北京市丰台区2016届高三5月综合练习(二)数学文试卷 扫描版含答案
- 格式:doc
- 大小:866.00 KB
- 文档页数:9
丰台区2016届高三年级第二学期统一练习(二) 2016.5数学(理科)第一部分 (选择题 共40分)选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合2{R |21},{R |20}A x x B x x x =∈-<<=∈-<,那么A B I = (A )(2,0)- (B )(2,1)-(C )(0,2) (D )(0,1)2.极坐标方程ρ=2cos θ表示的圆的半径是(A )12 (B )14(C )2 (D )1 3. “0x >”是“2212x x+≥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件4.已知向量13(,)22a r =,(3,1)b r =-,c a b r r r λ=+,则c a r r ⋅等于_________ .(A )λ (B )λ- (C ) 1 (D )-1 5.如图,设不等式组11,01x y -≤≤⎧⎨≤≤⎩表示的平面区域为长方形ABCD ,长方形ABCD 内的曲线为抛物线2y x =的一部分,若在长方形ABCD 内随机取一个点,则此点取自阴影部分的概率等于(A )23 (B )13(C )12(D )146.要得到2()log (2)g x x =的图象,只需将函数2()log f x x =的图象 (A )向上平移1个单位 (B )向下平移1个单位 (C )向左平移1个单位 (D )向右平移1个单位7.已知等比数列{}n a 的前n 项和为n S ,则下列结论中一定成立的 (A )若50a >,则20150a < (B )若50a >,则20150S > (C )若60a >,则20160a <(D )若60a >,则20160S >OyxDCAB8. 如图,已知一个八面体的各条棱长均为1,四边形ABCD 为正方形,给出下列命题:① 不平行的两条棱所在的直线所成的角是60o 或90o; ② 四边形AECF 是正方形; ③ 点A 到平面BCE 的距离为1.其中正确的命题有(A )0个 (B )1个 (C )2个 (D )3个第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在复平面内,点A 对应的复数是2+i.若点A 关于实轴的对称点为点B ,则点B 对应的复数为___________.10. 执行右侧程序框图,输入n =4,A =4,x =2,输出结果A 等于______11.已知点(,4)P t 在抛物线24y x =上,抛物线的焦点为F ,那么|PF |=____________. 12.已知等差数列{}n a 的公差不为零,且236a a a +=,则12345a a a a a +=++ ______.13. 安排6志愿者去做3项不同的工作,每项工作需要2人,由于工作需要,A ,B 二人必须做同一项工作,C ,D 二人不能做同一项工作,那么不同的安排方案有_________种. 14.已知1,3x x ==是函数()sin()(0)f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x =处的导数3'()02f <,则1()3f =________;DBE否结束A =A ∙x +ii =i -1i =n -1输出A 开始i>0?输入 n ,A ,x 是三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且1cos 2a C cb +=.(Ⅰ)求角A 的大小; (Ⅱ)若21a =,5b =,求c 的值.16.(本小题共13分)某地区人民法院每年要审理大量案件,去年审理的四类案件情况如下表所示: 编号 项目收案(件)结案(件)判决(件) 1 刑事案件2400 2400 2400 2 婚姻家庭、继承纠纷案件 3000 2900 1200 3 权属、侵权纠纷案件 4100 4000 20004合同纠纷案件1400013000n. (Ⅰ)在编号为1、2、3的收案案件中随机取1件,求该件是结案案件的概率; (Ⅱ)在编号为2的结案案件中随机取1件,求该件是判决案件的概率;(Ⅲ)在编号为1、2、3的三类案件中,判决案件数的平均数为x ,方差为21S ,如果表中n x =,表中全部(4类)案件的判决案件数的方差为22S ,试判断21S 与22S 的大小关系,并写出你的结论(结论不要求证明). 17.(本小题共14分)如图1,已知四边形BCDE 为直角梯形,∠B =90O, BE ∥CD ,且BE =2 CD =2BC =2,A 为BE 的中点.将△EDA 沿AD 折到△PDA 位置(如图2),连结PC ,PB 构成一个四棱锥P-ABCD .(Ⅰ)求证AD ⊥PB ; (Ⅱ)若PA ⊥平面ABCD . ①求二面角B-PC-D 的大小;②在棱PC 上存在点M ,满足(01)PM PC λλ=≤≤u u u r u u u r ,使得直线AM 与平面PBC 所成的角为45O,求λ的值.图2DB图1CDB18.(本小题共13分) 设函数()e (R)axf x a =∈.(Ⅰ)当2a =-时,求函数2()()g x x f x =在区间(0,)+∞内的最大值;(Ⅱ)若函数2()1()x h x f x =-在区间(0,16)内有两个零点,求实数a 的取值范围. 19.(本小题共13分)已知椭圆C :22143x y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)若椭圆C 与直线y x m =+交于M ,N 两点,且|MN|=1227,求m 的值; (Ⅲ)若点A 11(,)x y 与点22(,)P x y 在椭圆C 上,且点A 在第一象限,点P 在第二象限,点B 与点A 关于原点对称,求证:当22124x x +=时,三角形△PAB 的面积为定值.20.(本小题共13分)对于数对序列11:(,)P a b ,22(,)a b ,L ,(,)n n a b ,(,R ,1,2,3,,)i i a b i n +∈=L ,记0()0(0)f y y =≥,10,1,2,3,,()max {()}(0,1)k k k k k k k x mf y b x f y a x y k n -==+-≥≤≤L ,其中m为不超过kya 的最大整数.(注:10,1,2,3,,max {()}k k k k k k x mb x f y a x -=+-L 表示当k x 取0,1,2,3,…,m时,1()k k k k k b x f y a x -+-中的最大数)已知数对序列:(2,3),(3,4),(3,)P p ,回答下列问题:(Ⅰ)写出1(7)f 的值;(Ⅱ)求2(7)f 的值,以及此时的12,x x 的值;(Ⅲ)求得3(11)f 的值时,得到1234,0,1x x x ===,试写出p 的取值范围.(只需写出结论,不用说明理由).注:下面的内容不在试卷上,共讲评时参考 (1)8题原来命制的如下:已知一个八面体(如图),它们的各条棱长均为a ,ABCD 为正方形。
2016年普通高等学校招生全国统一考试〔北京卷〕数学〔文科〕第一部分〔选择题 共40分〕一、选择题:本大题共8小题,每题5分,共40分,在每题给出的四个选项中,选出符合题目要求的一项. 〔1〕【2016年北京,文1,5分】已知集合{}24A x x =<<,{}35B x x x =<>或,则A B =〔 〕〔A 〕{}25x x << 〔B 〕{}45x x x <>或 〔C 〕{}23x x << 〔D 〕{}25x x x <>或 【答案】C【解析】∵集合{}24A x x =<<,{}35B x x x =<>或,∴{}23Ax x B =<<,故选C .【点评】此题考查交集的求法,是基础题,解题时要认真审题,注意交集的定义的合理运用.〔2〕【2016年北京,文2,5分】复数12i2i+=-〔 〕〔A 〕i 〔B 〕1i + 〔C 〕i - 〔D 〕1i - 【答案】A【解析】()()()()12i 2i 12i 5ii 2i 2i 2i 5+++===--+,故选A . 【点评】此题考查的知识点是复数代数形式的加减运算,共轭复数的定义,难度不大,属于基础题. 〔3〕【2016年北京,文3】执行如下图的程序框图,输出s 的值为〔 〕〔A 〕8〔B 〕9 〔C 〕27 〔D 〕36【答案】B 【解析】当0k =时,满足进行循环的条件,故0S =,1k =,当1k =时,满足进行循环的条件,故1S =, 2k =,当2k =时,满足进行循环的条件,故9S =,3k =,当3k =时,不满足进行循环的 条件,故输出的S 值为9,故选B .【点评】此题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.〔4〕【2016年北京,文4,5分】以下函数中,在区间()1,1-上为减函数的是〔 〕〔A 〕11y x=- 〔B 〕cos y x = 〔C 〕()ln 1y x =+ 〔D 〕2x y -= 【答案】D【解析】A .x 增大时,x -减小,1x -减小,∴11x-增大;∴函数11y x =-在()1,1-上为增函数,该选项错误;B .cos y x =在()1,1-上没有单调性,该选项错误;C .x 增大时,1x +增大,()ln 1x +增大,∴()ln 1y x =+ 在()1,1-上为增函数,即该选项错误;D .122xxy -⎛⎫== ⎪⎝⎭;∴根据指数函数单调性知,该函数在()1,1-上 为减函数,∴该选项正确,故选D .【点评】考查根据单调性定义判断函数在一区间上的单调性的方法,以及余弦函数和指数函数的单调性,指数式的运算.〔5〕【2016年北京,文5,5分】圆()2212x y ++=的圆心到直线3y x =+的距离为〔 〕 〔A 〕1 〔B 〕2 〔C 〕2 〔D 〕22 【答案】C【解析】∵圆()2212x y ++=的圆心为()1,0-,∴圆()2212x y ++=的圆心到直线3y x =+的距离为:1322d -+==,故选C . 【点评】此题考查圆心到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式和圆的性质的合理运用.〔6〕【2016年北京,文6,5分】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为〔 〕〔A 〕15 〔B 〕25 〔C 〕825 〔D 〕925【答案】B【解析】从甲、乙等5名学生中随机选出2人,基本领件总数2510n C ==,甲被选中包含的基本领件的个数11144m C C ==,∴甲被选中的概率42105P n π===,故选B .【点评】此题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用. 〔7〕【2016年北京,文7,5分】已知()2,5A ,()4,1B .假设点(),P x y 在线段AB 上,则2x y -的最大值为〔 〕〔A 〕1- 〔B 〕3 〔C 〕7 〔D 〕8 【答案】C 【解析】如图()2,5A ,()4,1B .假设点(),P x y 在线段AB 上,令2z x y =-,则平行2y x z =-当直线经过B 时截距最小,z 取得最大值,可得2x y -的最大值为:2417⨯-=,故选C .【点评】此题考查线性规划的简单应用,判断目标函数经过的点,是解题的关键. 〔8〕【2016年北京,文8,5分】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊. 学生序号 1 2 3 4 5 6 7 8 9 10 立定跳远〔单位:米〕 30秒跳绳〔单位:次〕 63 a 75 60 63 72 70 a ﹣1 b 65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则〔 〕 〔A 〕2号学生进入30秒跳绳决赛 〔B 〕5号学生进入30秒跳绳决赛 〔C 〕8号学生进入30秒跳绳决赛 〔D 〕9号学生进入30秒跳绳决赛 【答案】B【解析】∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a ,60,63,1a -有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选B .【点评】此题考查的知识点是推理与证明,正确利用已知条件得到合理的逻辑推理过程,是解答的关键.第二部分〔非选择题 共110分〕二、填空题:共6小题,每题5分,共30分。
