上海市田家炳中学2015届九年级数学上学期期中试题沪科版
- 格式:doc
- 大小:380.50 KB
- 文档页数:8
2015学年第一学期期中考试九年级数学试卷(考试时间:100分钟 满分:150分)命题者:七宝二中 张家楣一、选择题(本大题共6小题,每题4分,共24分)1、已知点C 是线段AB 的黄金分割点()BC AC >,4=AB ,则线段AC 的长是( ) (A )252-; (B )526-; (C )15-; (D )53-.2、已知E 为的边BC 延长线上一点,AE 交CD 于F ,BC ﹕CE =5﹕3, 则DF ﹕CD 为 …………… ……………… ( )(A )3﹕8; (B )8﹕3; (C )5﹕8; (D )8﹕5. 3、 如图,DE ∥BC , EF ∥AC , 则下列比例式中不正确的是 ( )(A )AB AD AC AE =; (B )FC BFEC AE =; (C )FC BF BD AD =; (D )FCBFAD BD =. 4、若0a 、0b 都是单位向量,则有 …………… ……………… ( ) (A )00b =; (B )00-=; (C )00b a =; (D )00b a ±=. 5、下面命题中,假命题是 …………… ………… ( )(A )有一个角是︒100的两个等腰三角形相似; (B )全等三角形都是相似三角形;(C )两边对应成比例,且有一个角相等的两个三角形相似; (D )两条直角边对应成比例的两个直角三角形相似.6、在RtABC ∆中,AB CD ACB ⊥︒=∠,90于D 且BC :AC 2=∶3,则BD ∶=AD ( )(A )2∶3; (B )4∶9; (C )2∶5; (D )2∶3. 二、 填空题(本大题共12小题,每题4分,共48分) 7、如果32x y =,那么=-yyx 3______▲_______ 学校_______________________ 班级__________ 学号_________ 姓名______________ ……………………………密○…………………………………封○…………………………………○线…………………………F8、 在比例尺为1﹕10000000的地图上,上海与香港之间的距离为3.12厘米, 则上海与香港之间的实际距离为 ▲ 千米.9、在△ABC 中,点D 、E 分别在边AB 、AC 上,CD 平分ACB ∠,DE ∥BC ,如果AC =10,AE =4,那么BC = ▲ .10、两个相似三角形的面积比是1﹕9,小三角形的周长为4,则另一个三角形的周长是___▲___. 11、在ABC ∆中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,2,1==BD AD ,则=∆∆ABC ADE S S : ▲ .12、 在ABC ∆中,cm BC cm AC AB 8,5===,则这个三角形的重心G 到BC 的距离是▲ .13、如图,ABC ∆中,6,10==AC AB ,D 为BC 上的一点,四边形AEDF 为菱形,则菱形的边长为 ▲ .14、如图,ABC ∆中,点D 、E 分别在AB 、AC 上,且DE ∥BC ,若4=∆ADE S ,3=∆BDE S ,那么 DE ∶BC = ▲ .15、如图,正方形ABCD 的边长为2,,1,==MN EB AE ,线段MN 的两端在CB 、CD 上滑动,当=CM ▲ 时,△AED 与以M 、N 、C 为顶点的三角形相似。
沪科版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列函数关系中,是二次函数的是( )A .在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系B .当距离一定时,火车行驶的时间t 与速度v 之间的关系C .等边三角形的周长c 与边长a 之间的关系D .圆心角为120°的扇形面积S 与半径R 之间的关系2.反比例函数k y x=的图象过点()3,5-,则k 的值为( ) A .15 B .1 15 C .-15 D .3 5- 3.下列各式中,y 是x 的二次函数的是( ) A .21xy x += B .220x y -+= C .21y x= D .243y x -= 4.已知矩形的面积为36cm 2,相邻的两条边长为xcm 和ycm ,则y 与x 之间的函数图像大致是A .B .C .D . 5.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x 元,所获利润为y 元,可得函数关系式为( ) A .21011010y x x =-++ B .210100y x x =-+C .210100110y x x =-++D .21090100y x x =-++ 6.如图,已知经过原点的直线AB 与反比例函数()0k y k x=≠图象分别相交于点A 和点B ,过点A 作AC x ⊥轴于点C ,若ABC 的面积为4,则k 的值为( )A .2B .4C .6D .87.如图,在Rt ABC 中,90ACB ∠=,CD 是AB 边上的高,6AC =,9AB =,则AD =( )A .2B .3C .4D .58.已知函数2y ax ax =+与函数(0)a y a x=<,则它们在同一坐标系中的大致图象是( ) A . B .C .D . 9.如图,已知点()4,2E -,点()1,1F --,以O 为位似中心,把EFO 放大为原来的2倍,则E 点的对应点坐标为( )A .()2,1-或()2,1-B .()8,4-或()8,4-C .()2,1-D .()8,4-10.已知矩形的面积为20,则如图给出的四个图象中,能大致呈现矩形的长y 与宽x 之间的函数关系的是( )A .B .C .D .二、填空题 11.下列各式:()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x=+====-+=-+=+--;其中y 是x 的二次函数的有________(只填序号)12.若113,4A y ⎛⎫- ⎪⎝⎭,25,4B y ⎛⎫- ⎪⎝⎭,31,4C y ⎛⎫ ⎪⎝⎭为二次函数245y x x =+-的图象上三点,则1y ,2y ,3y 的大小关系为________<________<________.13.如图,抛物线2y ax bx c =++与x 轴交于()1,0和()3,0两点,交y 轴与()0,3,当x ________时,0y >.14.若15x y x y -=+,x y =________;若34x y =,则232x y x y+=-________. 15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x )件.若使利润最大,每件的售价应为______元. 16.小颖用几何画板软件探索方程ax 2+bx+c=0的实数根,作出了如图所示的图象,观察得一个近似根为x 1=-4.5,则方程的另一个近似根为x 2=____.(精确到0.1)17.已知C 是AB 的黄金分割点,若AB=4cm ,则AC 的长为___________.18.若直线y =kx 与四条直线x =1,x =2,y =1,y =2围成的正方形有公共点,则k 的取值范围是_________.19.如图,纵截面是一等腰梯形的拦水坝,两腰与上底的和为4m ,底角为60,当坝高为________m 时,纵截面的面积最大.20.如图,已知在ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,//DE BC ,//EF AB ,且:3:8AD AB =,那么:ADE EFC S S =________.三、解答题21.已知:如图,网格中的每个小正方形的边长都是1个单位,请在图中画出一个与格点DEF 相似但相似比不等于1的格点三角形.22.如图,已知ABD ACE ∽,50ABC ∠=,60BAC ∠=,求AED ∠的度数.23.已知,在ABC 中,点D 、E 分别在边AB 、AC 上,连接DE 并延长交BC 的延长线于点F ,连接DC 、BE .且180BDE BCE ∠+∠=,求证:FDC FBE ∽.24.反比例函数()0k y k x=≠过()3,4A ,点B 与点A 关于直线2y =对称,抛物线2y x bx c =-++过点B 和()0,3C .()1求反比例函数的表达式;()2求抛物线的表达式;()3若抛物线2y x bx m =-++在22x -≤<的部分与k y x=无公共点,求m 的取值范围.25.已知AD 为BAC ∠的平分线,EF 为AD 的垂直平分线,求证:2FD FB FC =⋅.26.为测量学校操场上旗杆的高度,某数学活动小组设计如下测量方法:将镜子放在离旗杆()27AB m 的点E 处,然后沿直线BE 后退,使在点D 处恰好看到旗杆顶端A 在镜子中的像与镜子上的标记重合(如图),若 2.4DE m =,观测者的眼睛离地面的高度CD 为1.6m ,求旗杆的高度.参考答案1.D【分析】根据各选项的意思,列出个选项的函数表达式,再根据二次函数定义的条件判定则可.【详解】解:A 、y=mx+b ,当m≠0时(m 是常数),是一次函数,错误;B 、t=sv ,当s≠0时,是反比例函数,错误;C 、C=3a ,是正比例函数,错误;D 、S=13πR 2,是二次函数,正确.故选D .【点睛】本题考查二次函数的定义.2.C【分析】让点的横纵坐标相乘即为反比例函数的比例系数,根据比例系数的符号即可判断反比例函数的两个分支所在的象限.【详解】解:∵反比例函数解析式为y=k x, ∵反比例函数的图象经过点(-3,5),∴k=-3×5=-15,故选C .【点睛】此题主要考查了待定系数法求反比例函数,用到的知识点为:反比例函数的比例系数等于在它上面的点的横纵坐标的积.3.B【分析】一般地,如果y=ax 2+bx+c (a ,b ,c 是常数,a≠0),那么y 叫做x 的二次函数.此题将式子整理成一般形式后,根据二次函数的定义判定即可.【详解】解:A 、整理为y=21-x x,不是二次函数,故A 错误; B 、x 2-y+2=0变形,得y=x 2+2,是二次函数,故B 正确;C 、分母中含自变量,不是二次函数,故C 错误;D 、y 的指数是2,不是函数,故D 错误.故选B .【点睛】本题考查二次函数的定义.4.A【详解】解:根据矩形的面积公式,得xy =36,即()36y x>0x=,是一个反比例函数 故选A5.D【分析】根据总利润=单件利润×数量建立等式就可以得出结论.【详解】解:由题意,得y=(10+x-9)(100-10x),y=-10x2+90x+100.故选D.