f x (x 0, y 0, z 0)i +f y (x 0, y 0, z 0)j +f z (x 0, y 0, z 0)k ,这向量称为函数f (x , y , z )在点P 0(x 0, y 0, z 0)的梯度, 记为grad f (x 0, y 0, z 0), 即grad f (x 0, y 0, z 0)=f x (x 0, y 0, z 0)i +f y (x 0, y 0, z 0)j +f z (x 0, y 0, z 0)k .结论: 三元函数的梯度也是这样一个向量, 它的方向与取得最大方向导数的方向一致, 而它的模为方向导数的最大值.如果引进曲面f (x , y , z )=c为函数的等量面的概念, 则可得函数f (x , y , z )在点P 0(x 0, y 0, z 0)的梯度的方向与过点P 0的等量面 f (x , y , z )=c 在这点的法线的一个方向相同, 且从数值较低的等量面指向数值较高的等量面, 而梯度的模等于函数在这个法线方向的方向导数.例3 求221y x +grad . 解 这里221),(y x y x f +=. 因为 222)(2y x x x f +-=∂∂, 222)(2y x y y f +-=∂∂, 所以 221y x +grad j i 222222)(2)(2y x y y x x +-+-=. 例4 设f (x , y , z )=x 2+y 2+z 2, 求grad f (1, -1, 2).解 grad f =(f x , f y , f z )=(2x , 2y , 2z ),于是 grad f (1, -1, 2)=(2, -2, 4).*5。