丰台区2015—2016学年度第二学期统一练习(一) 2016.3高三数学(文科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合()U A B ð=(A ){}3,6 (B ){}2,5 (C ){}2,5,6 (D ){}2,3,5,6,8 2. 下列函数在其定义域上既是奇函数又是增函数的是(A )3y x = (B )1y x =-(C )tan y x = (D )(0),(0).x x y x x ≥⎧=⎨-<⎩3. 某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用茎叶图表示,如图,则甲、乙两名运动员得分的中位数分别为(A ) 20、18 (B )13、19 (C )19、13 (D )18、204. 已知直线,m n 和平面α,m α⊄,n ∥a ,那么“n α⊂”是“m ∥α”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件5.已知双曲线的一个焦点F ,点P 在双曲线的一条渐近线上,点O 为双曲线的对称中心, 若△OFP 为等腰直角三角形,则双曲线的离心率为(A (B (C )2 (D 6. 已知等比数列{n a }中11a =,且4581258a a a a a a ++=++,那么5S 的值是(A )15 (B )31 (C )63 (D )647. 如图,已知三棱锥P ABC -的底面是等腰直角三角形,且∠ACB =90O,侧面PAB ⊥底面ABC ,AB =PA =PB =4.则这个三棱锥的三视图中标注的尺寸x ,y ,z 分别是(A)2 (B )4,2, (C)2,2 (D)2,8. 经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),用横轴表示产品数量(因变量).某类产品的市场供求关系在不受外界因素(如政府限制最高价格等)的影响下,市场会自发调解供求关系:当产品价格P 1低于均衡价格P 0时,则需求量大于供应量,价格会上升为P 2;当产品价格P 2高于均衡价格P 0时,则供应量大于需求量,价格又会下降,价格如此继续波动下去,产品价格将会逐渐靠近均衡价格P 0.能正确表示上述供求关系的图形是(A ) (B )(C )(D )P P P P P B侧视图第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在锐角△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若2s i n b a B =,则 ∠A =_________.10.已知△ABC 中,AB =4,AC =3,∠CAB=90o,则BA BC⋅=___________.11.已知圆22:(1)(2)2C x y -+-=,则圆C 被动直线:20l kx y k -+-=所截得的弦长__________.12.已知1x >,则函数11y x x =+-的最小值为________. 13. 已知,x y 满足,2,3,y x y x x y ≥⎧⎪≤⎨⎪+≤⎩目标函数z mx y =+的最大值为5,则m 的值为 .14.函数()cos 22()x x f x x b b R -=---∈. ① 当b =0时,函数f(x)的零点个数_______;② 若函数f(x)有两个不同的零点,则b 的取值范围________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数21()cos sin 2f x x x x =+-. (Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求)(x f 在区间[,]42ππ上的最大值和最小值.16. (本小题共13分)下图是根据某行业网站统计的某一年1月到12月(共12个月)的山地自行车销售量(1k 代表1000辆)折线图,其中横轴代表月份,纵轴代表销售量,由折线图提供的数据回答下列问题:(Ⅰ)在一年中随机取一个月的销售量,估计销售量不足200k 的概率;(Ⅱ)在一年中随机取连续两个月的销售量,估计这连续两个月销售量递增(如2月到3月递增)的概率;(Ⅲ)根据折线图,估计年平均销售量在哪两条相邻水平平行线线之间(只写出结果,不要过程).17. (本小题共14分)已知在△ABC 中,∠B =90o ,D ,E 分别为边BC ,AC 的中点,将△CDE 沿DE 翻折后,使之成为四棱锥'C ABDE -(如图). (Ⅰ)求证:DE ⊥平面'BC D ;(Ⅱ)设平面'C DE 平面'ABC l =,求证:AB ∥l ;(Ⅲ)若'C D BD ⊥,2AB =,3BD =,F 为棱'BC 上一点,设'BFFC λ=,当λ为何值时,三棱锥'C ADF -的体积是1?ABEDCC'DEFBA18. (本小题共13分)已知函数21()x f x x +=,数列{}n a 满足:1112,()()n na a f n N a *+==∈. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .19 . (本小题共14分)已知函数2()ln 2m f x x x x =--. (Ⅰ)求曲线:()C y f x =在1x =处的切线l 的方程;(Ⅱ)若函数()f x 在定义域内是单调函数,求m 的取值范围;(Ⅲ)当1m >-时,(Ⅰ)中的直线l 与曲线:()C y f x =有且只有一个公共点,求m 的取值范围.20. (本小题共13分)已知椭圆C :22221(0)x y a b a b+=>>过点A (2,0),离心率12e =,斜率为(01)k k <≤直线l 过点M (0,2),与椭圆C 交于G ,H 两点(G 在M ,H 之间),与x 轴交于点B . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)P 为x 轴上不同于点B 的一点,Q 为线段GH 的中点,设△HPG 的面积为1S ,BPQ ∆ 面积为2S ,求12S S 的取值范围.丰台区2016年高三年级第二学期数学统一练习(一)数 学(文科)参考答案二、填空题:本大题共6小题,每小题5分,共30分.9.6π 10.16 11. 3 13. 73 14 . 0 ;-1b < 注:14题第一空2分,第二空3分。
北京市朝阳区高三年级第二次综合练习 数学试卷(文史类) 2016.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知集合{}0,1,2A =,{}(2)0B x x x =-<,则AB =A .{}0,1,2B .{}1,2C . {}0,1D .{}12. 复数1+iiz =(i 为虚数单位)在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.设x ∈R ,且0x ≠,“1()12x>” 是“11x<”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件4. 已知m ,n ,l 为三条不同的直线,α,β,γ为三个不同的平面,则下列命题中正确的是A .若m ⊥l ,n ⊥l , 则m ∥nB .若m ∥α,n ∥α,则m ∥nC .若m ⊥α,n ⊥α,则m ∥nD .若α⊥γ,β⊥γ,则α∥β5. 同时具有性质:“①最小正周期是π;②图象关于直线3x π=对称;③在区间5,6π⎡⎤π⎢⎥⎣⎦上是单调递增函数”的一个函数可以是 A .cos 23y x π⎛⎫=-⎪⎝⎭ B .sin 26y x π⎛⎫=- ⎪⎝⎭ C .sin 26y x 5π⎛⎫=+ ⎪⎝⎭ D .sin 26x y π⎛⎫=+ ⎪⎝⎭6. 已知某三棱锥的三视图如图所示,则该三棱锥的最长棱的长是A BC. 2D.7.设函数1,2,()2log ,2a x x f x x x -≤⎧=⎨+>⎩(0a >且1)a ≠的最大值为1,则实数a 的取值范围是A .[11)2, B .0,1() C .10]2(, D .1,()+∞8.在边长为1的正方形ABCD 中,已知M 为线段AD 的中点,P 为线段AD 上的一点,若线段=+BP CD PD ,则A .34MBA PBC ∠=∠ B .23MBA PBC ∠=∠ C. 12MBA PBC ∠=∠ D .13MBA PBC ∠=∠第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.执行如图所示的程序框图,输出的S = .正视图侧视图俯视图10. 已知向量(1,2)=a ,向量(2,)m =b ,若+a b 与a 垂直,则实数m 的值为 .11.已知过点(1,1)M 的直线l 与圆22(1)(2)5x y ++-=相切,且与直线10ax y +-=垂直,则实数a = ;直线l 的方程为 .12. 在平面直角坐标系xOy 中,抛物线28y x =的准线l 的方程是 ;若双曲线()222210,0x y a b a b -=>>的两条渐近线与直线l 交于,M N 两点,且MON ∆的面积为8,则此双曲线的离心率为 .13. 已知关于,x y 的不等式组0,,2,2x y x x y x y k≥⎧⎪≥⎪⎨+≤⎪⎪-≥⎩所表示的平面区域D 为三角形,则实数k 的取值范围是 .14. 为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元.每年销售蔬菜的收入为26万元.设()f n 表示前n 年的纯利润(()f n =前n 年的总收入-前n 年的总费用支出-投资额),则()f n = (用n 表示);从第 年开始盈利.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别是,,a b c(Ⅰ)求a 的值;(Ⅱ) 若角A 为锐角,求b 的值及ABC ∆的面积.16. (本小题满分13分)某城市要建宜居的新城,准备引进优秀企业进行城市建设. 这个城市的甲区、乙区分别 对6个企业进行评估,综合得分情况如茎叶图所示.(Ⅰ)根据茎叶图,分别求甲、乙两区引进企业得分的平均值;(Ⅱ)规定85分以上(含85分)为优秀企业.若从甲、乙两个区准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.17. (本小题满分13分)已知等差数列}{n a 的首项1a 和公差d (0)d ≠均为整数,其前n 项和为n S . (Ⅰ)若11=a ,且2a ,4a ,9a 成等比数列,求数列}{n a 的通项公式; (Ⅱ)若对任意n *∈N ,且6n ≠时,都有6n S S <,求1a 的最小值.18. (本小题满分14分)在四棱锥A BCDE -中,底面BCDE 为菱形,侧面ABE 为等边三角形,且侧面ABE ⊥底面BCDE ,,O F 分别为,BE DE 的中点.