【点睛】本题考查了销售问题的数量关系的运用,总利润=单件利润×数量的运用,解答时找准销售问题的数量关系是关键.6.B【分析】首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于2,然后由反比例函数y=kx的比例系数k的几何意义,可知△AOC的面积等于12|k|,从而求出k的值.【详解】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=4÷2=2,又∵A是反比例函数y=kx图象上的点,且AC⊥x轴于点C,∴△AOC的面积=12|k|,∴12|k|=2,∵k>0,∴k=4.故选B.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=12|k|.7.C【分析】利用射影定理得到:AC2=AD•AB,把相关线段的长度代入进行解答即可.【详解】解:∵Rt△ABC中,∠ACB=90°,CD是AB边上的高,∴AC2=AD•AB,∵AC=6,AB=9,∴36=9AD,则AD=4.故选C.【点睛】本题考查了射影定理.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.8.B【分析】根据a<0,直接判断抛物线的开口方向,对称轴,双曲线所在的象限,选择正确结论.【详解】解:当a<0时,二次函数y=ax2+ax的图象开口向下,对称轴x=-12;函数y=ax的图象在二、四象限,符合题意的是图象B.故选B.【点睛】主要考查二次函数和反比例函数图象的有关性质,应该熟记且灵活掌握.9.B【分析】E(-4,2)以O为位似中心,按比例尺2:1,把△EFO放大,则点E的对应点E′的坐标是E(-4,2)的坐标同时乘以2或-2.【详解】解:根据题意可知,点E的对应点E′的坐标是E(-4,2)的坐标同时乘以2或-2.所以点E′的坐标为(8,-4)或(-8,4).故选B.【点睛】本题考查了位似变换的知识,注意掌握关于原点成位似的两个图形,若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(-kx,-ky).10.A【解析】由矩形的面积公式可知y=20x,则图象为双曲线.又矩形的长、宽都是正数,故图象在第一象限,故选A.11.②⑤⑥【分析】根据二次函数的定义与一般形式即可求解.【详解】解:y是x的二次函数的有②,⑤,⑥.故答案是:②,⑤,⑥.【点睛】本题考查了二次函数的定义,一般形式是y=ax2+bx+c(a≠0,且a,b,c是常数,x是未知数).12.2y1y3y【分析】此题可根据给出的二次函数判断开口方向向上,对称轴为直线x=-2,再比较图象上三点到对称轴的距离,则距离越大,其纵坐标越大.【详解】解:对二次函数y=x2+4x-5,a=1>0,开口向上,对称轴为直线x=-2.又A、B、C三点到对称轴的距离分别为|-134-(-2)|=54,|-54-(-2)|=34,|14-(-2)|=94,∴y2<y1<y3,故答案是:y2、y1、y3.【点睛】本题考查了二次函数的性质,重点是判断函数的对称轴,由点到对称轴的距离比较出各点纵坐标的大小.13.1<或3x >【分析】写出函数图象x 轴上方部分的x 的取值范围即可.【详解】解:由图可知,x <1或x >3时,y >0.故答案为<1或x >3.【点睛】本题考查了二次函数与不等式,此类题目,利用数形结合的思想求解是解题的关键.14.32 116【分析】根据比例的性质,可得等式,根据等式的性质,可得答案;根据等式的性质,可用x 表示y ,根据分式的性质,可得答案.【详解】 解:由x y x y -+=15,得5x-5y=x+y ,移项,合并同类项,得4x=6y ,两边都除以4y ,得32xy =;由3x=4y ,得 y=34x,3112x 2+1144=333-263242x xx y x x x y x +==-⨯, 故答案为32,116.【点睛】本题考查了比例的性质,利用了比例的性质,等式的性质.15.25【详解】试题分析:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案为25.考点:1.二次函数的应用;2.销售问题.16.2.5【详解】由函数的图象可求出函数的对称轴方程,再根据对称轴与方程两根之间的关系建立起方程,求出未知数的值即可.解:由函数图象可知,此函数的对称轴为x=﹣1,设函数的另一根为x,则=﹣1,解得x=2.5.17.2或6-【解析】【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分)叫做黄金比.【详解】AB==(AC>BC)由题意知:AC= 41)或AC=4-(2)=6-(AC<BC)故本答案为:2或6-【点睛】考查了黄金分割点的概念,能够根据黄金比进行计算.18.12≤k≤2【详解】根据题意结合图形可知,在与该正方形有公共点的直线中,直线l1解析式中的k值最大,直线l2解析式中的k值最小.由图可知,直线l1过点A(1, 2),直线l2过点C(2, 1).将点A的坐标代入解析式y=kx,得21k=⋅,∴k=2.将点C的坐标代入解析式y=kx,得12k=⋅,∴12 k=.∴k的取值范围是12 2k≤≤.故本题应填写:12 2k≤≤.点睛:本题考查了一次函数的图象和性质的相关知识. 在一次函数的解析式中,k的绝对值越大,相应的直线就越靠近y轴,反之则越靠近x轴. 本题考查的一个重点在于利用上述结论确定k的值最大和最小时直线的位置. 另外,通过正比例函数与图象之间的关系确定正比例函数解析式也是本题考查的重点.19.3【分析】设AB=xm,利用x表示出坝高DE和AD、BC的长,利用x表示梯形的面积,然后利用函数的性质即可求解.【详解】解:设AB=x,则AD=4-2x,∵DE⊥BC,∠C=60°,∴在直角△DCE中,DE=CD•sin∠,CE=12CD=12x,则BC=x+AD=x+(4-2x)=4-x,则梯形ABCD的面积y=12(AD+BC)•DE=12(4-x+4-2x)•2x,即y=-4x2,则当4⎝⎭=43时,y取得最大值是,此时y=-4×(43)2×43=4;∴×43.【点睛】本题考查等腰梯形的计算和二次函数等知识,考查求函数的解析式和求函数的最值问题,求最值的问题常用的方法是转化为函数的问题求解.20.9:25【分析】根据平行线分线段成比例定理求出AE:AC=AD:AB=3:8,求出AE:CE=3:5,根据平行线的性质得出∠A=∠EFC,∠AED=∠C,根据相似三角形的判定得出△ADE∽△EFC,根据相似三角形的性质得出即可.【详解】解:∵DE∥BC,AD:AB=3:8,∴AE:AC=AD:AB=3:8,∴AE:CE=3:5,∵DE∥BC,EF∥AB,∴∠A=∠EFC,∠AED=∠C,∴△ADE ∽△EFC , ∴ADE EFC S S ∆∆=(AE CF )2=(35)2=925, 故答案为9:25.【点睛】本题考查了相似三角形的性质和判定,平行线分线段成比例定理的应用,能灵活运用定理进行推理是解此题的关键,注意:相似三角形的面积之比等于相似比的平方.21.见解析.【解析】【分析】利用相似三角形的性质,对应边的相似比相等,对应角相等,可以让各边长都放大一倍,得到新三角形.本图形的答案不唯一,只要是相似三角形,都在格点上就正确.【详解】解:ABD 就是所求.【点睛】本题主要考查了相似三角形的画法,注意做这类题时的关键是对应边相似比相等,对应角相等.22.70AED ∠=.【分析】根据三角形内角和定理求出∠ACB=70°,根据相似三角形的性质得出AB AC =AD AE ,∠BAD=∠CAE ,求出AB AD =AC AE,∠BAC=∠DAE ,推出△BAC ∽△DAE ,根据相似三角形的性质得出∠AED=∠ACB 即可.【详解】解:∵50ABC ∠=,60BAC ∠=,∴18070ACB ABC BAC ∠=-∠-∠=,∵ABD ACE ∽, ∴AB AD AC AE=,BAD CAE ∠=∠, ∴AB AC AD AE =,BAD DAC CAE DAC ∠+∠=∠+∠, ∴BAC DAE ∠=∠,∴BAC DAE ∽,∴AED ACB ∠=∠,∴70AED ∠=.【点睛】本题考查了相似三角形的性质和判定,三角形的内角和定理的应用,解此题的关键是求出△BAC ∽△DAE .23.证明见解析.【分析】首先由∠BDE+∠BCE=180°,∠ECF+∠BCE=180°,可得∠BDE=∠ECF ,又由∠F 是公共角,即可证得△ECF ∽△BDF ,根据相似三角形的对应边成比例,可得EF :BF=CF :DF ,继而证得:△FDC ∽△FBE .【详解】证明:∵180BDE BCE ∠+∠=,180ECF BCE ∠+∠=,∴BDE ECF ∠=∠,∵F ∠是公共角,∴ECF BDF ∽,∴::EF BF CF DF =,即::EF CF BF DF =,∵F ∠是公共角,∴FDC FBE ∽.【点睛】此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.24.(1)12y x=;(2)223y x x =-++;(3)m 的范围:26m <≤, 【分析】 (1)将点(3,4)代入反比例函数的解析式即可求出k 的值.(2)求出点B 的坐标,然后将B 与C 的坐标代入即可求出抛物线的解析式即可求出b 与c 的值.(3)令x=2和-2代入反比例函数中求出相应的点坐标,然后将两点的坐标代入y=-x2+2x+m 中求出m 的值【详解】解:()1∵反比例函数k y x =过()3,4A , ∴12k =, ∴12y x= ()2∵点B 与点A 关于直线2y =对称,∴()3,0B .∵抛物线2y x bx c =-++过点B 和()0,3C∴9303b c c -++=⎧⎨=⎩∴23b c =⎧⎨=⎩∴223y x x =-++()3反比例函数的解析式:12y x= 令2x =-时,6y =-,即()2,6--令2x =时,6y =,即()2,6当22y x x m =-++过点()2,6--时,2m = 当当22y x x m =-++过点()2,6时,6m = ∴22y x x m =-++在22x -≤<的部分与12y x=无公共点时,此时m 的范围:26m <≤,本题考查二次函数的综合问题,解题的关键是求出相关点的坐标,然后利用待定系数法求出系数的值,本题属于中等题型.25.证明见解析.【分析】要证明结论成立,只要证明△AFC ∽△BFA 即可,根据题目中的条件,可以找到两个三角形相似的条件,从而可以解答本题.【详解】证明:连接AF ,∵AD 是角平分线,∴BAD CAD ∠=∠,又∵EF 为AD 的垂直平分线,∴AF FD =,DAF ADF ∠=∠,∴DAC CAF B BAD ∠+∠=∠+∠,∴CAF B ∠=∠,∵AFC AFC ∠=∠,∴ACF BAF ∽,即CF AF AF BF=, ∴2AF CF BF =⋅,即2FD CF BF =⋅.【点睛】本题考查相似三角形的性质、线段垂直平分线的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似解答.26.旗杆AB 的高度是18 m .【分析】先得出△ABE ∽△EDC ,再由相似三角形的对应边成比例即可得出AB 的值.解:在Rt △ABE 和Rt △CED 中,∵∠ABE=∠CDE=90°,∠AEB=∠CED ,∴△ABE ∽△CED . ∴AB CD =BE ED. ∵BE=27m ,DE=2.4m ,CD=1.6m , ∴1.6AB =272.4, ∴AB=18.答:旗杆AB 的高度是18 m .【点睛】本题考查的是相似三角形在实际生活中的应用,熟知相似三角形的对应边成比例是解答此题的关键.。
