数学人教版九年级下册专题:如何引辅助线解决动态型问题
- 格式:doc
- 大小:300.50 KB
- 文档页数:4
【学整理】新初三数学:添加几何辅助线方法整理,总结很全,抓紧掌握!写在前面:暑假不仅仅是用来放松玩耍的,更是用来“弯道赶超”的。
暑假先人一步,开学领跑一路!开学不想落后他人,暑假抓紧预习起来。
今天小高老师和大家分享的是新初三数学:添加几何辅助线方法整理,总结很全,抓紧掌握!三角形中常见辅助线的添加1. 与角平分线有关的(1)可向两边作垂线(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可。
(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可。
(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
(4)遇到中点:考虑中位线或等腰等边中的三线合一等知识。
3. 与等腰等边三角形相关的(1)考虑三线合一;(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °四边形常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形。
在解决一些和四边形有关的问题时往往需要添加辅助线。
下面介绍一些辅助线的添加方法。
1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。
(1)利用一组对边平行且相等构造平行四边形;(2)利用两组对边平行构造平行四边形;(3)利用对角线互相平分构造平行四边形;2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。
(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题。
初中数学辅助线的做法总结一、加法与减法辅助线1.相差减一法:对于计算两个数之差的问题,我们可以使用相减法,即将两个数按位相减,并将每一位之差写在下方。
为了更加清晰,可以在个位上方画一条水平线,表示个位数。
例如:45-23,画线表示为:4-233—2.加减齐次法:当计算加法或减法的时候,两个数位数不同,我们可以借助辅助线将两数齐次,使问题更易解。
例如:34+20,可以在个位上方画一条辅助线,表示个位数相加得4,十位数不变。
+0-----3.补充法:当计算减法时,被减数小于减数,我们可以通过补充的方式,使被减数增加一个数位,将问题转化为一个正常的减法。
例如:36-47,可以在个位上方画一条辅助线,表示个位数不够减,需要向十位借1,并在个位上加10,即变成36+10=46-47,再进行减法运算。
-136+10-47-------1二、乘法与除法辅助线1.竖式计算法:对于较复杂的乘法运算,我们可以使用竖式计算法,将乘法运算拆分为多个小的乘法运算。
例如:36×25,可以将25拆分成20和5,然后依次与36相乘,最后相加。
36×20-----72+180-----9002.倍数计算法:当计算除法时,我们可以利用倍数的性质,将除法问题转化为乘法问题。
分为两种情况:一是被除数为倍数的情况,二是除数为倍数的情况。
例如:115÷5,可以找到被除数和除数都是5的倍数,115÷5=(100+10+5)÷5=20+2+1=233.分数的乘法与除法:对于计算分数的乘除法,我们可以利用分数的定义和简化规则,将计算转化为整数的运算。
例如:(8/5)×(7/3),可以将其转化为整数相乘,然后再进行约分。
8×7=565×3=15所以结果为56/15,再进行约分。
三、几何问题的辅助线1.直角三角形辅助线:解决直角三角形的问题时,可以在直角处画一条垂线,以辅助解题。
人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这就是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
完整)初中数学几何辅助线技巧
几何常见辅助线口诀
三角形
在三角形中,可以使用角平分线来构造垂线,也可以将图形对折以后进行对称,从而得到更多的关系。
同时,角平分线还可以和平行线一起使用,来构造等腰三角形。
另外,在线段问题中,垂直平分线常常被用来将线段连接起来,而线段和差的问题可以通过延长或缩短线段来解决。
四边形
在处理平行四边形时,可以使用对称中心和等分点来进行计算。
对于梯形问题,可以将其转换为三角形或平行四边形,然后利用已有的知识来解决。