(Ⅰ)求证:AO CD ⊥;(Ⅱ)求证:平面AOF ⊥平面ACE ;(Ⅲ)侧棱AC 上是否存在点P ,使得//BP 平面AOF ?若存在,求出APPC的值;若不存在,请说明理由.19. (本小题满分13分) 已知函数1()(1)ln ,f x ax a x a x=--+∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1a ≥时,若()1f x >在区间1[,e]e上恒成立,求a 的取值范围.FOB CDAE20. (本小题满分14分)在平面直角坐标系xOy 中,000(,)(0)P x y y ≠是椭圆:C 222212x y λλ+=(0)λ>上的点,过点P 的直线l 的方程为002212x x y yλλ+=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)当1λ=时,设直线l 与x 轴、y 轴分别相交于,A B 两点,求OAB ∆面积的最小值;(Ⅲ)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证:点 2,,Q P F 三点共线.北京市朝阳区高三年级第二次综合练习 数学答案(文史类) 2016.5一、选择题:(满分40分)二、填空题:(满分30分)[0,1)(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15. (本小题满分13分)解:(Ⅰ) 在ABC∆sin sina cA C=,解得a=…………………6分cos A=.由余弦定理2222cosa b c bc A=+-,得22150b b--=.解得5b=或3b=-(舍).分16. (本小题满分13分)解:(Ⅰ)79+84+88+89+93+95==886x甲,78+83+84+86+95+96==876x乙. …………………4分(Ⅱ)甲区优秀企业得分为88,89,93,95共4个,乙区优秀企业得分为86,95,96共3个.从两个区各选一个优秀企业,所有基本事件为(88,86),(88,95),(88,96),(89,86),(89,95),(89,96),(93,86),(93,95),(93,96)(95,86)(95,95)(95,96)共12个.其中得分的绝对值的差不超过5分有(88,86),(89,86),(93,95),(93,96),(95,95),(95,96)共6个.则这两个企业得分差的绝对值不超过5分的概率61122p==.………13分17. (本小题满分13分)解:(Ⅰ)因为2a ,4a ,9a 成等比数列,所以9224a a a ⋅=. 将11=a 代入得 )81()1()31(2d d d +⋅+=+, 解得0=d 或 3=d .因为数列}{n a 为公差不为零的等差数列,所以3=d .数列}{n a 的通项公式1(1)332n a n n =+-⋅=-.……………………………6分(Ⅱ)因为对任意n *∈N ,6n ≠时,都有6n S S <,所以6S 最大,则0<d ,6765,.S S S S >⎧⎨>⎩所以760,0.a a <⎧⎨>⎩则1160,50.a d a d +<⎧⎨+>⎩因此156d a d -<<-. 又1a ,d ∈Z ,0<d ,故当1-=d 时, 156a <<, 此时1a 不满足题意.当2-=d 时,11012a <<, 则111a =, 当3-=d 时, 11518a <<,116,17a =, 易知3-≤d 时,116a ≥,则1a 的最小值为11. ………………………………………………………13分18. (本小题满分14分)解:(Ⅰ)因为ABE ∆为等边三角形,O 为BE 的中点,所以AO BE ⊥.又因为平面ABE ⊥平面BCDE , 平面ABE平面BCDE BE =,AO ⊂平面ABE ,所以AO ⊥平面BCDE . 又因为CD ⊂平面BCDE ,所以AO CD ⊥.……………………………………………………………4分 (Ⅱ)连结BD ,因为四边形BCDE 为菱形, 所以CE BD ⊥.因为,O F 分别为,BE DE 的中点, 所以//OF BD ,所以CE OF ⊥. 由(Ⅰ)可知,AO ⊥平面BCDE . 因为CE ⊂平面BCDE ,所以AO CE ⊥. 因为AOOF O =,所以CE ⊥平面AOF .又因为CE ⊂平面ACE ,所以平面AOF ⊥平面ACE .…………………………………………………9分 (Ⅲ)当点P 为AC 上的三等分点(靠近A 点)时,//BP 平面AOF .证明如下:设CE 与,BD OF 的交点分别为,M N ,连结AN ,PM . 因为四边形BCDE 为菱形,,O F 分别为,BE DE 的中点,所以12NM MC =. 设P 为AC 上靠近A 点的三等分点, 则12AP NM PC MC ==,所以//PM AN . 因为AN ⊂平面AOF ,PM ⊄平面AOF ,所以//PM 平面AOF . 由于//BD OF ,OF ⊂平面AOF ,BD ⊄平面AOF , 所以//BD 平面AOF ,即//BM 平面AOF . 因为BMPM M =,所以平面//BMP 平面AOF .因为BP ⊂平面BMP ,所以//BP 平面AOF . 可见侧棱AC 上存在点P ,使得//BP 平面AOF ,且12AP PC =. …………………………………………………………………………14分19. (本小题满分13分)解:(Ⅰ) 函数()f x 的定义域为{}0x x >,222(1)1(1)(1)()=ax a x ax x f x x x-++--'=. (1) 当0a ≤时,1ax -<0,令()0f x '>,解得01x <<,则函数()f x 的单调递增区间为(01),FOBC DAE P MN令()0f x '<,解得1x >,函数()f x 单调递减区间为1+∞(,). 所以函数()f x 的单调递增区间为(01),,单调递减区间为1+∞(,). (2) 当01a <<时,11a>, 令()0f x '>,解得01x <<或1x a>,则函数()f x 的单调递增区间为 (01),;令()0f x '<,解得11x a <<,函数()f x 单调递减区间为11)a(,. 所以函数()f x 的单调递增区间为(01),,1+)a ∞(,,单调递减区间为11)a(,. (3) 当1a =时,22(1)()=0x f x x -'≥恒成立, 所以函数()f x 的单调递增区间为0+)∞(,. (4) 当1a >时,101a<<, 令()0f x '>,解得10x a<<或1x >,则函数()f x 的单调递增区间为 10)a(,,1+)∞(,;令()0f x '<,解得11x a <<,则函数()f x 的单调递减区间为1(1)a,. 所以函数()f x 的单调递增区间为10)a (,,1+)∞(,,单调递减区间为1(1)a,. …………………………………………………………………………………7分 (Ⅱ)依题意,在区间1[,e]e上min ()1f x >.222(1)1(1)(1)()ax a x ax x f x x x -++--'==,1a ≥.令()0f x '=得,1x =或1x a=. 若e a ≥,则由()0f x '>得,1e x <≤,函数()f x 在(1,e )上单调递增.由()0f x '<得,11e x ≤<,函数()f x 在(1,1e)上单调递减.所以min ()(1)11f x f a ==->,满足条件; 若1e a <<,则由()0f x '>得,11e x a<<或1e x <<; 由()0f x '<得,11x a <<. 函数()f x 在(1,e ),11(,)e a上单调递增,在1(,1)a上单调递减. min 1()min{(),(1)}ef x f f =,依题意1()1e (1)1f f ⎧>⎪⎨⎪>⎩ ,即2e e 12a a ⎧>⎪+⎨⎪>⎩,所以2e a <<;若1a =,则()0f x '≥.所以()f x 在区间1[,e]e 上单调递增,min 1()()1e f x f =>,不满足条件;综上,2a >. ……………………………………………13分20. (本小题满分14分)解:(Ⅰ)依题a =,c λ=,所以椭圆C离心率为2e ==.……………………………………………3分 (Ⅱ)依题意00x ≠,令0y =,由0012x x y y +=,得02x x =,则02(,0)A x . 令0x =,由0012x x y y +=,得01y y =,则01(0,)B y . 则OAB ∆的面积0000112122OAB S OA OB x y x y ∆===. 因为00(,)P x y 在椭圆:C 2212x y +=上,所以220012x y +=.所以220012x y =+≥,即00x y ≤,则001x y ≥所以00112OAB S OA OB x y ∆==≥当且仅当22002x y =,即001,2x y =±=±时,O A B ∆面积的最小值为 ……………………………………………………………8分(Ⅲ)由2222102y x λλ=->,解得0x <<. ①当00x =时,(0,)P λ,(,2)Q λλ-,此时21F P k =-,21F Q k =-. 因为22F Q F P k k =,所以三点2,,Q P F 共线. 当(0,)P λ-时,也满足.②当00x ≠时,设(,)Q m n ,m λ≠-,1FQ 的中点为M ,则(,)22m nM λ-,代入直线l 的方程,得:2000240x m y n x λλ+--=.设直线1FQ 的斜率为k ,则002y nk m x λ==+, 所以000220y m x n y λ-+=.由2000000240220x m y n x y m x n y λλλ⎧+--=⎨-+=⎩,解得22002200244x x m y x λλλ+=-+,20002200484x y y n y x λλ+=+. 所以22200000222200002448(,)44x x x y y Q y x y x λλλλλ++-++. 当点P 的横坐标与点2F 的横坐标相等时,把0x λ=,222y λ=代入22002200244x x m y x λλλ+=-+中得m λ=,则2,,Q P F 三点共线.当点P 的横坐标与点2F 的横坐标不相等时, 直线2F P 的斜率为200F P y k x λ=-.由0x ≤,02x λ≠-.所以直线2F Q 的斜率为220002220000022222200000022004844824248224F Qx y y y x x y y k x x x x y x y x λλλλλλλλλλλ+++==++---+ 20000000022222000000482(2)4822x y y x y y y x x y x y x x λλλλλλλλλ+++===--+- 000000(2)()(2)y x y x x x λλλλ+==-+-. 因为22F Q F P k k =,所以2,,Q P F 三点共线.综上所述2,,Q P F 三点共线. ……………………………………………………………14分。
丰台区2016年高三年级第二学期统一练习(二) 2016.5高三数学(文科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题 目要求的一项. 1. 复数()i 1i -=(A)1i - (B)1i -- (C )1i -+ (D)1i + 2。
过点(2,0)且圆心为(1,0)的圆的方程是(A)2220xy x ++=(B)2220xy x +-=(C)2240xy x +-=(D )2240xy x ++=3。