一、选择题1.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .82.下列命题的逆命题是真命题的是( ) A .等边三角形是等腰三角形 B .若22ac bc >,则a b > C .成中心对称的两个图形全等 D .有两边相等的三角形是等腰三角形3.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .4.已知等边△ABC 的边长为8,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是( )A .2B .4C .23D .不能确定5.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5-B .()3,5-C .()3,5D .()3,5--6.如图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的12,如图②,移动正方形A 的位置,使正方形B 的一个顶点与正方形A 的对称中心重合,则重叠部分面积是正方形B 面积的( )A .12B .14C .16D .187.已知关于x 的二次函数y=(x-h )2+3,当1≤x≤3时,函数有最小值2h ,则h 的值为( ) A .32B .32或2 C .32或6 D .32或2或6 8.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .3C .6D .429.二次函数y =ax 2+bx+c (a >0)的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( ) A .当n <0时,m <0 B .当n >0时,m >x 2 C .当n <0时,x 1<m <x 2D .当n >0时,m <x 110.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a bx a+=-其中正确的有( )A .1个B .2个C .3个D .4个 11.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=12.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m <B .3mC .3m <且2m ≠D .3m 且2m ≠13.下列方程是关于x 的一元二次方程的是( ) A .212x x x-=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++=14.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019二、填空题15.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.16.已知关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,则代数式a 2﹣ab +b 2的最小值为_____.17.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________.18.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______. 19.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____. 20.将抛物线223y x x =---向右平移三个单位,再绕原点O 旋转180°,则所得抛物线的解析式____.三、解答题21.如图,己知点()2,4A ,()1,1B ,()3,2C .(1)将MBC 绕点O 逆时针旋转90°得111A B C △,画出111A B C △,并写出点C 的对应点1C 的坐标为_____;(2)画出ABC 关于原点成中心对称的图形222A B C △,并写出点A 的对称点2A 的坐标为______.22.如图,点O 是等边△ABC 内一点,∠AOB =110°,∠BOC =α.将△BOC 绕点C 顺时针旋转60°得△ADC ,连接OD . (1)求证:△DOC 是等边三角形;(2)当AO =5,BO =4,α=150°时,求CO 的长; (3)探究:当α为多少度时,△AOD 是等腰三角形.23.新华书店为满足广大九年级学生的需求,订购《走进数学》若干本,每本进价为16元. 根据以往经验:当销售单价是20元时,每天的销售量是200本,销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于25%且不高于50%. (1)请直接写出书店销售《走进数学》每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围;(2)当销售单价定为多少元时,每天的利润最大,最大利润是多少?24.某公司销售一种进价为20元/个的计算器,其销售量y (万个)与销售价格x (元/个)的变化满足1810y x =-+;同时,销售过程中的其他开支(不含进价)总计40万元.(1)求出该公司销售这种计算器的净得利润z (万元)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(2)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元? 25.设,a b 是一个直角三角形的两条直角边的长,且()()2222112a b ab +++=,求这个直角三角形的斜边长c 的值.26.已知m 是方程220x x --=的一个实数根,求代数式22()(1)m m m m--+的值. 对于代数式2ax bx c ++,若存在实数n ,当x=n 时,代数式的值也等于n ,则称n 为这个代数式的不变值. 例如:对于代数式2x ,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值. 在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A=0. (1)代数式22x -的不变值是________,A=________. (2)已知代数式231x bx -+,若A=0,求b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由于将线段OP 绕点O 逆时针旋转60°得到线段OD ,当点D 恰好落在BC 上时,易得:△ODP 是等边三角形,根据旋转的性质可以得到△AOP ≌△CDO ,由此可以求出AP 的长. 【详解】解:当点D 恰好落在BC 上时,OP=OD ,∠A=∠C=60°,如图.∵∠POD=60°∴∠AOP+∠COD=∠COD+∠CDO=120°,∴∠AOP=∠CDO,∴△AOP≌△CDO,∴AP=CO=6.故选:C.【点睛】此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.2.D解析:D【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据等腰三角形的性质、不等式的性质、中心对称的性质等进行判断.【详解】A、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误;B、逆命题是:如果a>b,则ac2>bc2,是假命题,故本选项错误;C、逆命题为:全等的两个图形成中心对称,是假命题,故本选项错误;D、逆命题为:等腰三角形是有两边相等的三角形,故本选项正确;故选:D【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,并熟悉课本中的性质定理.3.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,但不是中心对称图形,故此选项正确;B、是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.C解析:C【分析】依据旋转的性质,即可得到∠BCQ=120°,当DQ⊥CQ时,DQ的长最小,再根据勾股定理,即可得到DQ的最小值.【详解】如图,由旋转可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵点D是AC边的中点,∴CD=4,当DQ⊥CQ时,DQ的长最小,此时,∠CDQ=30°,∴CQ=1CD=2,2∴22-=,4223∴DQ的最小值是3故选:C.【点睛】此题考查旋转的性质,解题关键在于掌握对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.5.C解析:C【解析】分析:根据关于原点对称的点的坐标特点解答.详解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选C.点睛:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.6.D解析:D【分析】设正方形B的面积为S,正方形B对角线的交点为O,标注字母并过点O作边的垂线,根据正方形的性质可得OE=OM,∠EOM=90°,再根据同角的余角相等求出∠EOF=∠MON,然后利用“角边角”证明△OEF和△OMN全等,根据全等三角形的面积相等可得阴影部分的面积等于正方形B的面积的14,再求出正方形B的面积=2正方形A的面积,即可得出答案.