如果出现腰中点,可以连接中位线来解决问题。
如果以上方法都无法奏效,可以尝试使用全等来解决问题。
在证明相似时,可以使用比例和平行线的关系来辅助证明。
圆形
在圆形问题中,可以利用半径和弦长来计算弦心距。
如果出现切线,可以使用勾股定理来计算其长度。
要想证明一条线段是切线,需要利用半径垂线进行辨别。
在处理弧的问题时,需要记住垂径定理和圆周角的性质。
如果要作出内接或外接圆,需要将各边的中垂线或角平分线连起来。
如果遇到相交圆,需要注意作出公共弦。
最后,如果要证明等角关系,可以使用角平分线来构造辅助线。
由角平分线想到的辅助线
在使用角平分线时,可以通过截取构造全等来解决问题。
也可以在角分线上的点向两边作垂线,来构造全等三角形。
同时,三线合一也可以用来构造等腰三角形。
最后,在处理角平分线和平行线问题时,可以使用线段的加减和移动来解决问题。
初中几何是学生学习几何知识的基础阶段,掌握正确的辅助线技巧对于解决几何问题至关重要。
下面是一份关于初中几何中常用的辅助线方法的资料,希望能帮助到您。
一、基本概念辅助线:在解决几何问题时,为了更好地展现图形的性质或构建所需的条件,临时添加的线段称为辅助线。
辅助线不改变原图形的基本结构,但能帮助我们发现解题的关键线索。
二、常用辅助线方法1. 过顶点作垂线●应用场景:证明直角、等腰三角形的性质,求解高、距离等问题。
●示例:证明一个三角形是直角三角形时,可以尝试从一个顶点向对边作垂线,利用勾股定理。
2. 连接中点●应用场景:证明线段倍长、中位线性质、平行四边形和梯形的构造。
●示例:证明两条线段相等时,连接它们的中点,利用中位线定理。
3. 平行线构造●应用场景:形成相似三角形、构造平行四边形、证明角度关系。
●示例:为证明两个角相等,可以在其中一个角的一边上作一条平行于另一角所在直线的辅助线,从而构成一对内错角或同位角。
4. 过顶点作平行线●应用场景:构造全等三角形、证明角平分线性质。
●示例:证明两角相等时,可以从一个角的顶点出发作一条平行于另一个角一边的线,这样可以构造出一组等角的三角形。
5. 延长线段●应用场景:寻找共线点、证明交比不变、构造平行线。
●示例:当需要证明四点共线时,延长某些线段,利用交叉线段的比值相等来证明。
6. 作角平分线或垂直平分线●应用场景:证明等腰三角形、等边三角形性质,解决与圆相关的几何问题。
●示例:证明一个点在三角形某边的垂直平分线上,可以过该点作这条边的垂线,利用垂直平分线的性质。
三、技巧总结1.观察图形特征:首先分析图形的已知条件和所求目标,根据图形的特殊形状或已知条件选择合适的辅助线方法。
2.尝试多种方案:有时候,一种辅助线方法可能不足以解决问题,需要尝试几种不同的方法。
3.灵活运用定理:熟练掌握各种几何定理,并能灵活应用到辅助线的构造中。
4.练习与总结:多做练习,每次解题后总结辅助线的使用经验,逐步提高解题效率。
初中数学巧画辅助线的技巧每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时,补完整基本图形,因此"添线'应该叫做"补图'!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与两条平行线都相交的第三条直线。
(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的两条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形:出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系、且倍线段是直角三角形的斜边,则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形:几何问题中出现多个中点时往往添加三角形中位线基本图形进行证实,当有中点没有中位线时则添中位线,当有中位线三角形不完整时则必须补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个相等角关于某一直线成轴对称就可以添加轴对称形成全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证实,添加方法是将四个端点两两连结或过二端点添平行线2圆中常用辅助线的添法(1)见弦作弦心距有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来〔沟通〕题设与结论间的联系。