在不等式组02,02x y ≤≤⎧⎨≤≤⎩.表示的平面区域内任取一个点(,)P x y ,使得1x y +≤的概率为(A)12 (B )14 (C)18 (D )1124。
已知点P 在抛物线24yx =上,它到抛物线焦点的距离为5,那么点P 的坐标为(A)(4, 4),(4,—4) (B )(-4,4),(-4,—4) (C )(5,,(5,-) (D )(—5,,(—5,-) 5。
已知函数()f x 的定义域为R ,则“()f x 是奇函数"是“(1)(1)f f =--”的 (A)充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D)既不充分也不必要条件6。
将函数()sin2f x x =的图象向左平移6π个单位后与函数()g x 的图象重合,则函数()g x 为(A )sin(2)6x π- (B)sin(2)6x π+(C)sin(2)3x π- (D )sin(2)3x π+7。
已知230.5log3,log 2,log 2a b c ===,那么(A )a b c << (B )a c b << (C )c b a << (D )b c a <<8.下表为某设备维修的工序明细表,其中“紧后工序”是指一个工序完成之后必须进行的下一个工序。
将这个设备维修的工序明细表绘制成工序网络图,如图,那么图中的1,2,3,4表示的工序代4321H DCBA号依次为(A)E ,F,G ,G (B )E,G,F,G(C )G ,E ,F ,F (D )G ,F ,E,F第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9。
丰台区2017年高三年级第二学期综合练习(一)数 学(文科)2017. 03(本试卷满分共150分,考试时间120分钟)注意事项:1. 答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。
2. 本次考试所有答题均在答题卡上完成。
选择题必须使用2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。
非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。
3. 请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、草稿纸上答题无效。
4. 请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。
第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 如果集合{}21A x x =∈-≤<Z ,{}101B =-,,,那么A B = (A ){}2101--,,, (B ){}101-,, (C ){}01, (D ){}10,-2. 在平面直角坐标系xOy 中,与原点位于直线3+250x y +=同一侧的点是 (A )(34)-,(B )(32)--,(C )(34)--,(D )(03)-,3. 执行如图所示的程序框图,则输出的i 值是 (A )3 (B )4 (C )5(D )64. 设命题p :[0)x ∀∈+∞,,e 1x ≥,则p ⌝是 (A )0[0)x ∃∉+∞,,0e 1x <(B )[0)x ∀∉+∞,,e 1x < (C )0[0)x ∃∈+∞,,0e 1x <(D )[0)x ∀∈+∞,,e 1x <5.如果 1.20.3212()2log 2a b c ===,,(A )c b a >> (B )c a b >> (C )a b c >>(D )a c b >>6. 由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是(A)(B )(C )(D )7. 已知函数π()sin()3f x x ω=-,点()A m n ,,(π)B m n +,(||1)n ≠都在曲线()y f x =上,且线段AB 与曲线()y f x =有五个公共点,则ω的值是 (A )4(B )2(C )12(D )148. 某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛. 该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖. 比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”. 已知这四人中有且只有两人的说法是正确的,则这两人是 (A )乙,丁(B )甲,丙(C )甲,丁(D )乙,丙第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.正视图侧视图.正视图侧视图.D.俯视图侧视图侧视图俯视图.9. 在复平面内,复数12i z =-对应的点到原点的距离是 . 10. 抛物线22y x =的准线方程是 .11. 设(00)a b M a b +=>>,,M 为常数,且ab 的最大值为2,则M 等于 . 12. 如图,在直角梯形ABCD 中,AD ∥BC ,=90ADC ∠︒,=2AD ,==1BC CD ,P 是AB 的中点,则DP AB uu u r uu u rg = . 13. 已知点(10)A ,,(30)B ,,若直线1y kx =+上存在点P ,满足PA PB ⊥,则k 的取值范围是 .14.已知函数(2)()1()1 1.x a a x x f x a x --≤⎧⎪=->,,,(1)若0a =,[04],x ∈,则()f x 的值域是________;(2)若()f x 恰有三个零点,则实数a 的取值范围是_________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)在ABC △中,角A ,B ,C 对应的边长分别是a ,b ,c ,且3C π=,4c =. (Ⅰ)若3sin 4A =,求a ; (Ⅱ)若ABC △的面积等于a ,b .16.(本小题共13分)已知{}n a 是各项均为正数的等比数列,118a =,设2log n n b a =,且417b =. (Ⅰ)求证:数列{}n b 是以-2为公差的等差数列; (Ⅱ)设数列{}n b 的前n 项和为n S ,求n S 的最大值.17.(本小题共14分)如图1,平行四边形ABCD 中,AC BC ⊥,1BC AC ==,现将△DAC 沿AC 折起,得到三棱锥D ABC -(如图2),且DA BC ^,点E 为侧棱DC 的中点.(Ⅰ)求证:平面ABE ⊥平面DBC ; (Ⅱ)求三棱锥E ABC -的体积;(Ⅲ)在ACB ∠的角平分线上是否存在点F ,使得DF ∥平面ABE ?若存在, 求DF 的长;若不存在,请说明理由.18.(本小题共13分)某校学生营养餐由A 和B 两家配餐公司配送. 学校为了解学生对这两家配餐公司的满意度,采用问卷的形式,随机抽取了40名学生对两家公司分别评分. 根据收集的80份问卷的评分,得到A 公司满意度评分的频率分布直方图和B 公司满意度评分的频数分布表:图1图2A公司B公司(Ⅰ)根据A公司的频率分布直方图,估计该公司满意度评分的中位数;(Ⅱ)从满意度高于90分的问卷中随机抽取两份,求这两份问卷都是给A公司评分的概率;(Ⅲ)请从统计角度,对A、B两家公司做出评价.19.(本小题共14分)已知(01)P,是椭圆C:22221(0)x ya ba b+=>>上一点,点P到椭圆C的两个焦点的距离之和为(Ⅰ)求椭圆C的方程;(Ⅱ)设A,B是椭圆C上异于点P的两点,直线P A与直线4x=交于点M,是否存在点A,使得12ABP ABMS S∆∆=?若存在,求出点A的坐标;若不存在,请说明理由.20.(本小题共13分)已知函数1()e xxf x+=,A1()x m,,B2()x m,是曲线()y f x=上两个不同的点.(Ⅰ)求()f x的单调区间,并写出实数m的取值范围;(Ⅱ)证明:120x x+>.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区2016~2017学年度第二学期一模练习高三数学(文科)参考答案及评分参考2017.03一、选择题共8小题,每小题5分,共40分.二、填空题共6小题,每小题5分,共30分.910. 12x =- 11.12.1- 13.4[0]3-, 14.[11]-,;(0)-∞,. 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分) 解:(Ⅰ)由正弦定理sin sin a cA C =可知:34a =,从而求得a = ……………………6分(Ⅱ)由ABC ∆的面积等于1sin 2ABC S ab C ∆=== 从而16ab =①, 由余弦定理2222cos c a b ab C =+-可得,2216=a b ab +-②,联立①②得4a b ==. ……………………13分16.(本小题共13分)解:(Ⅰ)设等比数列{}n a 的公比为q ,则1n n b b +-=212log log n n a a +-12log n na a +==2log q , 因此数列{}nb 是等差数列. 又11211log 3b a ==,417b =, 又等差数列{}n b 的公差11427b b d -==-, 即252n b n =-.即数列{}n b 是以-2为公差的等差数列. ……………………6分(Ⅱ)设等差数列{}n b 的前n 项和为n S ,则1()2n n b b S +=(23252)2n n+-=(24)n n =-2(12)144n =--+,于是当12n =时,nS 有最大值,最大值为144. ……………………13分 17.(本小题共14分)解:(Ⅰ)证明:在平行四边形ABCD 中,有AD BC AC ==,又因为E 为侧棱DC 的中点,所以AE CD ⊥; 又因为AC BC ⊥,AD BC ⊥,且AC AD A = ,所以BC ⊥平面ACD . 又因为AE ⊂平面ACD ,所以AE BC ⊥; 因为BC CD C = ,所以AE ⊥平面BCD , 又因为AE ⊂平面ABE , 所以平面ABE ⊥平面B. ……………………5分(Ⅱ)解:因为E ABC B ACE V V --=,BC ⊥平面ACD ,所以BC 是三棱锥的高,故13B ACE ACE V BC S -∆=⨯⨯,又因为=1BC ,CD ,AE =,所以11111=22224ACE S AE CD ∆=⨯⨯,所以有11=312B ACE ACE V BC S -∆=⨯⨯ ……………………9分(Ⅲ)解:取AB 中点O ,连接CO 并延长至点F ,使CO OF =,连接AF ,DF ,BF .因为BC AC =,所以射线CO 是角ACB ∠的角分线.FOADECB又因为点E 是的CD 中点,所以OE ∥DF , 因为OE ⊂平面ABE , DF ⊄平面ABE ,所以DF ∥平面ABE . 因为AB 、FC 互相平分,故四边形ACBF 为平行四边形,有BC ∥AF . 又因为DA BC ⊥,所以有AF AD ⊥, 又因为1A F A D==,故DF ……………………14分18.(本小题共13分)解:(Ⅰ)设A 公司调查的40份问卷的中位数为x则有0.015100.025100.03700.5x ⨯⨯⨯-++=() 解得:73.3x ≈ 所以,估计该公司满意度得分的中位数为73.3 ……………………4分(Ⅱ)满意度高于90分的问卷共有6份,其中4份评价A 公司,设为1234a a a a ,,,,2份评价B 公司,设为12b b ,.