【详解】解:设正方形B对角线的交点为O,如图1,设正方过点O作边的垂线,则OE=OM,∠EOM=90°,∵∠EOF+∠EON=90°,∠MON+∠EON=90°,∴∠EOF=∠MON,在△OEF和△OMN中EOF MONOE0MOEF OMN90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩,∴△OEF≌△OMN(ASA),∴阴影部分的面积=S四边形NOEP+S△OEF=S四边形NOEP+S△OMN=S四边形MOEP=14S正方形CTKW,即图1中阴影部分的面积=正方形B的面积的四分之一,同理图2中阴影部分烦人面积=正方形A的面积的四分之一,∵图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的12,∴正方形B的面积=正方形A的面积的2倍,∴图2中重叠部分面积是正方形B面积的18,故选D.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.7.C解析:C【分析】依据二次函数的增减性分1≤h≤3、h<1、h>3三种情况,由函数的最小值列出关于h的方程,解之可得. 【详解】∵()2=+3y x h -中a=1>0,∴当x <h 时,y 随x 的增大而减小;当x >h 时,y 随x 的增大而增大; ①若1≤h≤3,则当x=h 时,函数取得最小值2h ,即3=2h , 解得:h=32; ②若h <1,则在1≤x≤3范围内,x=1时,函数取得最小值2h , 即()2132h h -+=, 解得:h=2>1(舍去);③若h >3,则在1≤x≤3范围内,x=3时,函数取得最小值2h , 即()2332h h -+=, 解得:h=2(舍)或h=6, 综上,h 的值为32或6, 故选C . 【点睛】本题主要考查二次函数的最值,熟练掌握分类讨论思想和二次函数的增减性是解题的关键.8.A解析:A 【分析】结合已知条件先建立适当的坐标系,然后设出解析式,利用点的坐标求得解析式,再将3y =-代入解析式求得相应的x 的值,进而求得答案.【详解】解:以拱顶为坐标原点建立坐标系,如图:∴设抛物线解析式为:2y ax = ∵观察图形可知抛物线经过点()2,2B -∴222a -=⋅ ∴12a =-∴抛物线解析式为:212y x =-∴当水位下降1米后,即当213y =--=-时,有2132x -=- ∴16x =,26x =-(不合题意舍去) ∴水面的宽度为:26m . 故选:A 【点睛】本题考查了二次函数的应用,根据已知条件建立坐标系从而求得二次函数解析式是解决问题的关键.9.C解析:C 【分析】首先根据a 判断二次函数图象的开口方向,再确定对称轴,根据图象和二次函数的性质分析得出结论. 【详解】 解:∵a >0,∴开口向上,以对称轴在y 轴左侧为例可以画图二次函数y =ax 2+bx+c 的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2, 无法确定x 1与x 2的正负情况,∴当n <0时,x 1<m <x 2,但m 的正负无法确定,故A 错误,C 正确; 当n >0时,m <x 1 或m >x 2,故B ,D 错误,均不完整 故选:C .【点睛】本题主要考查二次函数图象与x 轴交点的问题,熟练掌握二次函数图象及图像上的坐标特征是解题的关键.10.B解析:B 【分析】根据二次函数的图象与性质逐项判定即可求出答案.【详解】解:①由抛物线的对称轴可知:12b a -< 由抛物线的图象可知:a >0,∴-b <2a ,∴2a+b >0,故①正确;②当x=1时,y=a+b+c=0,当y=ax 2+bx+c=0,∴x=1或x=m ,∴当m≠1时,a+b=am 2+bm ,故②错误;③由图象可知:x=-1,y=2,即a-b+c=2,∵a+b+c=0,∴b=-1,∴c=1-a∴a+c=a+1-a=1<2,故③错误;④由于a+b=-c=a-1,∵c <0,∴a-1>0,∴a >1,∴0<11a< ∵x 0=111,a a a--=-+ ∴-1<-1+1a <0 ∴-1<x 0<0,故④正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是应用数形结合思想解题.11.A解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.12.D解析:D【分析】根据一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac 的意义得到m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,然后解不等式组即可得到m 的取值范围.【详解】解:∵关于x 的一元二次方程(m-2)x 2-2x+1=0有实数根,∴m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,解得m≤3,∴m 的取值范围是 m≤3且m≠2.故选:D .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 13.C解析:C【分析】根据一元二次方程的定义逐项判断即可得.【详解】A 、方程212x x x -=中的1x不是整式,不满足一元二次方程的定义,此项不符题意; B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意;C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意;D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;故选:C .【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.14.A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 二、填空题15.【分析】首先求出点A 和点B 的坐标然后求出解析式分别求出直线过抛物线顶点时m 的值以及直线过原点时m 的值结合图形即可得到答案【详解】令解得:或则A (20)B (-20)∵与关于y 轴对称:顶点为(12)∴的解析:02m <<【分析】首先求出点A 和点B 的坐标,然后求出2C 解析式,分别求出直线y m =过抛物线顶点时m的值以及直线y m =过原点时m 的值,结合图形即可得到答案. 【详解】令2240y x x =-+=,解得:0x =或2x =,则A (2,0),B (-2,0),∵1C 与2C 关于y 轴对称,1C :()2224212y x x x =-+=--+,顶点为(1,2), ∴2C 的解析式为()2221224y x x x =-++=--(20x -≤≤),顶点为(-1,2),当直线y m =过抛物线顶点时,它与1C ,2C 共有2个不同的交点,此时2m =;当直线y m =过原点时,它与1C ,2C 共有3个不同的交点,此时0m =; ∴当02m <<时,直线y m =与1C ,2C 共有4个不同的交点. 故答案为:02m <<.【点睛】本题考查了抛物线与x 轴的交点、二次函数的图象与几何变换、一次函数与二次函数的关系,数形结合是解题的关键.16.【分析】由韦达定理得出ab 与m 的关系式由一元二次方程的根与判别式的关系得出m 的取值范围再对代数式a2﹣ab+b2配方并将a+b 和ab 整体代入化简然后再配方结合m 的取值范围可得出答案【详解】∵关于x 的 解析:916【分析】由韦达定理得出a ,b 与m 的关系式、由一元二次方程的根与判别式的关系得出m 的取值范围,再对代数式a 2﹣ab +b 2配方并将a +b 和ab 整体代入化简,然后再配方,结合m 的取值范围可得出答案.【详解】∵关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,∴a +b =2m +1,ab =m 2﹣1,△≥0,∴△=[﹣(2m +1)]2﹣4×1×(m 2﹣1)=4m 2+4m +1﹣4m 2+4=4m +5≥0,∴m ≥54-. ∴a 2﹣ab +b 2 =(a +b )2﹣3ab=(2m +1)2﹣3(m 2﹣1)=4m 2+4m +1﹣3m 2+3=m 2+4m +4=(m +2)2,∴a 2﹣ab +b 2的最小值为:2592416⎛⎫-+= ⎪⎝⎭. 故答案为:916. 【点睛】本题考查了一元二次方程根与系数的关系,以及利用二次函数的性质求解代数的最值,灵活利用韦达定理及根的判别式,是解决本题的关键,熟悉用函数的思想解决最值问题也是关键点. 17.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3,该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式. 18.8【分析】利用一元二次方程根与系数的关系可列出两根之和及两根之积的值再对其进行变形即可求解【详解】由题可得:∴故答案为:8【点睛】本题考查一元二次方程根与系数的关系进行变形求值熟记结论且灵活变形是解 解析:8【分析】利用一元二次方程根与系数的关系,可列出两根之和及两根之积的值,再对其进行变形即可求解.【详解】 由题可得:1212132x x x x +==,, ∴()222212121212329182x x x x x x +=+-=-⨯=-=, 故答案为:8.【点睛】 本题考查一元二次方程根与系数的关系进行变形求值,熟记结论且灵活变形是解题关键. 19.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.20.【分析】先求出抛物线的顶点坐标再根据向右平移横坐标加求出平移后的抛物线的顶点坐标再根据旋转的性质求出旋转后的顶点坐标然后根据平移旋转只改变图形的位置不改变图形的大小和形状利用顶点式解析式写出即可【详 解析:2(2)2y x =++【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加求出平移后的抛物线的顶点坐标,再根据旋转的性质求出旋转后的顶点坐标,然后根据平移、旋转只改变图形的位置不改变图形的大小和形状利用顶点式解析式写出即可.【详解】223y x x =---()22113x x =-+++-2(1)2x =-+-,所以,抛物线的顶点坐标为(-1,-2).∵向右平移三个单位,∴平移后的抛物线的顶点坐标为(2,-2).∵再绕原点O 旋转180°,∴旋转后的抛物线的顶点坐标为(-2,2),且开口向上∴所得抛物线解析式为2(2)2y x =++.故答案为:2(2)2y x =++.【点睛】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便. 三、解答题21.(1)如图见解析, 1C (-2,3);(2)如图见解析, 2A (-2,-4).