积的变化规律
- 格式:doc
- 大小:16.50 KB
- 文档页数:1
乘数与积的变化规律
乘数与积的变化规律是指在乘法运算中,当一个因数(乘数)发生变化时,积的变化情况。
这个规律可以通过具体的例子来说明。
假设有两个数a 和b,它们的乘积为c,即a×b=c。
当a 不变,b 增加n 时,积c 会增加an。
例如,当a=2,b=3 时,c=6;当b 增加2 时,即b=5,c=10,c 增加了2a=4。
当a 不变,b 减少n 时,积c 会减少an。
例如,当a=2,b=3 时,c=6;当b 减少2 时,即b=1,c=2,c 减少了2a=4。
当b 不变,a 增加n 时,积c 会增加bn。
例如,当a=2,b=3 时,c=6;当a 增加2 时,即a=4,c=12,c 增加了2b=6。
当b 不变,a 减少n 时,积c 会减少bn。
例如,当a=2,b=3 时,c=6;当a 减少2 时,即a=0,c=0,c 减少了2b=6。
综上所述,乘数与积的变化规律是:当一个因数不变时,另一个因数增加或减少n,积也会相应地增加或减少n 倍。
这个规律在数学运算中非常重要,可以帮助我们更好地理解和解决乘法问题。
积的变化规律和积不变的规律《神奇的数学规律:积的变化与不变》嘿,同学们!你们知道吗?数学里有两个特别神奇的规律,一个叫积的变化规律,另一个叫积不变的规律。
这俩可有意思啦,就像魔法一样!先来说说积的变化规律吧。
比如说,我们有一道乘法算式3×5 = 15。
要是3 这个数变成6,5 不变,那算式就成了6×5 = 30。
咦?发现没有,其中一个因数从3 变成6,扩大了2 倍,积也从15 变成30,也扩大了2 倍。
这难道不神奇吗?再举个例子,5×8 = 40,如果5 不变,8 变成16,那算式就成了5×16 = 80。
8 变成16 扩大了2 倍,积也从40 变成80 扩大了2 倍。
这不就像是一个小种子,你给它多浇点水,它就长得更快更大吗?那积不变的规律又是咋回事呢?比如说4×6 = 24,如果4 扩大2 倍变成8,要想积还是24,那6 就得缩小2 倍变成3,8×3 还是24。
这就好像是跷跷板,这边高了,那边就得低,才能保持平衡,不是吗?有一次上课,老师出了一道题:“如果2×3 = 6,那4×?= 6 呢?”我一下子就想到了积不变的规律,大声回答:“1.5!”老师笑着夸我聪明,我心里那叫一个美呀!还有一次,小组讨论的时候,我和同桌争论一个积的变化规律的问题。
我说:“因数扩大,积肯定也扩大呀!”同桌却说:“不一定,得看另一个因数变不变。
”我们争得面红耳赤,最后发现我俩说的都对,只是角度不同,哈哈,这可真有趣!通过这些例子,我发现积的变化规律和积不变的规律就像是数学世界里的小精灵,它们总是在各种算式里跳来跳去,只要我们认真观察,就能发现它们的踪迹。
所以呀,同学们,数学是不是很神奇很有趣?我们一定要认真学好数学,探索更多的数学奥秘!。
1、表达式中变量Index的变化:在不同的年份中,Index的值都在不断增加,一般每增加一个年份,Index的值就会增加1;
2、表达式中的系数的变化:系数的值也在不断增加,一般在每年的积分数据中,系数的值会比上一年的值多1;
3、表达式中的常量的变化:和系数类似,常数的值也会比上一年多1;
4、基线积分的变化:每一年,基线积分会增加,一般情况是比上一年增加1分;
5、表达式结果的变化:每一年,由于表达式中的变量和常数都在不断增加,所以表达式的结果也在不断变大,每一年比上一年增加的结果也不完全相同,因为表达式中的变量和常数的变化不同,所以结果也不同。
课程解读一、学习目标:1. 会根据积的变化规律直接写出得数。
2. 掌握乘法的估算方法。
在解决具体问题的过程中,能应用合适的方法进行估算,养成估算的习惯。
二、重点、难点:1. 根据积的变化规律直接写出得数。
2. 在解决具体问题的过程中,能应用合适的方法进行估算。
三、考点分析:1. 根据积的变化规律直接写出得数。
2. 在解决具体问题的过程中,能应用合适的方法进行估算。
知识梳理典型例题[方法应用题]例1. 根据15×42=630,直接写出下面各题的得数。
思路分析:(1)题意分析:本题考查根据积的变化规律直接写出得数。
(2)解题思路:首先将各式与已知式子相比较,看看因数有什么变化,然后根据积的变化规律直接写出得数。
解答过程:解题后的思考:先找到不变的因数,再观察另一个因数的变化情况,就可以判断积的情况了。
变化的一个因数乘几,积也乘几;变化的一个因数除以几,积也跟着除以几。