从这6份问卷中随机取2份,所有可能的结果有:12()a a ,,13()a a ,,14()a a ,,11()a b ,,12()a b ,,23()a a ,,24()a a ,,21()a b ,,22()a b ,,34()a a ,,31()a b ,,32()a b ,,41()a b ,,42()a b ,,12()b b ,,共有15种.其中2份问卷都评价A 公司的有以下6种:12()a a ,,13()a a ,,14()a a ,,23()a a ,,24()a a ,,34()a a ,.设两份问卷均是评价A公司为事件C ,则有62()155P C ==. ……………………9分 (Ⅲ)由所给两个公司的调查满意度得分知:A 公司得分的中位数低于B 公司得分的中位数,A 公司得分集中在[)70,80这组,而B 公司得分集中在[)70,80和[)80,90两个组,A 公司得分的平均数数低于B 公司得分的平均数,A 公司得分比较分散,而B 公司得分相对集中,即A 公司得分的方差高于B 公司得分的方差. ……………………13分(注:考生利用其他统计量进行分析,结论合理的同样给分.) 19.(本小题共14分) 解:(Ⅰ)由椭圆C :22221(0)x y a b ab+=>>过点P (0,1)可得b =1,又点P到两焦点距离和为a =,所以椭圆C的方程2212xy +=. ……………………4分(Ⅱ)设A (m ,n ),依题意得:直线P A 的斜率存在, 则直线P A 的方程为:11n y x m-=+ ,令x =4,441n y m -=+,即M 4441n m -+⎛⎫⎪⎝⎭,, 又12ABP ABM S S ∆∆=等价于13PAPM=且点A 在y 轴的右侧,从而143A PM Px x m x x =-=-, 因为点A 在y 轴的右侧,所以143m = , 解得 43m =,由点A 在椭圆上,解得:13n =±,于是存在点A (43,13±),使得12ABP ABM S S ∆∆=. ……………………14分20.(本小题共13分)解: ()f x 的定义域为R .(Ⅰ)()e x xf x '=-,由()0f x '=得,0x =,由()0f x '>得,0x <,由()0f x '<得,0x >,所以()f x 的单调增区间为(-∞,0),单调减区间为(0,+∞). m 的取值范围是(. ……………………6分 (Ⅱ) 由(Ⅰ)知,1(1,0)x ∈-,要证210x x >->,只需证21()()f x f x <-因为12()()f x f x m ==,所以只需证11()()f x f x <-, 只需证111111e e x x x x -+-+<,只需证1211(1)e 10x x x -++<(1(1,0)x ∈-) 令2()(1)e 10x h x x x =-++<,则2()(21)e 1x h x x '=-+, 因为2(())4e 0x h x x ''=<,所以()h x '在(1,0)-上单调递减,所以()(0)0h x h ''>=, 所以()h x 在(1,0)-上单调递增,所以()(0)0h x h <=, 所以21e 01x x x ++>-,故120x x +> ……………………13分(若用其他方法解题,请酌情给分)。
丰台区2015—2016学年度第一学期期末练习 2016.01高三数学(文科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.函数0.5()log (1)f x x =-的定义域为(A )(1,)-+∞ (B )(1,)+∞ (C )(0,)+∞ (D )(,0)-∞ 【考点】函数的定义域与值域 【试题解析】要使函数有意义,需满足:所以函数的定义域为:。
【答案】B2.在复平面内,复数(1i)(2i)z =+-对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【考点】复数乘除和乘方 【试题解析】所以复数对应的点为(3,1),位于第一象限。
【答案】A3.“1x =”是“210x -=”的(A )充分必要条件 (B )必要而不充分条件 (C )充分而不必要条件 (D )既不充分也不必要条件 【考点】充分条件与必要条件 【试题解析】 若,则成立; 反过来,若,不一定成立,还可能所以“”是“”的充分而不必要条件。
【答案】C4.已知向量(3,-4)a =r ,(,)b x y =r ,若a r //b r,则(A)340x y-=(B)340x y+=(C)430x y+=(D)430x y-=【考点】平面向量坐标运算【试题解析】若,则【答案】C5.已知圆O:221x y+=,直线l过点(-2,0),若直线l上任意一点到圆心距离的最小值等于圆的半径,则直线l的斜率为(A)33±(B)3±(C)2±(D)1±【考点】直线与圆的位置关系【试题解析】因为直线上任意一点到圆心距离的最小值等于圆的半径,所以直线为圆的切线。
由题知,切线的斜率一定存在,设切线为:,所以解得:。
【答案】A6. 函数()=sin2cos2f x x x-的一个单调递增区间是(A)3[,]44ππ-(B)3[,]44ππ-(C)3[,]88ππ-(D)3[,]88ππ-【考点】三角函数的图像与性质【试题解析】由得:当k=0时,。
北京市丰台区2023~2024学年度第二学期综合练习(二)高三数学2024.04本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}{}1,2,3,4,5,1,3,2,3U A B ===,则()()UUA B ⋂=痧()A.{}3 B.{}1,2 C.{}4,5 D.{}1,2,32.在复平面内,复数z 的对应点为(1,1)-,则z =()A.1i+ B.1i-+ C.1i - D.1i--3.已知数列{}n a 对于任意*,p q ∈N ,都有p q p q a a a +=,若1a =,则4a =()A.2B. C.4D.4.下列函数中,是偶函数且在区间()0,∞+上单调递增的是()A.()1||f x x =B.()22xxf x -=+ C.()sin f x x= D.()tan =f x x5.若,a b ∈R ,且a b >,则()A.221111a b <++ B.22a b ab >C.22a ab b >> D.2a ba b +>>6.已知,αβ是两个不同的平面,,m n 是两条不同的直线,能使m n ⊥成立的一组条件是()A.,,m n αβαβ⊥⊥∥B.,,m n αβαβ⊂⊥∥C.,,m n αβαβ⊥⊥∥ D.,,m n αβαβ⊥⊂∥7.已知函数()()ππsin 0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的导函数是()f x ',如果函数()()y f x f x =-'的图像如图所示,那么,ωϕ的值分别为()A.1,0B.π1,4-C.π1,4D.π2,4-8.已知曲线2:1C y x =+与直线:l y kx b =+,那么下列结论正确的是()A.当1k =时,对于任意的R b ∈,曲线C 与直线l 恰有两个公共点B.当1k =时,存在R b ∈,曲线C 与直线l 恰有三个公共点C.当2k =时,对于任意的R b ∈,曲线C 与直线l 恰有两个公共点D.当2k =时,存在R b ∈,曲线C 与直线l 恰有三个公共点9.已知等差数列{}n α的公差为d ,首项1π0,2α⎛⎫∈ ⎪⎝⎭,那么“πd =”是“集合{}*sin ,n S x x n α==∈N 恰有两个元素”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.“用一个不垂直于圆锥的轴的平面截圆锥,当圆锥的轴与截面所成的角不同时,可以得到不同的截口曲线”.利用这个原理,小明在家里用两个射灯(射出的光锥视为圆锥)在墙上投影出两个相同的椭圆(图1),光锥的一条母线恰好与墙面垂直.图2是一个射灯投影的直观图,圆锥PO 的轴截面APB 是等边三角形,椭圆1O 所在平面为,PB αα⊥,则椭圆1O 的离心率为()A.32B.63C.22D.33第二部分(非选择题110分)二、填空题共5小题,每小题5分,共25分.11.已知函数()()()22,log 1xf xg x x ==+,那么()()0f g =______.12.若)4117+=+=a ______.13.如图,在正方形ABCD 中,2AB =,点,E F 分别为,BC CD 的中点,点G 在BF 上,则AE AG ⋅=______.14.如图,正方体1111ABCD A B C D -的棱长为2,,M N 分别为11,BB DD 的中点,α为过直线MN 的平面.从下列结论①,②中选择一个,并判断该结论的真假.你选的结论是______(填“①”或“②”),该结论是______命题(填“真”或“假”).①平面α截该正方体所得截面面积的最大值为②若正方体的12条棱所在直线与平面α所成的角都等于θ,则3sin 3θ=.15.设函数(),0,0.x m x f x x ⎧+<⎪=⎨≥⎪⎩给出下列四个结论:①当0m =时,函数()f x 在(),-∞+∞上单调递减;②若函数()f x 有且仅有两个零点,则0m >;③当0m <时,若存在实数,a b ,使得()()f a f b =,则a b -的取值范围为()2,+∞;④已知点(),0P m -,函数()f x 的图象上存在两点()()()11122212,,,0Q x y Q x y x x <<,12,Q Q 关于坐标原点O 的对称点也在函数()f x 的图象上.若12322PQ PQ +=,则1m =.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步聚或证明过程.16.已知ABC满足cos 2A A +=.(1)求A ;(2)若ABC 满足条件①、条件②、条件③中的两个,请选择一组这样的两个条件,并求ABC 的面积.条件①:2a b -=;条件②:cos 14B =;条件③:8c =.17.在正四棱柱1111ABCD A B C D -中,1,AB E =为1BB 中点,直线11B C 与平面1AD E 交于点F .(1)证明:F 为11B C 的中点;(2)若直线AC 与平面1AD E 所成的角为π3,求二面角11A AD F --的余弦值.18.激光的单光子通讯过程可用如下模型表述:发送方将信息加密后选择某种特定偏振状态的单光子进行发送,在信息传输过程中,若存在窃听者,由于密码本的缺失,窃听者不一定能正确解密并获取准确信息.某次实验中,假设原始信息的单光子的偏振状态0,1,2,3等可能地出现,原始信息息的单光子的偏振状态与窃听者的解密信息的单光子的偏振状态有如下对应关系.原始信息的单光子的偏振状态0123解密信息的单光子的偏振状态0,1,20,1,31,2,30,2,3已知原始信息的任意一种单光子的偏振状态,对应的窃听者解密信息的单光子的偏振状态等可能地出现.(1)若发送者发送的原始信息的单光子的偏振状态为1,求窃听者解密信息的单光子的偏振状态与原始信息的单光子的偏振状态相同的概率;(2)若发送者连续三次发送的原始信息的单光子的偏振状态均为1,设窃听者解密信息的单光子的偏振状态为1的个数为X ,求X 的分布列和数学期望()E X ;(3)已知发送者连续三次发送信息,窃听者解密信息的单光子的偏振状态均为1.设原始信息的单光子只有一种偏振状态的可能性为a ,有两种偏振状态的可能性为b ,有三种偏振状态的可能性为c ,试比较,,a b c 的大小关系.(结论不要求证明)19.已知函数()()222ln 0f x a x x a =+≠.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若函数()f x 有两个零点,求a 的取值范围.20.已知两点()()121,0,1,0F F -,曲线Ω上的动点M 满足12122MF MF F F +=,直线2MF 与曲线Ω交于另一点N .