【分析】(1)依据△ABC 绕点O 按逆时针方向旋转90°,即可得到111A B C △;(2)依据中心对称的性质,即可画出△ABC 关于原点成中心对称的图形222A B C △.【详解】(1)如图,111A B C △即为所求,点1C 的坐标为(-2,3);(2)如图,222A B C △即为所求,点2A 的坐标为(-2,-4).【点睛】本题主要考查了利用旋转变换作图,解决本题的关键是掌握旋转的性质.旋转作图有自己独特的特点,旋转角度、旋转方向、旋转中心不同,位置就不同,但得到的图形全等. 22.(1)见解析;(2)CO=3;(3)α=125°、α=110°或α=140°【分析】(1)由△BOC ≌△ADC ,得出CO =CD ,再由∠OCD =60°,得出结论;(2)利用等边三角形的性质以及直角三角形的定义,即可判断△AOD 为直角三角形,利用勾股定理即可得出CO 的长;(3)因为△AOD 是等腰三角形,可得①∠AOD =∠ADO 、②∠ODA =∠OAD 、③∠AOD =∠DAO ;若∠AOB =110°,∠COD =60°,∠BOC =190°−∠AOD ,∠BOC =∠ADC =∠ADO +∠CDO 由①∠AOD =∠ADO 可得α=125°,由②∠ODA =∠OAD 可得α=110°,由③∠AOD =∠DAO 可得α=140°.【详解】(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴△BOC ≌△ADC ,∠OCD =60°,∴CO =CD .∴△COD 是等边三角形;(2)∵△ADC ≌△BOC ,∴DA =OB =4,∵△COD 是等边三角形,∴∠CDO =60°,又∠ADC =∠α=150°,∴∠ADO =∠ADC ﹣∠CDO =90°,∴△AOD 为直角三角形.又AO =5,AD =4,∴OD =3,∴CO =OD =3;(3)若△AOD 是等腰三角形,所以分三种情况:①∠AOD =∠ADO②∠ODA =∠OAD③∠AOD =∠DAO ,∵∠AOB =110°,∠COD =60°,∴∠BOC =360°﹣110°﹣60°﹣∠AOD =190°﹣∠AOD ,而∠BOC =∠ADC =∠ADO+∠CDO ,由①∠AOD =∠ADO 可得∠BOC =∠AOD+60°,求得α=125°;由②∠ODA =∠OAD 可得∠BOC =150°12-∠AOD 求得α=110°;由③∠AOD =∠DAO 可得∠BOC =240°﹣2∠AOD ,求得α=140°;综上可知α=125°、α=110°或α=140°.【点睛】此题主要运用旋转的性质、等边三角形的判定、勾股定理等知识,掌握分类讨论的思想是解题关键.23.(1)()104002024y x x =-+≤≤;(2)当销售单价定为24元时,利润最大,为1280元.【分析】(1)根据题意易得每天减少的销量为()1020x -本,然后问题可求解;(2)设每天的利润为w 元,根据题意可得()()21610400105606400w x x x x =--+=-+-,然后根据二次函数的性质可进行求解.【详解】解:(1)由题意得:()200102010400y x x =--=-+,∵书店要求每本书的利润不低于25%且不高于50%,∴1625161650x ⨯≤-≤⨯%%,解得:2024x ≤≤,∴每天的销售量y (本)与销售单价x (元)之间的函数关系式为()104002024y x x =-+≤≤;(2)设每天的利润为w 元,根据题意得:()()()22161040010560640010281440w x x x x x =--+=-+-=--+,∵100a =-<,开口向下,对称轴为直线28x =,∴当2024x ≤≤时,y 随x 的增大而增大,∴当x=24时,利润最大,最大值为:()221028144010414401280w x =--+=-⨯+=(元);答:当销售单价定为24元时,每天的利润最大,最大利润是1280元.【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的性质及应用是解题的关键.24.(1)211020010z x x =-+-,当销售价格50元/个时,最大利润为50万元;(2)4060x ≤≤,40.【分析】 (1)总净利润=单件利润×销售量-40,首先求出单件利润(x-20),然后乘以销售量y ,将解析式化为顶点式即可求解;(2)令(1)中解析式的值为40,然后作出函数图像示意图,根据示意图即可求解x 的取值范围,然后结合销售量和销售价的关系即可判断x 的值.【详解】(1)根据题意得:()2040z x y =--=()12084010x x ⎛⎫--+- ⎪⎝⎭ =211020010x x -+- 将其化为顶点式:211020010x x -+- =()2110020010x x --- =()2150250020010x ⎡⎤----⎣⎦ =()21505010x --+ ∴销售价格定为50元/个时净得利润最大,最大值是50万元. (2)当公司要求净得利润为40万元时,即()21x 50504010--+= 解得:x 1=40,x 2=60如图,通过观察函数y =()21505010x --+的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60 而y 与x 的函数关系式为:1810y x =-+,y 随x 的增大而减少, 因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.【点睛】本题考查了二次函数的实际应用,在本类题型中,将二次函数的一般式化为顶点式是解题的关键.25【分析】对题目中所给的条件进行变形,利用整体思想求解出22a b +的值,从而结合勾股定理求解斜边长即可.【详解】由题意得()()22222120a b a b +++-=, ()()2222340a b a b +∴+-+=223a b ∴+=或224a b +=-(不合题意,舍去)则2223c a b =+=c ∴=负舍).【点睛】本题考查解一元二次方程及勾股定理的应用,能够准确从条件中求解出直角边的平方和是解题关键.26.(1)-1,2;3;(2)11b =-+21b =--【分析】(1)根据不变值的定义可得出关于x 的一元二次方程,解之即可求出x 的值,再作差后可求出A 的值;(2)由A=0可得出方程23(1)1x b x -++=0有两个相等的实数根,进而可得出△=0,解答即可得出结论.【详解】解:(1)根据题意得,220x x --=,解得,11x =-,22x =∴A=2-(1)=2+1=3,故答案为:-1,2;3;(2)根据题意得,23(1)1x b x -++=0有两个相等的实数根,∴△=[- (b+1)]2-4×3×1=0∴11b =-+21b =--【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.。
期中测试一、选择题1、二次函数的最小值是A.1 B.-1 C.3 D.-32、将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为A. B.C. D.3、二次函数y=x2-2x-3的图象如图1.当y<0时,自变量x的取值范围是( )A.-1<x<3 B.x<-1 C.x>3 D.x<-1或x>34、已知二次函数的图象(0≤x≤3)如图2.关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3 B.有最小值-1,有最大值0C.有最小值-1,有最大值3 D.有最小值-1,无最大值5、抛物线的解析式为y=(x-2)2+1,则抛物线的顶点坐标是( )A.(-2,1) B.(2,1) C.(2,-1) D.(1,2)6、把160元的电器连续两次降价后的价格为y元,若平均每次降价的百分率是x,则y与x的函数关系式为( ) A.y=320(x-1) B.y=320(1-x) C.y=160(1-x2) D.y=160(1-x)27、把长度为4m的铝线材料按黄金分割切割后,其中较长的一段长度是()A.、B.、C.、D.、8、两个三角形周长之比为9∶5,则面积比为()A.9∶5 B.81∶25 C.3∶ D.不能确定9、如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF︰FC等于()A.3︰2B.3︰1C.1︰1D.1︰210、如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数图象大致是A. B. C.D.二、填空题11、有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线;乙:与轴相交的两个交点的横坐标都是整数;丙:与轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数的表达式__________________.12、已知二次函数,下列说法中错误的是________.(把所有你认为错误的序号都写上)①当时,随的增大而减小;②若图象与轴有交点,则;③当时,不等式的解集是;④若将图象向上平移1个单位长度,再向左平移3个单位长度后过点,则.13、如图,在中,,,,,则.14、如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是________.15、如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是.(填写所有正确结论的序号)三、作图题16、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后D的对应点D2的坐标.四、简答题17、已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.18、已知:,求的值19、在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围.20、如图,在正方形中,分别是边上的点,连接并延长交的延长线于点(1)求证:;(2)若正方形的边长为4,求的长.21、九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数关系式.(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4 800元?请直接写出结果.22、已知:如图,在△中,∥,点在边上,与相交于点,且∠.求证:(1)△∽△;(2)23、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线的“抛物线三角形”是直角三角形,求的值;(3)若抛物线与x轴交与原点O和点B,抛物线的顶点坐标为A,△是的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.