例2. 市政府前面的广场上有一个边长是40米,面积是1600平方米的正方形草坪,现在扩大草坪面积,把边长扩大为原来的2倍,扩宽后的草坪面积是多少平方米?思路分析:(1)题意分析:本题考查应用积的变化规律。
(2)解题思路:正方形的面积=边长×边长边长扩大为原来的2倍面积扩大为原来的4倍解答过程:1600×2×2=6400(平方米)答:扩宽后的草坪面积是6400平方米。
解题后的思考:两个因数相乘,一个因数扩大为它的m倍,另一个因数也扩大为它的m倍,则积就扩大为它的m×m倍。
例3.红旗广场有一块长方形绿地,面积是480平方米,现在把这块绿地的长和宽分别增加为原来的4倍和3倍,扩大后的绿地面积是多少?思路分析:(1)题意分析:本题考查应用积的变化规律。
(2)解题思路:长方形的面积=长×宽长扩大为原来的4倍宽扩大为原来的3倍面积扩大为原来的12倍解答过程:4×3=12480×12=5760(平方米)答:扩大后的绿地面积为5760平方米。
“点线面”思维训练模式3——
从“积的变化规律”到“积不变的规律”
一、一个因数变化
【1】一个因数不变,另一个因数扩大了。
【结论】:一个因数不变,另一个因数扩大多少倍(0除外),积也跟着扩大相同的倍数。
【2】一个因数不变,另一个因数缩小。
【结论】:一个因数不变,另一个因数缩小多少倍(0除外),积也跟着缩小相同的倍数。
(一)、积的变化规律:
(1)、一个因数不变,另一个因数乘(或除以)几,积就相应的乘(或除以)几。
字母表示:如果axb=C,则
(ax3)×b=c×3
举例:axb=12如果(ax3)则积就是
12×3=36.
(2)、一个数乘一个比1大的数,积比原数大;
(3)、一个数乘一个比1小的数,积比原数小。
【3】积的变化规律:
【结论】:积与因数同向变化。
【4】同步应用
【5】能力提升
【6】拓展训练
二、积不变的规律
【结论】:一个因数扩大或缩小多少倍,另一个因数缩小或扩大相同的倍数(0除外),积不变。
两个因素反向变化,积不变。
(巧墨静好)
下一节内容:1.商的变化规律——商不变的规律——余数的变化规律
2、和、差、积、商的变化规律。
积的变化规律3条
积的变化规律有以下几条:
1、两个数相乘,一个因数扩大(或缩小)N倍,另一个因数不变,那么它们的积也扩大N倍。
(N为非0自然数)。
2、一个因数扩大a倍,一个因数扩大b倍,积就扩大a*b倍。
3、两个数相乘,一个因数扩大了N倍,另一个因数缩小了N倍,那么它们的积不变。
4、总结:积的变化规律是指因数的变化所引起的积的变化。
如一个因数扩大n倍,另一个因数不变,则积也扩大n倍。
一个因数扩大n倍,另一个因数缩小n倍,则积不变。
两个因数所得结果,叫做积。
也可阐述为其中一个因数表示另一个因数的数量,这么多的这个因数之和为这个乘式的积。
一个乘式中的各个数字为这个乘式的因数。
积的变化规律整理积的变化规律是数学中的一个重要概念,它描述了数列或函数在一段区间内的变化情况。
对于任意给定的数列或函数,我们可以通过计算其部分和或积的方式来了解它的变化规律。
下面,我们将从不同角度来解释积的变化规律,并以生动、全面且有指导意义的方式呈现给大家。
首先,我们来看一下如何通过数列的积来了解其变化规律。
数列是由一系列按照某种规律排列的数所组成的序列。
如果我们要研究数列的变化趋势,可以考虑计算数列的部分积。
部分积是指数列中从起始项到某一位置处的所有数的乘积。
通过观察部分积的变化情况,我们可以发现一些有趣的规律。
举个例子来说明。
考虑一个数列:1, 2, 3, 4, 5, 6, ...,它的前几个项分别是1, 2, 3, 4, 5, 6。
如果我们计算出这些数的部分积,可以得到1, 2, 6, 24, 120, 720。
通过观察部分积的数值,我们可以发现这个数列的部分积是按照递增的速度增长的,而且增长的速度越来越快。
这是因为每一项数都是前一项数的倍数,所以随着数列的增长,部分积也会以指数方式增大。
接下来,我们来看一下如何通过函数的积来了解其变化规律。
函数是自变量与因变量之间的关系,通常用符号f(x)表示。
我们可以通过计算函数在不同取值下的积,来研究函数的变化规律。
同样地,观察函数积的变化可以揭示出一些有用的信息。
再举个例子来说明。
考虑函数 f(x) = x^2,它表示了一个二次函数的图像。
如果我们计算出这个函数在不同取值下的积,可以得到1, 4, 9, 16, 25, 36。
通过观察函数积的数值,我们可以发现这个函数的积是按照平方的方式增长的,也就是说积的变化与自变量的平方成正比。