(1)求曲线Ω的方程;(2)设曲线Ω与x 轴的交点分别为,A B (点A 在点B 的左侧,且M 不与,A B 重合),直线AM 与直线BN 交于点P .当点B 为线段NP 的中点时,求点N 的横坐标.21.将数列0:1,2,3,4,N ⋅⋅⋅中项数为平方数的项依次选出构成数列1:1,4,9,16,A ⋅⋅⋅,此时数列0N 中剩下的项构成数列1:2,3,5,6,N ⋅⋅⋅;再将数列1N 中项数为平方数的项依次选出构成数列2:2,6,12,20,A ⋅⋅⋅,剩下的项构成数列2N ;….如此操作下去,将数列()*1k N k -∈N 中项数为平方数的项依次选出构成数列k A ,剩下的项构成数列k N .(1)分别写出数列34,A A 的前2项;(2)记数列m A 的第n 项为(),f m n .求证:当2n ≥时,()(),,122f m n f m n n m --=+-;(3)若(),108f m n =,求,m n 的值.北京市丰台区2023~2024学年度第二学期综合练习(二)高三数学2024.04第一部分(选择题40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}{}1,2,3,4,5,1,3,2,3U A B ===,则()()UUA B ⋂=痧()A.{}3 B.{}1,2 C.{}4,5 D.{}1,2,3【答案】C【分析】由补集和交集的定义求解.【详解】集合{}{}{}1,2,3,4,5,1,3,2,3U A B ===,{}2,4,5U A =ð,{}1,4,5U B =ð,()(){}4,5U U A B ⋂=痧.故选:C2.在复平面内,复数z 的对应点为(1,1)-,则z =()A.1i + B.1i-+ C.1i- D.1i--【答案】A【分析】依据题意可得复数z ,然后根据共轭复数的概念,可得结果.【详解】由题可知:复数z 的对应点为(1,1)-,则1z i =-所以1z i =+故选:A【点睛】本题考查共轭复数以及复数与所对应的点之间的关系,熟悉概念,属基础题.3.已知数列{}n a 对于任意*,p q ∈N ,都有p q p q a a a +=,若1a =,则4a =()A.2B.C.4D.【答案】C【分析】根据题意,分别取1p q ==,2p q ==然后代入计算,即可得到结果.【详解】因为数列{}n a 对于任意*,p q ∈N ,都有p q p q a a a +=,取1p q ==,则2112a a a =⋅==,取2p q ==,则422224a a a =⋅=⨯=,则44a =.故选:C4.下列函数中,是偶函数且在区间()0,∞+上单调递增的是()A.()1||f x x = B.()22xxf x -=+ C.()sin f x x= D.()tan =f x x【答案】B【分析】利用函数的奇偶性定义判断奇偶性,再利用相应函数的性质判断ACD 选项,利用()0f x '>判断B 选项即可.【详解】对于A ,因为()()11f x f x x x -===-,所以是偶函数,当()0,x ∞∈+时,()11f x x x==,是反比例函数,在()0,∞+上单调递减,故A 错误;对于B ,因为()()22xx f x f x --=+=,所以是偶函数,当()0,x ∞∈+时,()()22ln 2xxf x -=-',0,21,021x x x ->∴><< ,()0f x ∴'>,()f x ∴在()0,∞+上单调递增,故B 正确;对于C ,因为()()()sin sin =f x x x f x -=-=--,所以是奇函数,当()0,x ∞∈+时,()sin f x x =不单调,故C 错误;对于D ,因为()()()tan tan f x x x f x -=-=-=-,所以是奇函数,当()0,x ∞∈+时,()tan f x x =不是单调递增函数,故D 错误;故选:B.5.若,a b ∈R ,且a b >,则()A.221111a b <++ B.22a b ab >C.22a ab b >> D.2a ba b +>>【答案】D【分析】举反例即可求解ABC ,根据不等式的性质即可求解D.【详解】由于a b >,取1,1a b ==-,22111112a b =++=,221a b ab ==,无法得到221111a b <++,22a b ab >,故AB 错误,取0,2a b ==-,则220,0,4a ab b ===,无法得到22a ab b >>,C 错误,由于a b >,则22a b a b >+>,所以2a ba b +>>,故选:D6.已知,αβ是两个不同的平面,,m n 是两条不同的直线,能使m n ⊥成立的一组条件是()A.,,m n αβαβ⊥⊥∥B.,,m n αβαβ⊂⊥∥C.,,m n αβαβ⊥⊥∥ D.,,m n αβαβ⊥⊂∥【答案】B【分析】利用给定条件得到n m ,判断A ,利用给定条件得到m n ⊥判断B ,举反例判断C ,D 即可.【详解】对于A ,若,,m n αβαβ⊥⊥∥,则n m ,故A 错误,对于B ,若,,m n αβαβ⊂⊥∥,则m n ⊥,故B 正确,对于C ,若,,m n αβαβ⊥⊥∥,则,m n 可能相交,平行或异面,故C 错误,对于D ,若,,m n αβαβ⊥⊂∥,则,m n 可能相交,平行或异面,故D 错误.故选:B7.已知函数()()ππsin 0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的导函数是()f x ',如果函数()()y f x f x =-'的图像如图所示,那么,ωϕ的值分别为()A.1,0B.π1,4-C.π1,4D.π2,4-【答案】A【分析】根据题意,求导可得()()cos f x x ωωϕ'=+,从而可得()()y f x f x '=-的解析式,再结合函数图像代入计算,即可得到结果.【详解】因为()()ππsin 0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭,则()()cos f x x ωωϕ'=+,则()()()()co sin s y f x f x x x ωωϕωϕ'=+=-+-()x ωϕθ=+-⎡⎤⎣⎦,其中tan 1ωθω==,,即=,且0ω>,所以1ω=,π4θ=,即π4y x ϕ⎛⎫=+- ⎪⎝⎭,又函数过点()0,1-,将点()0,1-代入可得π14ϕ⎛⎫-=- ⎪⎝⎭,即ππ32,2k k ϕ=+∈Z ,或2π2π,k k ϕ=+∈Ζ,又ππ22ϕ-<<,则当ππ32,2k k ϕ=+∈Z 时,无解,当2π2π,k k ϕ=+∈Ζ时,1k =-,则0ϕ=,所以1ω=,0ϕ=.故选:A8.已知曲线2:1C y x =+与直线:l y kx b =+,那么下列结论正确的是()A.当1k =时,对于任意的R b ∈,曲线C 与直线l 恰有两个公共点B.当1k =时,存在R b ∈,曲线C 与直线l 恰有三个公共点C.当2k =时,对于任意的R b ∈,曲线C 与直线l 恰有两个公共点D.当2k =时,存在R b ∈,曲线C 与直线l 恰有三个公共点【答案】C【分析】根据曲线C 的对称性,分别讨论当直线l 与曲线C 的上、下半部分相切时b 的取值即可求解.【详解】曲线2:1C y x =+的图象如图所示,若1k =,当直线l 与曲线上半部分相切时,由21y x y x b⎧=+⎨=+⎩整理得210x x b -+-=,由()()2Δ14110b =--⨯⨯-=得34b =,当直线l 与曲线下半部分相切时,由21y x y x b⎧=--⎨=+⎩整理得210x x b +++=,由()2Δ1410b =-⨯+=得34b =-,结合曲线C 图象的对称性可得,当34b =或34b =-时,曲线C 与直线l 有一个交点,当3344b -<<时,曲线C 与直线l 没有交点,当34b >或34b <-时,,曲线C 与直线l 有两个交点,AB 说法错误;若2k =,当直线l 与曲线上半部分相切时,由212y x y x b⎧=+⎨=+⎩整理得2210x x b -+-=,由()()2Δ24110b =--⨯⨯-=得0b =,当直线l 与曲线下半部分相切时,由212y x y x b⎧=--⎨=+⎩整理得2210x x b +++=,由()2Δ24110b =-⨯⨯+=得0b =,结合曲线C 图象的对称性可得,对于任意的R b ∈,曲线C 与直线l 恰有两个公共点,C 说法正确,D 说法错误,故选:C9.已知等差数列{}n α的公差为d ,首项1π0,2α⎛⎫∈ ⎪⎝⎭,那么“πd =”是“集合{}*sin ,n S x x n α==∈N 恰有两个元素”的()A .充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【分析】依据题意证明充分性成立,举反例否定必要性即可.【详解】对于充分性,已知等差数列{}n α的公差为d ,首项1π0,2α⎛⎫∈ ⎪⎝⎭,当“πd =”时,集合{}*sin ,n S x x n α==∈N 恰有两个元素{}11sin ,sin S αα=-,故充分性成立,对于必要性,当3πd =时,“集合{}*sin ,n S x x n α==∈N也恰有两个元素”,故必要性不成立,故“πd =”是“集合{}*sin ,nS x x n α==∈N 恰有两个元素”的充分而不必要条件.故选:A10.“用一个不垂直于圆锥的轴的平面截圆锥,当圆锥的轴与截面所成的角不同时,可以得到不同的截口曲线”.利用这个原理,小明在家里用两个射灯(射出的光锥视为圆锥)在墙上投影出两个相同的椭圆(图1),光锥的一条母线恰好与墙面垂直.图2是一个射灯投影的直观图,圆锥PO 的轴截面APB 是等边三角形,椭圆1O 所在平面为,PB αα⊥,则椭圆1O 的离心率为()A.32B.63C.22D.33【答案】D【分析】根据题意,由勾股定理结合余弦定理代入计算可得134PO PQ=,再由相似三角形的相似比结合勾股定理可分别计算出椭圆的,,a b c ,结合椭圆的离心率即可得到结果.【详解】设2AB r =,由于PB α⊥,所以PB AM ⊥,在等边三角形PAB 中,点M 为PB 的中点,于是3AM r =,在平面α中,由椭圆的对称性可知,1132AO MO r ==,连接11,OO PO ,延长1PO 与AB 交于点Q ,由于1,O O 为中点,所以在ABM 中,13,2PM r MO r ==,由勾股定理可得2222113722PO PM MO r r ⎛⎫=++ ⎪ ⎪⎝⎭,在PQO 中,3PO r =,172PO r =,112OO r =,由余弦定理可得222222111171332144cos 2147232r r r PO PO OO OPO PO POr r+-+-∠==⋅⨯⨯,在Rt PQO △中,由于1cos PO OPO PQ∠=,所以137cos 332114PO r PQ OPO ===∠,于是有17324273r PO PQ r ==,设椭圆1O 短轴的两个顶点为,G H ,连接,PG PH 分别交圆锥于,E F ,由于PGH PEF ∽,所以134PG PO PEPQ==,由于PE 为圆锥母线,所以2PE PA r ==,从而有3332442PG PE r r ==⨯=,在1Rt PGO中,由勾股定理可得12GO r ==,所以在椭圆1O中,12a MO r ==,12b GO ==,则12c ==,则离心率为12332r c e a ====.故选:D【点睛】关键点睛:本题主要考查了椭圆定义的理解以及椭圆离心率的求解,难度较大,解答本题的关键在于结合椭圆的定义以及余弦定理代入计算,分别求得,a b ,从而得到结果.第二部分(非选择题110分)二、填空题共5小题,每小题5分,共25分.11.