参考答案一、选择题1、A2、 C3、A4、D5、B6、D7、A8、B9、D 解析:∵AD∥BC,∴,,∴△DEF∽△BCF,∴.又∵,∴,∴10、.D二、填空题11、本题答案不唯一,只要符合题意即可,如12、7.513、③解析:①因为函数图象的对称轴为,又抛物线开口向上,所以当时,随的增大而减小,故正确;②若图象与轴有交点,则Δ,解得,故正确;③当时,不等式的解集是,故不正确; ④因为抛物线,将图象向上平移1个单位长度,再向左平移3个单位长度后为,若过点,则,解得.故正确.只有③不正确.14、14415、①③④解:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴=,∵点E是AB的中点,∴AE=BE,∴=,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=DH,在△AEF和△HEF中,,∴△AEF≌△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若=,则cot∠BCE=====2×=,∴∠BCE=30°,∴∠DCF=∠ECF=30°,在△CEF和△CDF中,,∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故答案为:①③④.三、作图题16、解:(1)如图所示:△A1B1C1,即为所求,C1点坐标为:(3,2);(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(﹣6,4);(3)如果点D(a,b)在线段AB上,经过(2)的变化后D的对应点D2的坐标为:(2a,2b).四、简答题17、解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),∴抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,∴抛物线的顶点坐标为(1,4).18、7:3:819、(1)当k=-2时,点A(1,-2),(2分)设反比例函数的解析式为y=,∵点A在反比例函数的图象上,∴将A点坐标代入上式,可得m=-2,∴y=-.(6分)(2)要使反比例函数满足y随着x的增大而增大,只需k<0.(8分)而对于二次函数y=kx2+kx-k,其对称轴为x=-,要使二次函数满足y随着x的增大而增大,在k<0的情况下,即当x<-时,才能使得y随着x的增大而增大.综上所述,需满足的条件是k<0,且x<-.(12分)20、(1)证明:在正方形中,,.∵∴,∴,∴.(2)解:∵∴.由(1)知,∴,∴.由∥,得,∴△∽△,∴,∴.21、解:(1)当1≤x<50时,y=(x+40-30)(200-2x)=-2x2+180x+2 000;当50≤x≤90时,y=(90-30)(200-2x)=-120x+12 000.综上,y=(2)当1≤x<50时,y=-2x2+180x+2 000=-2(x-45)2+6 050.∵a=-2<0,∴当x=45时,y有最大值,最大值为6 050元.当50≤x≤90时,y=-120x+12 000,∵k=-120<0,∴y随x的增大而减小.∴当x=50时,y有最大值,最大值为6 000元.综上可知,当x=45时,当天的销售利润最大,最大利润为6 050元.(3)当1≤x<50时,由,解得20≤x≤70,故20≤x<50;当50≤x≤90时,由,解得x≤60,故50≤x≤60.综上可知,20≤x≤60.所以该商品在销售过程中,共有41天每天销售利润不低于4 800元22、证明:(1)∵,∴∠.∵∥,∴,.∴.∵,∴△∽△.(2)由△∽△,得,∴.由△∽△,得.∵∠∠,∴△∽△.∴.∴.∴.23、(1)“抛物线三角形”一定是等腰三角形; (1)分(2)(图略)∵的“抛物线三角形”是直角三角形,∴此“物线三角形”是等腰直角三角形,抛物线的顶点坐标为(b,),把y=0代入得解得x=0或b根据题意得=∴b=0或2(0舍去)∴b=2 ……………………3分(3)存在.当b<0时,作AH⊥OB于H点,如图,把y=0代入y=x2+bx得解得x1=0,x2=-b′,∴B点坐标为(-b′,0),∴A点坐标为()∵矩形ABCD以原点O为对称中心,∴OA=OB=OC=OD,∴△OAB为等边三角形,∴AH=解得b1′=0,b2∴A点坐标为(,-3),B点坐标为(,0)∴C点坐标为(),D点坐标为(设过O、C、D三点的抛物线的解析式为y=ax(x-2),把C(,3)代入得a=-1,∴所求抛物线的表达式为y=-x2+2……………………5分同理,当b>0时,y=-x2-2……………………3分。
第2题图田家炳中学九年级上学期数学期中卷一、选择题:(本大题共6题,每题4分,满分24分) 1. 已知Rt △ABC 中,∠A =90º,则cb是∠B 的( ) A .正切; B .余切; C .正弦 ; D .余弦;2. 如图,E 是平行四边形ABCD 的边BA 延长线上的一点,CE 交AD 于点F ,下列各式中错误..的是( )A . AE EF AB CF = ; B .BC AF BE AE =; C . AE AF AB DF = ; D . AE AF AB BC=3. 已知抛物线2)1(2++=x m y 的顶点是此抛物线的最高点,那么m 的取值范围是( ) A . 0≠m ; B. 1-≠m ; C. 1->m ; D. 1-<m .4. 已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b的是A. a ∥c ,b ∥c ;B. a =c 2,b =c ;C. a=b 5-;=5. 根据你对相似的理解,下列命题中,不.正确的是( ). A. 三边之比为2:3:4的两个三角形一定相似 B. 三内角之比为2:3:4的两个三角形一定相似 C. 两邻边之比为2:3的两个直角三角形一定相似 D. 两邻边之比为2:3的两个矩形一定相似6. 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE //BC ,AD ∶BD = 1∶2,那么S △DBE ∶S △CBE 等于( )A. 1∶2;B. 1∶3;C. 1∶4;D. 1∶6.二、填空题:(本大题共12题,每题4分,满分48分)7. 已知线段b 是线段a 、c 的比例中项,且a =9,c =4,那么b = . 8. 若23a c b d ==(其中0b d +≠),则a cb d+=+__________. 9. 两个相似三角形周长的比为2:3,则其对应的面积比为________.10. 为了测量铁塔的高度,在离铁塔底部a 米的地方,用测角仪测得塔顶的仰角为α,已知测角仪的高度为h 米,那么铁塔的高度为 _____________米.11. 如果将抛物线228y x =-+向右平移a 个单位后,恰好过点(3,6),那么a 的值为_________.(第6题图)DE FCBA12. 定义[a ,b ,c]为函数c bx ax y ++=2的特征数,若特征数为[2m ,1﹣m ,﹣1﹣m]的二次函数经过原点,则m=____________13. 已知G 是ABC △的重心,设b AC a AB ==,,用向量b a , 表示向量AG ,则AG = . 14. 如果在△ABC 中,AB =AC = 3,BC =2,那么顶角的正弦值为 .15. 如图,已知矩形ABCD ,AB=1,又ABEF 是正方形,若矩形CDEF 与矩形ABCD 相似,则AD 长为: 。
2015学年第一学期期中考试九年级数学试卷(考试时间:100分钟满分:150分)命题者:七宝二中张家楣题号一二三四五总分19 20 21 22 23 24 25 得分一、选择题(本大题共6小题,每题4分,共24分)1、已知点C 是线段AB 的黄金分割点BC AC ,4AB ,则线段AC 的长是()(A )252;(B )526;(C )15;(D )53.2、已知E 为ABCD 的边BC 延长线上一点,AE 交CD 于F ,BC ﹕CE =5﹕3,则DF ﹕CD 为……………………………()(A )3﹕8;(B )8﹕3;(C )5﹕8;(D )8﹕5.3、如图,DE ∥BC , EF ∥AC , 则下列比例式中不正确的是( ) (A )AB AD AC AE ;(B )FC BF EC AE ;(C )FC BF BD AD ;(D )FC BF AD BD . 4、若0a 、0b 都是单位向量,则有……………………………( ) (A )00b a ;(B )00b a ;(C )00b a ;(D )00b a .5、下面命题中,假命题是………………………()(A )有一个角是100的两个等腰三角形相似;(B )全等三角形都是相似三角形;(C )两边对应成比例,且有一个角相等的两个三角形相似;(D )两条直角边对应成比例的两个直角三角形相似.6、在RtABC 中,AB CD ACB ,90于D 且BC :AC 2∶3,则BD ∶AD ()(A )2∶3;(B )4∶9;(C )2∶5;(D )2∶3. 二、填空题(本大题共12小题,每题4分,共48分)7、如果32x y ,那么y y x 3______▲_______ 学校_______________________班级__________学号_________姓名______________……………………………密○…………………………………封○…………………………………○线…………………………F。