这个规律告诉我们,在研究二次函数的性质时,积是一个非常有用的工具。
总结起来,积的变化规律在数学中起着重要的作用。
通过观察数列或函数的部分积或函数积,我们可以发现一些有趣的规律,并利用这些规律来推断数列或函数的特性。
在实际应用中,积的变化规律可以帮助解决一些问题,例如预测数列或函数在未来的变化趋势,或者找到最佳的数值组合。
一、积的变化规律1、一个因数不变,另一个因数乘几或除以几(0除外),积也乘几或除以几。
2、两个数相乘,(0除外),则它们的乘积不变。
(1)42×5= (2)48×16=76842×15= (48×4)×(16÷4)=420×15= (48÷8)×(16×8)=840×15= (48×5)×(16○□)=768(3)7本作业本摞起来高25毫米,全班56本作业本摞起来有多高?(4)一个宽为9米的长方形菜地,面积是252平方米,如果把这块长方形菜地的宽增加到36米,长不变,扩建后的面积是多少?二、商的变化规律1、除数不变,被除数乘几或除以几(0除外),商也乘几或除以几。
2、0除外)3、被除数和除数都乘或除以一个相同的数(0除外),商不变。
(1)80÷16=(80○□)÷(16÷4)200÷40=(200÷20)÷(40○□)180÷15=(180×3)÷(15○□)(2)1400÷70,如果除数不变,被除数除以10,那么商应当()。
被除数不变,除数乘3,商应当()。
两个数的商是8,如果被除数不变,除数乘4,商就变成()。
一个除法算式,被除数乘15,要使商不变,除数也要()。
两个数相除的商是6,如果被除数和除数都除以12,商是()。
一个除法算式的被除数、除数都除以3后,商是20,那么原来的商是()。
《除数是两位数的除法》1、商店里卖衣服,29元/件,49元/2件,王阿姨有185元,最多可以买多少件?还剩多少元?2、小李家距离学校520米,小李每分钟走65米,小红每分钟走60米,从家到学校小红比小李多走5分钟,小红家离学校多少米?3、每条裤子75元,商店推出优惠活动,买4条送一条,900元钱最多可以买几条这样的裤子?4、12箱蜜蜂一年可以酿900千克蜂蜜,林叔叔家养了8箱这样蜜蜂,一年可以酿多少千克蜂蜜?5、学校组织四年级的540名学生去植树,要分成9个植树点,每个植树点分成4个小组,平均每个小组有多少人?6、从山顶到山脚共998米,王林爬了14分钟,距山顶还有260米,他平均每分钟爬多少米?。
数学课集体备课教案课题:积的变化规律【设计意图:通过创设情境,引导学生提出有关工作总量的问题,使学生感到面临的数学问题是生活中的问题,从而产生解决问题的欲望,主动参与探索,寻求解决问题的方法。
】二、自学感悟,探究规律1、师谈话:同学们真聪明,提出这么多的问题,那么让我们一起看一下筛沙车工作情况统计表,(多媒体出示下表)追问:你明白工作效率、工作总量、工作时间的意思吗谁能说一说?它们是怎样的关系?工作效率X工作时间二工作总量谈话:同学们知道了三者的关系,自己动手把表格填好,并探讨以下几个问题。
如果觉得有困难,可以和同桌或者小组一起研究。
2、课件出示自学提纲①第二栏和第一栏比,每个因数和积各是怎样变化的?第三栏和第一栏比呢?第四栏和第一栏呢?②第一栏和第三栏比,每个因数和积又各是怎样变化的?第二栏和第三栏比呢?第三栏和第四栏呢?③能用算式证明你的发现吗?④请把你的发现和同组同学交流一下。
预设:1、上面因数不变,下面因数变大,积也变大。
2、上面因数不变,下面因数乘2(或除以2),积也乘2(或除以2)。
3、沙滩的面积随着时间的变化而变化。
4、筛沙车每分钟清洁沙滩的面积不变,工作时间越长清洁沙滩的总面积就越大。
)如果学生的发现不够全面或难以表达自己的观点时,教师引导学生在相互交流中补充和完善,鼓励学生大胆发表自己的想法。
教师也可适时参与到小组活动中,了解学生学习情况,引导学生在认真倾听他人想法的基础上,修正自己的发现,学会有条理地表达自己的想法。
学生你是2、找规律,写得数。
5X14= 24X2= 8X7=50X14= 24X4=80X70500X14=24X8= 800X700学情预设:个别学生在计算时可能没有运用积的变化规律,教师引导学生同组互相说一说你是怎么算的?让学生真正把积的变化规律用于实际口算中,感受到学习数学是有用的。
3、一块长方形地的面积是560平方米,宽8米,现在宽要增加到24米,长不变,扩大后的面积是多少?学生自己独立完成后,全班交流。