已知函数()()()22,log 1xf xg x x ==+,那么()()0f g =______.【答案】1【分析】先求出()0g ,再求()()0f g 即可.【详解】易知()()20log 010g =+=,故()()()00021f g f ===,故答案为:112.若)4117+=+=a ______.【答案】12【分析】根据题意,将)41+展开计算,即可得到结果.【详解】)(42131717=+=++,所以12a =.故答案为:1213.如图,在正方形ABCD 中,2AB =,点,E F 分别为,BC CD 的中点,点G 在BF 上,则AE AG ⋅=______.【答案】4【分析】根据向量的线性运算可得11,122AE AB AD AG AB AD λλ⎛⎫=+=-+ ⎪⎝⎭,即可利用数量积的运算律求解.【详解】设BG BF λ=,则()1111122222AE AG AB AD AB BF AB AD AB AD AB AB AD AB AD λλλλλ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅=+⋅+=+⋅+-=+⋅-+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2211311111444224222AB AB AD AD λλλλλ⎛⎫⎛⎫⎛⎫=-++⋅+=-⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:414.如图,正方体1111ABCD A B C D -的棱长为2,,M N 分别为11,BB DD 的中点,α为过直线MN 的平面.从下列结论①,②中选择一个,并判断该结论的真假.你选的结论是______(填“①”或“②”),该结论是______命题(填“真”或“假”).①平面α截该正方体所得截面面积的最大值为33②若正方体的12条棱所在直线与平面α所成的角都等于θ,则3sin 3θ=.【答案】①.①(答案不唯一)②.假(答案不唯一)【分析】选①,根据四边形11BDD B 的面积即可判断,选②,根据三棱锥111A AD B -为正三棱锥,利用等体积法求解1AA 与平面11AD B 所成角的正弦值即可求解②.【详解】若选①,平面11BDD B 是过直线MN 的平面.此时四边形11BDD B 即为该平面截正方体所得截面,由于四边形11BDD B 的面积为1233BD BB ⋅>=,故①为假命题,若选②,由于三棱锥111A AD B -为正三棱锥,所以1111,,A A A B A D 与平面11AD B 所成角均相等,故平面α//平面11AD B ,设1A 到平面11AD B 的距离为h,则1111111111111111111222·2··AD A A AD B B AD A AD B AD A AD B S A B V V S h S A B h S --⨯⨯⨯=⇒=⇒=所以1AA 与平面11AD B所成角的正弦值为13h AA =,故sin 3θ=,②为真命题故答案为:①(答案不唯一),假(答案不唯一)15.设函数(),0,0.x m x f x x ⎧+<⎪=⎨≥⎪⎩给出下列四个结论:①当0m =时,函数()f x 在(),-∞+∞上单调递减;②若函数()f x 有且仅有两个零点,则0m >;③当0m <时,若存在实数,a b ,使得()()f a f b =,则a b -的取值范围为()2,+∞;④已知点(),0P m -,函数()f x 的图象上存在两点()()()11122212,,,0Q x y Q x y x x <<,12,Q Q 关于坐标原点O 的对称点也在函数()f x 的图象上.若12322PQ PQ +=,则1m =.其中所有正确结论的序号是______.【答案】②③④【分析】根据0x ≥时,()0f x =即可判断①,求解方程的根,即可求解②,结合函数图象,求解临界状态时2a b -→,即可求解③,根据函数图象的性质可先判断0m >,继而根据对称性联立方程得==,根据122PQ PQ +=可得2132x x -=,代入即可求解④.【详解】当0m =时,0x ≥时,()0f x =,故在(),∞∞-+上不是单调递减,①错误;对于②,当0m =显然不成立,故0m ≠,当0x ≥时,令()0f x =,即0=,得0x =,0,0x x m x m <+=⇒=-,要使()f x 有且仅有两个零点,则0m -<,故0m >,②正确,对于③,当0m <时,(),0,0.x m x f x x --<⎧⎪=⎨≥⎪⎩,此时()f x 在(),0-∞单调递减,在[0,+∞)单调递增,如图:若()()f a f b =,由2m x -=⇒=,故2a b ->,所以a b -的取值范围为()2,∞+;③正确对于④,由①③可知:0m ≤时,显然不成立,故0m >,要使()()()11122212,,,0Q x y Q x y x x <<,12,Q Q 关于坐标原点O 的对称点也在函数()f x 的图象上,则只需要0,x y x m >=--的图象与()0,x f x ≥=故120x m x <-<<,))12121221322PQ PQ m x m m x x m x x +=-++=++=⇒-=,由对称可得()111f x x m x m -==---=+,化简可得10x m ++=,故20m =⇒()222f x x m x m -==---=--,化简得20m +==由于12,x x--均大于0==,因此222221x x⎛-=-=-⎪ ⎪⎪ ⎪⎝⎭⎝⎭==由于0m>,()43142f m m m=+为()0,+∞单调递增函数,且()912f=,此时2132x x-==,因此1m=,④正确,故答案为:②③④【点睛】方法点睛:函数零点问题常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题共6小题,共85分.解答应写出文字说明,演算步聚或证明过程.16.已知ABC满足cos2A A+=.(1)求A;(2)若ABC满足条件①、条件②、条件③中的两个,请选择一组这样的两个条件,并求ABC的面积.条件①:2a b-=;条件②:7cos14B=;条件③:8c=.【答案】(1)π3(2)见解析.【分析】(1)根据辅助角公式可得πsin16A⎛⎫+=⎪⎝⎭,即可求解π3A=,(2)选择①②,根据正弦定理可得b a=>与2a b-=矛盾,即可求解,选择②③,根据71cos142B=<,故π3B >,a b <,这与2a b -=矛盾,再由三角恒等变换及正弦定理、三角形面积公式即可求解,选择①③,根据余弦定理可得5b =,7a =,即可由面积公式求解.【小问1详解】cos 2A A +=得π2sin 26A ⎛⎫+= ⎪⎝⎭,所以πππ2π2π,Z 623A k A k k +⇒∈=+=+,由于()0,πA ∈,所以π3A =【小问2详解】若选①2a b -=,②7cos 14B =,则7π321cos 0,sin 14214B B B ⎛⎫=∴∈ ⎪⎝⎭,,由正弦定理可得3213sin sin 142a b a b b a A B =⇒⇒=>=,这与2a b -=矛盾,故不可以选择①②,若选①2a b -=,③8c =,由余弦定理可得()222222821cos 2216b b c b a A bc b+-++-===,解得5b =,7a =,此时2224964257cos 227814a cb B ac +-+-==≠⨯⨯,不满足②,符合题意;此时113sin 58222ABC S bc A ==�△选②7cos 14B =,③8c =,由于7πcos 0,142B B ⎛⎫=∴∈ ⎪⎝⎭,又71cos 142B =<,故π3B >,而π3A =,故a b <,这与①2a b -=矛盾,因此可以选择②③;则321sin 14B =,()21sin =sin sin cos cos sin 7C A B A B A B +=+=,由正弦定理可得8sin =sin 217c Aa C==所以11sin 82214ABC S ac B △==创�.17.在正四棱柱1111ABCD A B C D -中,1,AB E =为1BB 中点,直线11B C 与平面1AD E 交于点F .(1)证明:F 为11B C 的中点;(2)若直线AC 与平面1AD E 所成的角为π3,求二面角11A AD F --的余弦值.【答案】(1)证明见解析(2)66【分析】(1)根据线面平行的性质定理判断;(2)建立如图所示的空间直角坐标系,由空间向量法求线面角确定E 点位置,再由空间向量法求二面角.【小问1详解】如图,连接1BC ,1,FE FD ,在正四棱柱1111ABCD A B C D -中,由AB 与11C D 平行且相等得11ABC D 是平行四边形,所以11//BC AD ,又1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,所以1//BC 平面1AD E ,1BC ⊂平面11BCC B ,平面1AD E 平面11BCC B EF =,所以1//BC EF ,E 是1BB 中点,所以F 是11B C 的中点;【小问2详解】以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,如图,设1AA m =(0m >),则(1,0,0)A ,(0,1,0)C ,1(0,0,)D m ,(1,1,2mE ,(1,1,0)AC =- ,1(1,0,),(0,1,)2mAD m AE =-= ,设平面1AD E 的一个法向量是(,,)t x y z =,则102t AD x mz mt AE y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取1z =,得(,,1)2m t m =- ,因为直线AC 与平面1AD E 所成的角为π3,所以πcos ,sin3t ACt AC t AC⋅==,解得2m =(负值舍去),所以(2,1,1)t =-,平面11AA D 的一个法向量是(0,1,0)n =,平面1AD F 即为平面1AD E ,则6cos ,6t n t n t n ⋅===- ,二面角11A AD F --为锐角,因此其余弦值为66.18.激光的单光子通讯过程可用如下模型表述:发送方将信息加密后选择某种特定偏振状态的单光子进行发送,在信息传输过程中,若存在窃听者,由于密码本的缺失,窃听者不一定能正确解密并获取准确信息.某次实验中,假设原始信息的单光子的偏振状态0,1,2,3等可能地出现,原始信息息的单光子的偏振状态与窃听者的解密信息的单光子的偏振状态有如下对应关系.原始信息的单光子的偏振状态0123解密信息的单光子的偏振状态0,1,20,1,31,2,30,2,3已知原始信息的任意一种单光子的偏振状态,对应的窃听者解密信息的单光子的偏振状态等可能地出现.(1)若发送者发送的原始信息的单光子的偏振状态为1,求窃听者解密信息的单光子的偏振状态与原始信息的单光子的偏振状态相同的概率;(2)若发送者连续三次发送的原始信息的单光子的偏振状态均为1,设窃听者解密信息的单光子的偏振状态为1的个数为X ,求X 的分布列和数学期望()E X ;(3)已知发送者连续三次发送信息,窃听者解密信息的单光子的偏振状态均为1.设原始信息的单光子只有一种偏振状态的可能性为a ,有两种偏振状态的可能性为b ,有三种偏振状态的可能性为c ,试比较,,a b c 的大小关系.(结论不要求证明)【答案】(1)13(2)分布列见解析,()1E X =(3)a c b<<【分析】(1)列出基本事件,再求解概率即可.(2)利用分布列的定义求解分布列,再求解数学期望即可.(3)依据题意猜测结论即可.【小问1详解】设“解密信息的单光子的偏振状态与原始信息的单光子的偏振相同”独立作为事件A ,易知共有3个基本事件,则1()3P A =.