黄冈教育 初三数学专题复习(二)添加辅助线方法总结角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。
对于有角平分线的辅助线的作法,一般有两种。
①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。
(一)角分线上点向角两边作垂线构全等例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。
求证:∠ADC+∠B=180(二)利用角平分线,构造对称图形例2已知:如图,等腰三角形ABC中,AB=AC ,∠A=108°,BD 平分∠ABC 。
求证:BC=AB+DC 。
图2-1BCC图2-6ECD例3.如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4, 求证:BE +CF >EF 。
例4.已知:如图3-1,∠BAD=∠DAC ,AB>AC,CD ⊥AD 于D ,H 是BC 中点。
求证:DH=21(AB-AC )练习:1.如图2-4∠AOP=∠BOP=15 ,PC//OA ,PD ⊥OA , 如果PC=4,则PD=( )A 4B 3C 2D 1 2.如图,在△ABC 中,AD 平分∠BAC ,AB+BD=2AC. 求证:∠B=2∠C3.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC 上的点,∠FAE=∠DAE 。
求证:AF=AD+CF 。
4.已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH//AB 交BC 于H 。
求证CF=BH 。
DBAAOPBCBABCD EFN13 图1234C5.已知:如图3-2,AB=AC ,∠BAC=90 ,AD 为∠ABC 的平分线,CE ⊥BE.求证:BD=2CE 。
二、由中点想到的辅助线 (一)、由中点应想到利用三角形的中位线例1.如图3,在四边形ABCD 中,AB=CD ,E 、F 分别是BC 、AD 的中点,BA 、CD 的延长线分别交EF 的延长线G 、H 。
人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
课题:如何引辅助线解决动态型问题
抚顺市第十八中学张引
【内容分析】
重点:从教材原有习题出发进行动态型问题复习,加深学生对教材的重视和理解。
难点:培养学生灵活运用数学知识解决问题的能力以及采用多方法解决问题的能力。
关键:通过动点引辅助线,在变中找不变。
【考点解读】
动态型问题是以点、线、面(如三角形、四边形)的运动为情境,探索和发现其中规律和结论的中考题型,由于图形的运动,导致题目的条件不断改变,随之相应的数量关系和结论也可能改变,这样就出现一个事件中蕴含着多个数学问题,既独立又有联系,使题目无论从考查知识上,还是解决方法上都具有较强的综合性,以达到培养和考查学生的观察、试验、空间想象、分析综合等解决问题的能力,在中考试卷中常作为最后两题出现。
动态型问题类型有:⑴点的运动,⑵线的运动,⑶面(如三角形、四边形)的运动。
【设计意图】
中考试题基本上是教材中题目的引申、变形或组合,特别是教材的编排有“螺旋上升”的优点,也有知识点分散的缺点,所以必须指导学生深钻教材,绝不能脱离课本。
在复习九年级知识的同时,把七、八年级的相关内容进行归纳整理,加强各模块内部的整合,寻求各模块的交叉点、中间地带,让学生站在九年级的高度反思、巩固、深化、升华,使之形成结构,并要求他们注意解题方法的归纳和整理。
本节课从人教版八年级下册69页14题出发,通过点在直角三角形的直角边、斜边(或所在直线)上的运动,导致题目的条件不断改变,随之相应的数量关系和结论也可能改变,但其数学思想方法不变,使学生认识到:中考试题来源于教材,是教材中题目的引申、变形或组合,增强学习信心,克服畏难心理。
【思维方法】
(1)认清问题中的静态图形和动态图形,并确定动态图形的起始位置和终止位置;
(2)画出不同时刻动态图形与静态图形形成的几何图形,这样就能达到由“动”变“静”,再引适当的辅助线,通过“变”中找“不变”,解决问题。
【教学环节安排】
备用图
【验证体会】变式一:
【回顾反思】变式二:
四模25题
⑵如图2,当∠ABC=30°
由;
⑶当∠ABC=α时,请你直接写出线段来表示)。
小组合作,体会思想方法:
【拓展升华】
三垂直(手拉手)
ABCD中,点P为上一点,当∠DPC=∠A=为圆心,DC为半径的圆与AB相切时,求t的值。
,求证:P1P⊥PQ。