沪科版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案) 1.二次函数2y x =的对称轴是 A .直线y 1= B .直线x 1=C .y 轴D .x 轴2.若34y x =,则x yx+的值为( ) A .1B .47C .54D .743.已知二次函数y=(x-1)2-3,则此二次函数( ) A .有最大值1 B .有最小值1 C .有最大值-3 D .有最小值-34.将抛物线2y x 向右平移2个单位,再向下平移1个单位,则平移后抛物线的顶点坐标是( ) A .(2,1)B .(2,-1)C .(-2,-1)D .(-2,1)5.如图,线段,BD CE 相交于点,//A DE BC .若4,2, 1.8AB AD AE ===,则AC 的长为( )A .3B .3.2C .3.6D .46.如图,在平面直角坐标系中有()()1,1,3,1A B 两点,如果抛物线()20y ax a =>与线段AB 有公共点,那么a 的取值范围是( )A .1a ≥B .01a <≤C .109a <≤D .119a ≤≤7.如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是( )A .13B .23C .34D .458.心理学家发现:课堂上,学生对概念的接受能力s 与提出概念的时间t (单位:min )之间近似满足函数关系s =at 2+bt +c (a ≠0),s 值越大,表示接受能力越强.如图记录了学生学习某概念时t 与s 的三组数据,根据上述函数模型和数据,可推断出当学生接受能力最强时,提出概念的时间为( )A .8minB .13minC .20minD .25min9.在平面直角坐标系中,点P 的坐标()0,2,点Q 的坐标为391,44()(t t t ---为实数),当PQ 长取得最小值时,t 的值为( )A .75-B .125-C .3D .410.一次函数y =kx +b 的图象与反比例函数()0m y x x=>的图象交于A (2,1),B (12,n )两点,则n ﹣k 的值为( ) A .2 B .﹣2 C .6 D .﹣6二、填空题11.如图,在ABC 中,//DE BC ,若12AD BD =,则DEBC=_____.12.某水果店销售一批水果,平均每天可售出40kg ,每千克盈利4元,经调查发现,每千克降价0.5元,商店平均每天可多售出10kg 水果,则商店平均每天的最高利润为______________ 元13.如图,在x 轴上方,平行于x 轴的直线与反比例函数1k y x =和2ky x=的图象分别交于A B 、两点,连接OA OB 、.若AOB 的面积为6,则21k k -= __________.14.已知二次函数2( y x mx m m =-++为常数),当24x -≤≤时,y 的最大值是15,则m 的值是__________.15.已知234a b c==,则2332a b c a b c-+-+=_____. 16.如图,函数y =1x 和y =﹣3x的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD ⊥y 轴,垂足为D ,交l 2于点B ,则△PAB 的面积为_____.三、解答题17.抛物线()2y a x h =+的顶点为(20)-,,它的形状与23y x =相同,但开口方向与之相反.(1)直接写出抛物线的解析式 ; (2)求抛物线与y 轴的交点坐标.18.如图,正方形ABCD 对角线的交点在平面直角坐标系的原点,且边与坐标轴平行或垂直,AB=4.(1)如果反比例函数ky x=的图象经过点A ,求这个反比例函数的表达式; (2)如果反比例函数ky x=的图象与正方形ABCD 有公共点,请直接写出k 的取值范围.19.如图,在ABC 中,,D E 分别是边,AB AC 上的点,连接DE ,且60,50A ADE ∠=︒∠=,70B ∠=︒.()1求证:ADE ACB ;()2如果E 是AC 的中点,810,AD AB ==,求AE 的长,20.已知:ABC 中,边AB 及AB 边上的高CD 的和为40cm .()1请直接写出ABC 的面积()2S cm与边AB 的长()x cm 之间的函数关系式(不要求写出自变量x 的取值范围);()2当x 是多少时,这个三角形面积S 最大?最大面积是多少?21.如图,在ABC 中,90,5,CAB AB AC P ∠=︒==是ABC 内一点,且.PAB PBC PCA ∠=∠=∠()1求APC ∠的度数; ()2求PAC 的面积.22.已知:AD AE 、分别是ABC 内角和外角平分线.()1则DAE ∠的度数=_ ; ()2求证:BE ABCE AC=; ()3作BF AD ⊥,交AD 延长线于,F FC 的延长线交AE 于G ,求证:AG GE =.23.定义: 在平面直角坐标系中,如果点(),M m n 和(),N n m 都在某函数的图象l 上,则称点M N 、是图象l 的一对“相关点”.例如,点(12)M ,和点1(2)N ,是直线3y x =-+的一对相关点.()1请写出反比例函数6y x=的图象上的一对相关点的坐标; ()2如图,抛物线2y x bx c =++的对称轴为直线1x =,与y 轴交于点()0,1C -.①求抛物线的解析式:②若点M N 、是抛物线2y x bx c =++上的一对相关点,直线MN 与x 轴交于点1,0A ,点P 为抛物线M N 、上之间的一点,求PMN 面积的最大值.24.如图,两个反比例函数y =k x 和y =2x在第一象限内的图象分别是C 1和C 2,设点P (1,4)在C 1上,P A ⊥x 轴于点A ,交C 2于点B (1,m ),求k ,m 的值及△POB 的面积.25.如图,△ABC∽△ADE,AB=30 cm,BD=18 cm,BC=20 cm,∠BAC=75°,∠ABC=40°.(1)求∠AED的度数.(2)求DE的长.参考答案1.C【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).2.D【详解】∵34yx,∴x y x +=434+=74, 故选D 3.D 【解析】试题解析:∵a=1>0,∴二次函数y=(x-1)2-3有最小值-3. 故选D .考点:二次函数的最值. 4.B 【解析】 【分析】直接根据二次函数图象平移的法则即可得出结论. 【详解】解:根据“上加下减,左加右减”的法则可知,将抛物线2y x =向右平移2个单位,再向下平移1个单位所得抛物线的表达式是22y x ()=--1. 所以平移后抛物线的顶点坐标是(2,-1). 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键. 5.C 【分析】根据相似三角形的性质与判定即可求出答案. 【详解】 解:∵DE ∥BC , ∴△ABC ∽△ADE , ∴AB ACAD AE=, ∴42 1.8AC =,∴AC=3.6,故选:C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.6.D【分析】分别把A、B点的坐标代入y=ax2得a的值,根据二次函数的性质得到a的取值范围.【详解】解:把A(1,1)代入y=ax2得a=1,把B(3,1)代入y=ax2得a=19,所以a的取值范围为11 9a≤≤.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.7.C【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得EFAB=DFDB,EFCD=BFBD,从而可得EFAB+EFCD=DFDB+BFBD=1.然后把AB=1,CD=3代入即可求出EF的值.【详解】∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴EFAB=DFDB,EFCD=BFBD,∴EF AB +EF CD =DF DB +BF BD =BDBD=1. ∵AB=1,CD=3,∴1EF +3EF=1, ∴EF=34.故选C. 【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键. 8.B 【分析】先利用条件求出解析式,再变式求出最值即可解答. 【详解】解:已知满足函数关系s =at 2+bt +c (a ≠0), 根据图像可知经过(0,43),(20,55),(30,31), 将已知点代入解析式得s =-0.12t +2.6t +43, 根据函数性质得t =- 2.620.1()⨯-=13时,s 最大,故选B. 【点睛】本题主要考察求函数最值,可利用配方法,公式法等. 9.A 【分析】由两点间的距离公式可得出PQ 2关于t 的二次函数关系式,利用配方法结合二次函数的性质即可得出当PQ 取最小值时t 的值. 【详解】解:由两点间的距离公式可知:PQ 2=(t-1)2+(34-t-94-2)2=2516(t+75)2+16,∵2516>0,∴当t=75-时,PQ2最小.故选:A.【点睛】本题考查了两点间的距离公式以及二次函数的性质,解题的关键是找出PQ2关于t的二次函数关系式.10.C【分析】把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B的坐标代入求出n 的值,把A、B的坐标代入一次函数y=kx+b即可求出k的值.【详解】解:∵把A(2,1)代入y=mx得:m=2,∴反比例函数的解析式是y=2x,∵B(12,n)代入反比例函数y=2x得:n=4,∴B的坐标是(12,4),把A、B的坐标代入一次函数y1=kx+b,得2114 2k bk b+=⎧⎪⎨+=⎪⎩,解得:k=﹣2,∴n﹣k=4+2=6,故选:C.【点睛】本题是一次函数和反比例函数的综合题,解答关键是应用待定系数法确定函数关系式.11.1 3【分析】由//DE BC,可知:ABC ADE,列出比例式,即可得到答案. 【详解】∵//DE BC ,∴ABC ADE , ∴DE AD BC AB=, ∵12AD BD =, ∴1=3DE AD BC AB =, 选答案是:13. 【点睛】本题主要考查相似三角形的判定和性质定理,根据相似三角形的性质,列出比例式是解题的关键.12.180【分析】设每千克降价x 元,先用含x 的式子表示出每天的销售量,再设商店平均每天的利润为w 元,根据每千克的盈利乘以销售量等于利润,写出关于x 的函数,写成顶点式,根据二次函数的性质,可得答案.【详解】解:设每千克降价x 元,由题意得每天的销售量为: 40+0.5x ×10=(40+20x )千克, 设商店平均每天的利润为w 元,由题意得:w=(4-x )(40+20x )=-20x 2+40x+160=-20(x-1)2+180,∵二次项系数为-20<0,∴当x=1时,w 取得最大值180元.故答案为:180.【点睛】本题考查了二次函数在销售问题中的应用,理清题中的数量关系,正确列出函数关系式并明确二次函数的相关性质,是解题的关键.13.12【分析】根据AB ∥x 轴,设A (x ,1k x ),B (21k x k ,1k x),得到AB=21k x k -x ,根据△AOB 的面积为6,列方程即可得到结论.【详解】解:∵AB ∥x 轴,∴设A (x ,1k x ),B (21k x k ,1k x ), ∴AB=21k x k -x , ∵△AOB 的面积为6, ∴12(21k x k -x )×1k x=6, ∴k 2-k 1=12,故答案为:12.【点睛】本题考查的是反比例函数的性质以及反比例函数图像上的点,解题的关键是将A 和B 的坐标表示出来,从而得到△AOB 的面积的代数式.14.6和19【分析】根据题目中的函数解析式和当-2≤x≤4时,y 的最大值是15,利用分类讨论的方法可以求得m 的值,本题得以解决.