【小问2详解】X 的可能取值为0,1,2,3.328(0)()327P X ===,123124(1)C (339P X ==创=,223122(2)C ()339P X ==创=,33311(3)C ()327P X ==´=,所以,X 的分布列如下:X0123P82749291278421()01231279927E X =⨯+⨯+⨯+⨯=.【小问3详解】结论:a c b<<证明:易知3113(39a =⨯=,3126(39c =⨯=,3166()39b =3⨯⨯=,故a c b <<得证.19.已知函数()()222ln 0f x a x x a =+≠.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)3y =(2)340e a -<<或20a -<<【分析】(1)求导,代值可得()()10,13f f '==,即可求解切线,(2)求导得()()()21f x x+'=,对a 分类讨论,求解函数的单调性,即可根据最小值为负求解.【小问1详解】当1a =时,()2ln f x x x =+,则()21f xx'=,所以()()10,13f f '==,故()y f x =在点()()1,1f 处的切线方程为3y =【小问2详解】()()()()()22202102x a f x a a xxx x +'=+==≠>,当0a >时,则20+>,令()0,f x '>则21x a>,令()0,f x '<则210x a <<,故()f x 在21,a ⎛⎫+∞ ⎪⎝⎭单调递增,在210,a ⎛⎫ ⎪⎝⎭单调递减,故当21x a=,()f x 取极小值也是最小值,则222211122ln 34ln f a a a a a ⎛⎫=+=+⎪⎝⎭,又当(),,x f x →+∞→+∞且()0,x f x →→+∞,故要使函数()f x 有两个零点,只需要()min 34ln 0f x a =+<,解得340e a -<<;当0a <时,则10<,令()0,f x '>则24x a >,令()0,f x '<则240x a<<,故()f x 在24,a ⎛⎫+∞⎪⎝⎭单调递增,在240,a ⎛⎫⎪⎝⎭单调递减,故当24x a =,()f x 取极小值也是最小值,则222222444422ln 2ln 4ln 22ln f a a a a a a ⎛⎫=+=-=-+ ⎪⎝⎭,又当(),,x f x →+∞→+∞且()0,x f x →→+∞,故要使函数()f x 有两个零点,只需要()2min 4ln 22ln 0f x a =-+<,解得20a -<<;综上可得340e a -<<或20a -<<.20.已知两点()()121,0,1,0F F -,曲线Ω上的动点M 满足12122MF MF F F +=,直线2MF 与曲线Ω交于另一点N .(1)求曲线Ω的方程;(2)设曲线Ω与x 轴的交点分别为,A B (点A 在点B 的左侧,且M 不与,A B 重合),直线AM 与直线BN 交于点P .当点B 为线段NP 的中点时,求点N 的横坐标.【答案】(1)22143x y +=(2)0【分析】(1)根据椭圆的定义即可求解,(2)联立直线与椭圆方程得韦达定理12122269,3434t y y y y t t --+==++,即可根据中点关系以及向量共线得2135y y -=,代入韦达定理中即可求解213t =,进而可求解.【小问1详解】由于121212242MF MF F F F F +==>=,所以M 是以()()121,0,1,0F F -为焦点,以4为长轴长的椭圆,故2,1==⇒=a cb 故椭圆方程为22143x y +=.【小问2详解】由于MN 斜率不为0,故设直线MN 方程为:1x ty =+,联立()2222134690143x ty t y ty x y =+⎧⎪⇒++-=⎨+=⎪⎩,设()()1122,,,M x y N x y ,则12122269,3434t y y y y t t --+==++,()2,0,(2,0)A B -,由于点B 为线段NP 的中点,则()224,P x y --,又P 是直线AM 与直线BN 的交点,所以//AP AM,()()22116,,2,AP x y AM x y =--=+,故()()212162x y y x -=-+,()()22121121353535y ty y y ty y y y --=-+⇒=-⇒=,将2135y y -=代入12122269,3434t y y y y t t --+==++可得22222223235569,35434t y y t y y t --=-==-+++,故2225695234343t t t ⎡⎤---⎛⎫⎛⎫=⨯ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦,解得213t =,故222953343y t --⎛⎫=⨯= ⎪+⎝⎭,由2222143x y +=可得20x =,故点N 的横坐标为0.21.将数列0:1,2,3,4,N ⋅⋅⋅中项数为平方数的项依次选出构成数列1:1,4,9,16,A ⋅⋅⋅,此时数列0N 中剩下的项构成数列1:2,3,5,6,N ⋅⋅⋅;再将数列1N 中项数为平方数的项依次选出构成数列2:2,6,12,20,A ⋅⋅⋅,剩下的项构成数列2N ;….如此操作下去,将数列()*1k N k -∈N 中项数为平方数的项依次选出构成数列k A ,剩下的项构成数列k N .(1)分别写出数列34,A A 的前2项;(2)记数列m A 的第n 项为(),f m n .求证:当2n ≥时,()(),,122f m n f m n n m --=+-;(3)若(),108f m n =,求,m n 的值.【答案】(1)3A 的前2项为3,8;4A 的前2项为5,11;(2)证明见解析;(3)6,8.m n ==【分析】(1)直接利用数列定义求解;(2)证明{}(,)(,1)f m n f m n --为等差数列即可求解;(3)先利用数学归纳法证明22(22,1)1,(212,1) 1.f n i i n i f n i i n n i -+=+++-+=+++进而求得(,)f m n 的表达式,利用累加法再解方程求解【小问1详解】数列3A 的前2项为3,8;数列4A 的前2项为5,11;【小问2详解】首先2(1,)f n n =,当2n ≥时,(1,)(1,1)21f n f n n --=-结论成立;当2m ≥时,对于相邻的两个数列:1:(1,1),(1,2),,(1,1),(1,),,:(,1),(,2),,(,1),(,),,m m A f m f m f m n f m n A f m f m f m n f m n ------- 149162536496426122030425672381524354863805111929415571897142334476279981018284054708810813223346617897118172739536987107129因为(,1),(1,)f m n f m n --都在数列2m N -中,且(,1)f m n -在(1,)f m n -之前,所以(,1)(1,)f m n f m n -<-在数列1,m m A A -中,必有(1,)(,)f m n f m n -<,所以(,1)(1,)(,)f m n f m n f m n -<-<,所以(,)(,1)(1,)(1,1)1f m n f m n f m n f m n --=----+所以{}(,)(,1)f m n f m n --构成首项为(1,)(1,1)21f n f n n --=-,公差为1的等差数列,所以(,)(,1)(21)(1)2 2.f m n f m n n m n m --=-+-=+-【小问3详解】由各个数列生成的规则知,{}2221,2,,2n n n n +++ 中不可能有两个元素是同一数列的项.从上面的表格,我们猜想:集合{}2221,2,,2n n n n +++ 中的每个元素,且仅是数列2321,,,n A A A + 中某个数列的项.具体地可概括成结论P :对任意,n *∈N ,1i i n ∈-N ≤,有22(22,1)1,(212,1) 1.f n i i n i f n i i n n i -+=+++-+=+++下面用数学归纳法证明:(i)当1n =时,(2,1)2,(3,1)3,f f ==由题意数列23,A A 的首项分别是2,3,结论成立;(ii)假设当N ()n k k *=∈时,结论成立,即对N,1i i k ∀∈-≤,22(22,1)1,(212,1)1f k i i k i f k i i k k i -+=+++-+=+++那么由第(2)问的结论知:当N,1i i k ∈≤-时,(22,2)(22,1)2(2)(22)2f k i i f k i i i k i -+=-++++--22(1)22(1)2k i k k i =++++=+++,[](212,2)(212,1)2(2)2122f k i i f k i i i k i +-+=+-+++++--2(1)(23)k k i k =+++++2(1)(1)2k k i =+++++,上式表明,集合{}222(1)1,(1)2,,(1)2(1)k k k k +++++++ 中除了22(1)1,(1)(2)k k k +++++的每一个元素都是数列2321,,,k A A A + 中的某个数列的项,还剩下两个元素:22(1)1,(1)(2)k k k +++++,它们必是数列2223,k k A A ++的首项,结果只有22(22,1)(1)1,(23,1)(1)(1)1f k k f k k k +=+++=++++.根据(1)(2)知,结论P 成立.由结论P 可得,数列2k A 的首项为21k +,21k A +的首项为21k k ++,即22221,1,44(,1)(1)111,,1,,424m m m m f m m m m m m ⎧⎧++⎪⎪⎪⎪==⎨⎨---⎪⎪+++⎪⎪⎩⎩为偶数,为偶数,为奇数为奇数另一方面,由第(2)问的结论:(,)(,1)22f m n f m n n m --=+-得:(,2)(,1)2f m f m m -=+,(,3)(,2)4f m f m m -=+,…(,)(,1)22f m n f m n n m --=+-,相加得:(,)24(22)(1)(1)()(,1)f m n n n m n n m f m =+++-+-=-++ ,当1n =时,上式也成立.所以22(1)(1)(),4(,)1(1)(1)(),.4mn n m m f m n m n n m m ⎧++-+⎪⎪=⎨-⎪++-+⎪⎩为偶数,为奇数221,211,.24m n n m mn n m ⎧⎛⎫+-+⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+-+- ⎪⎪⎝⎭⎩为偶数,为奇数令2(1)1082m n n +-+=,则2(1)108,2mn n +-=-所以(1)2mn =--.由12m≥得2108n n +≤,所以9n ≤,所以108[99,107)n -∈,10=.所以8n =(81)3-=,所以6m =;令21(1)10824m n n +-+-=,有2(22)4334m n n +-=-,22m n =-.由m 1≥得2108n ≤,所以10n ≤.所以4334(393,429)n -∈*,N 无解.综上,当(,)108f m n =时,6,8.m n ==【点睛】关键点点睛:本题考查数列新定义,关键是利用数学归纳法得22(22,1)(1)1,(23,1)(1)(1)1f k k f k k k +=+++=++++,进而得到(,)f m n 的表达式.。