第三单元积的变化规律和积不变的规律学生姓名:家长姓名:一、计算后大声读背规律:积的变化规律(1) 2×4=(2) 5×2=(3)15×3=20×4= 5×20= 30×3=200×4= 5×400= 15×30=从上往下看规律是:一个因数不变,另一个因数乘几,积也乘几。
从下往上看规律是:一个因数不变,另一个因数除以几(0除外),积也除以几。
总规律是:一个因数不变,另一个因数乘或除以几(0除外),积也乘或除以几。
二、计算后大声读背规律:积不变的规律已知18×24=432计算(1)18×24 (2)18×24=(18÷2)×(24×2)=(18×2)×(24÷2)====规律是:一个因数乘几,另一个因数就除以几(0除外),积不变。
一个因数除以几(0除外),另一个因数就乘几,积不变。
以上规律可总结为:因数怎么变,积就怎么变!三、实际应用(1)、一个因数不变,另一个因数乘6,积也()。
(2)、一个因数不变,另一个因数除以4,积也()。
(3)、一个因数乘5,另一个因数不变,积就()。
(4)、一个因数除以8,另一个因数不变,积就()。
(5)、一个因数乘3,另一个因数乘4,积就()。
(6)、一个因数除以2,一个因数除以4,积就()。
(7)、一个因数乘7,另一个因数就(),积不变。
(8)、一个因数除以9,另一个因数就(),积不变。
(9)、小货车在公路上以40千米/时的速度行驶,4小时可行驶()千米;小轿车行驶的速度是小货车的2倍,小轿车用同样的时间可行驶()千米。
四、解决问题1、根据8×50=400直接写出下面各题的结果。
16×50= 32×50= 8×25=4×25= 32×150= 2×25=2、先算出每组第一题的积,再直接写出下面两题的积。
《积的变化规律》教学设计(通用14篇)《积的变化规律》教学设计篇1教材分析《积的变化规律》是人教版四年级上册第三单元的例题、本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。
教材首先出示2×6 =12、20×6=120、200×6=1200 ,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘一个数,得到的积会有什么变化,引导学生作出猜想。
再出示20×4=80,10×4=40,5×4=20,引导学生观察,发现规律,提出猜想。
学情分析该内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。
教学目标一、知识与技能:(1)使学生探索并掌握一个因数不变,另一个因数乘几,积也随着乘几的变化规律。
二、过程与方法:(1)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的'经验,发展思维能力。
三、情感态度价值观:(1)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。
教学重点和难点使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几)的变化规律。
2、教学难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考。
《积的变化规律》教学设计篇2教学目标:1通过观察、讨论等数学活动,经历探索、归纳积变化规律的过程。
2知道扩大几倍、缩小几倍的意义。
理解积变化的规律,会运用积变化的规律进行简便计算。
数学课《积的变化规律》教案数学课《积的变化规律》教案三篇篇一:积的变化规律教学设计一、内容分析:《积的变化规律》是四年级上册第三单元第二节第三部分的内容。
本单元的学习内容是义务教育阶段整数乘法的最后一个知识点。
它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。
本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。
通过这个过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。
例题的设计分为三个层次:1、研究问题:教材设计了两组既有联系又有区别的乘法算式,引导学生在观察、计算、对比的基础上自主发现因数变化引起积的变化规律。
2、归纳规律:引导学生广泛交流自己发现的规律,在小组交流的基础上尝试用简洁的语言说明积的变化规律。
3、验证规律:引导学生再举倒,验证积的变化规律的正确性。
4、应用规律:引导学生应用规律解决实际问题。
二、学生分析1.学生已有知识基础:学生已经有了乘法为前提,并且能够准确而熟练地计算。
2.学生已有生活经验和学习该内容的经验:四年级学生对于面积计算并不陌生,从基础知识和基本技能方面来看,准备状况是良好的。
3.学生学习该内容可能出现的情况会很多,因此教师要给学生多一点时间思考。
4.在探索过程中利用小组合作学习方式,一定要建立在独立思考的基础上5.我的思考:学生是学习活动的主体。
这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。
课中让学生通过观察、比较推理得出结论。
以及如何将新知与旧知及相互之间如何转化,更是把学生推到了前台,让他们自己来推导出结果并解决实际问题。
三.学习目标:知识与技能:1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。
2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
积的变化规律教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!积的变化规律教案6篇教案可以用于教师之间的教学经验分享和交流,教案不仅是教育工作者的工具,也是学生学习的指南,本店铺今天就为您带来了积的变化规律教案6篇,相信一定会对你有所帮助。
积的变化规律:一个因数不变,另一个因数乘或除以几(0除外)积也要乘或除以相同的数。
(一个因数不变,另一个因数扩大到原来的几倍或者缩小到原来的几分之一,积也要扩大到原来的几倍或者缩小到原来的几分之一。
)商的变化规律:除数不变,被除数乘或除以一个数(0除外),商也要乘或除以相同的数;被除数不变,除数乘或除以一个数(0除外),商就要除以或乘相同的数。
(除数不变,被除数扩大到原来的几倍或缩小到原来的几分之一,商也要扩大到原来的几倍或缩小到原来的几分之一;被除数不变,除数扩大到原来的几倍或缩小到原来的几分之一,商就要缩小到原来的几分之一或扩大到原来的几倍。
))在有余数的除法里,如果被除数和除数同时扩大和缩小相同的倍数(0除外),商不变,余数也随着扩大和缩小相同的倍数。
入门题:1、两个数相乘(积不为0),一个因数不变,另一个因数扩大到原来的3倍,积应该怎样变化?2、两个数相乘(积不为0),一个因数除以3,另一个因数不变,积应该怎样变化?3、两个数相乘(积不为0),一个因数扩大到原来的6倍,另一个因数扩大到原来的3倍,积应该怎样变化?4、两个数相乘(积不为0),一个因数乘6,另一个因数除以3,积应该怎样变化?5、两个数相除(商不为0),如果被除数扩大到原来的6倍,除数不变,商应该怎样变化?6、两个数相除(商不为0),如果被除数不变,除数扩大到原来的2倍,商应该怎样变化?7、两个数相除(商不为0),如果被除数除以6,除数不变,商应该怎样变化?8、两个数相除(商不为0),如果被除数扩大到原来的6倍,除数扩大到原来的2倍,商应该怎样变化?9、两个数相除(商不为0),如果被除数扩大到原来的3倍,除数缩小到原来的十分之一,商应该怎样变化?10、两个数相除(商不为0),如果除数扩大到原来的9倍,要使商缩小到原来的三分之一,被除数应该怎样变化?练习题:1、两个数相乘,积是96,如果一个因数缩小到原来的四分之一,另一个因数扩大到原来的3倍。
那么积是多少?2、两个数相乘(积不为0),一个因数扩大到原来的6倍,另一个因数也扩大到原来的6倍,那么积应该怎样变化?3、两个数相除(商不为0),如果被除数扩大原来的3倍,除数扩大到原来的15倍,商应该怎样变化?4、两个数相除(商不为0),如果被除数缩小到原来的十二分之一,要使商缩小到原来的二分之一,除数应该怎样变化?5、两个数相除,商是4,余数是10。
如果被除数和除数同时扩大50倍,商是多少?余数是几?备选题:1、两个数相乘(积不为0),一个因数扩大到原来的8倍,要使积缩小到原来的二分之一,另一个因数应该怎样变化?2、两个数相乘(积不为0),一个因数缩小到原来的五分之一,要使积缩小到原来的十分之一,另一个因数应该怎样变化?3、两个数相乘,积是70,如果一个因数扩大到原来的2倍,另一个因数缩小到原来的五分之一。
那么积是多少?4、两个数相除,商是12,余数是120,除数应该大于多少?如果被除数和除数同时缩小10倍,商是多少?余数是几?5、根据26×37=962填空:260×37=()2.6×3.7=()9.62÷37=()96.2÷370=()()×0.26=9.62 96.2÷()=3700 ()÷3.7=9620
2112。