【详解】解:二次函数y=-x 2+mx+m=-(x-2m )2+24m +m , 当4<2m 时,即m >8, 在-2≤x≤4时,x=4时取得最大值,则15=-42+4m+m ,得m=6.2(舍去); 当2m <-2时,即m <-4, 在-2≤x≤4时,x=-2时取得最大值,则15=-22-2m+m ,得m=-19, 当-2≤2m ≤4时,即-4≤m≤8,在-2≤x≤4时,x=2m 时取得最大值,则15=24m +m ,得m 1=6,m 2=-10(舍去), 由上可得,m 的值是6和19-,故答案为:6和19-.【点睛】本题考查考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.15.134【分析】 设234abck ===,然后表示出a ,b ,c ,再进行化简即可.【详解】 解:设234abck ===.则根据比例的性质,得a =2k ,b =3k ,c =4k , ∴2332a b c a b c -+-+=2233432234k k kk k k ⨯-+⨯⨯-⨯+=134; 故答案为:134.【点睛】本题考查了比例的性质,熟练掌握设k 法是解题的关键.16.8【详解】解:∵点P 在y =1x 上,∴|x p |×|y p |=|k |=1,∴设P 的坐标是(a ,1a )(a 为正数),∵P A ⊥x 轴,∴A 的横坐标是a ,∵A 在y =﹣3x 上,∴A 的坐标是(a ,﹣3a ),∵PB ⊥y 轴,∴B 的纵坐标是1a , ∵B 在y =﹣3a上, ∴代入得:1a =﹣3x, 解得:x =﹣3a ,∴B 的坐标是(﹣3a ,1a ), ∴P A =|1a ﹣(﹣3a )|=4a,PB =|a ﹣(﹣3a )|=4a , ∵P A ⊥x 轴,PB ⊥y 轴,x 轴⊥y 轴,∴P A ⊥PB ,∴△P AB 的面积是:12P A ×PB =12×4a×4a =8. 故答案为8.【点睛】本题考查了反比例函数和三角形面积公式的应用,关键是能根据P 点的坐标得出A 、B 的坐标,本题具有一定的代表性,是一道比较好的题目. 17.(1)()232y x =-+;(2)(0)12-,【分析】(1)由抛物线y=a (x+h )2的顶点为(-2,0),得出h=2,抛物线y=a (x+h )2的形状与y=3x 2的相同,开口方向相反,得出a=-3,从而确定该抛物线的函数表达式;(2)根据图象上点的坐标特征求得即可.【详解】解:(1)∵抛物线y=a (x+h )2的顶点为(-2,0),∴-h=-2,∴h=2,抛物线y=a (x+h )2的形状与y=3x 2的相同,开口方向相反,∴a=-3,则该抛物线的函数表达式是y=-3(x+2)2;(2)当0x =时,()230212y =-+=-, ∴抛物线与y 轴的交点坐标为(0)12-,.【点睛】主要考查了待定系数法求二次函数的解析式.要求掌握二次函数图象的性质,并会利用性质得出系数之间的数量关系进行解题.18.(1)4y x =;(2) ()204k <≤或40k -≤< 【分析】(1)根据题意得出A 的坐标,然后根据待定系数法即可求得;(2)根据A 、B 、C 、D 的坐标,结合图象即可求得.【详解】解:(1)由题意,得()2,2A , 反比例函数k y x=的图象经过点A , 224k ∴=⨯=,∴反比例函数的表达式4y x=; (2)由图象可知: 当反比例函数刚好经过A 和C ,或B 和D 时,k 分别为4和-4,k≠0, 则如果反比例函数k y x=的图象与正方形ABCD 有公共点, k 的取值范围是04k <≤或40k -≤<.【点睛】本题考查了待定系数法求反比例函数的解析式,正方形的性质以及反比例函数的图象,根据图象得出正方形各点的坐标是解题的关键.19.(1)见解析;(2)AE =【分析】(1)由条件得出B AED ∠=∠,根据相似三角形的判定即可求出证.(2)由于点E 是AC 的中点,设AE=x ,根据相似三角形的性质可知AD AE AC AB=,从而列出方程解出x 的值.【详解】解:(1)证明:60,50A ADE ∠=︒∠=︒180605070AED ∴∠=︒-︒-︒=︒,70B ∠=︒,B AED ∴∠=∠,A A ∠=∠,ADE ACB ∴;(2)由(1)知ADE ACB ,AD AE AC AB∴=, 点E 是AC 的中点,设AE x =,22AC AE x ∴==,8,10AD AB ==,8210x x ∴=,解得x =(负值舍去) .AE ∴=【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定.20.(1)21202S x x =-+;(2)当x 为20cm 时,三角形面积最大,最大面积是2200cm 【分析】(1)S=12x ×这边上的高,把相关数值代入化简即可; (2)结合(1)得到的关系式,利用公式法求得二次函数的最值即可.【详解】解:(1)由题意可得:()21114020222S AB CD x x x x =⨯=⨯⨯-=-+; (2)102a =-<, S ∴有最大值,当2b x a =-=20122-⎛⎫⨯- ⎪⎝⎭=20时,S 有最大值为212020202002S =-⨯+⨯=, ∴当x 为20cm 时,三角形面积最大,最大面积是2200cm .【点睛】本题考查二次函数的应用,掌握二次函数的最值求法是解决本题的关键.21.(1)90°;(2)5【分析】(1)根据PCA PAB ∠=∠,利用余角的性质求解;(2)证明ABP BCP ,得到2PA PB AB PB PC BC ===,设PA 为x ,将相应边表示出来,根据AC=5求出x ,即可计算△PAC 的面积.【详解】解:(1)180APC PAC PCA ∠=︒-∠-∠,PCA PAB ∠=∠,180APC PAC PAB ∴∠=︒-∠-∠90=︒;(2)在等腰直角ABC 中,45ABC ACB ∴∠=∠=︒PAB PBC PCA ∠=∠=∠,ABP BCP ∴∠=∠,∴ABP BCP ,∴PA PB AB PB PC BC ===, 设PA x =,PB =,则2, PC x AC ==,5AC =,x ∴=221252PAC S x x x ∴=⋅===.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,解题的关键是正确寻找相似三角形,证明∠APC=90°是本题的突破点,属于中考常考题型.22.(1)90°;(2)见解析;(3)见解析【分析】(1)根据角平分线的定义和邻补角的定义即可解得;(2)过点C作CN∥AB交AE于点N,如图,易证CA=CN.由CN∥AB可得△ECN∽△EBA,则有BE BACE CN=,由CA=CN可得BE ABCE AC=;(3)分别延长BF、AC交于点H,证明△ABF≌△AHF,可得BF=HF,证明△BCF∽△ECG,△ACG∽△HCF,可得比例线段,则结论得证.【详解】解:(1)∵AD、AE分别是△ABC中∠A内角的平分线和外角平分线,∴∠DAE=∠DAC+∠EAC=12∠BAC+12∠CAF=12(∠BAC+∠CAF)=12×180°=90°.故答案为:90°;(2)证明:过点C作//CN AB交AE于点N,如图1,则有HAE ANC∠=∠.HAE CAE∠=∠,ANC CAE∴∠=∠,CA CN∴=.//CN AB,ECN EBA ∴∆∆∽, ∴BE BA CE CN =, ∴BE AB CE AC=; (3)如图2,分别延长BF 、AC 交于点H ;AD 为ABC ∆的角平分线,BAF HAF ∴∠=∠;在ABF ∆与AHF ∆中,BAF HAF AF AFAFH AFB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABF AHF ASA ∴∆≅∆,BF HF ∴=;BH AF ⊥,AE AF ⊥,//BH AE ∴,BCF ECG ∴∆∆∽,ACG HCF ∆∆∽, ∴CG GE CF BF =,CG AG CF FH =, ∴GE AG BF FH=, ∵BF HF =,GE AG ∴=.【点睛】本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、角平分线的定义等知识,添加平行线构造相似三角形是解题的关键.23.(1)()2,3,(32),;(2)①221y x x =--;②278【分析】(1)xy=6,当x=2时,y=3,当x=3时,y=2,即可求解;(2)①根据C (0,-1)求得c ,根据x=-1,函数对称轴为:x=-2b a =-1,解得:b=-2,即可求解;②由“相关点”的定义,可得直线MN 的表达式,求出点M 、N 的坐标,将△PMN 面积利用S=12×PQ×(x M -x N )表示出来即可求解. 【详解】解:(1)xy=6,当x=2时,y=3,当x=3时,y=2,故答案为:(2,3)和(3,2);(2)①∵抛物线2y x bx c =++的对称轴为直线1x =,121b ∴-=⨯,解得2b =-, 抛物线2y x bxc =++与y 轴交于点(01)C -,, 1c ∴=-,∴抛物线的解析式为221y x x =--;②由相关点定义得,点M N ,关于直线y x =对称. 又直线MN 与x 轴交于点1,0A ,∴直线MN 的解析式为1y x =-+.代入抛物线的解析式221y x x =--中,并整理,得220x x --=,解得,11x =-,22x =M N ∴,两点坐标为(2)1-,和(12)-,. 设点P 的横坐标为x ,则点22()1P x x x --,,过P 作PQ x ⊥轴交直线MN 于Q 点,则Q 点坐标为(), 1 x x -+,()()211212PMN M N S x x x x x =⨯-⨯-⎦+---⎡⎤⎣ ()21322x x =⨯⨯-++ 23127228x ⎛⎫=--+ ⎪⎝⎭, 即当12x =时,PMN 的面积最大,最大值为278. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形的面积计算等,这种新定义类的题目,通常按照题设的顺序逐次求解较为容易.24.k=4,m=2,POB S1=. 【详解】试题分析:将点P 的坐标代入C 1的解析式即可求出k 的值;将点B 的横坐标代入C 2的解析式即可求出m 的值;S △POB =S △POA -S △BOA ,由反比例函数k 的几何意义可以分别求出S △POA 、S △BOA 的值.试题解析:∵P (1,4),∴k =4;∵B (1,m ),C 2解析式为:y =2x ,∴m =2;S △POB =S △POA -S △BOA =2-1=1.点睛:掌握反比例函数k 的几何意义.25.(1)65°(2)8【详解】试题分析:(1)∵75,40BAC ABC ∠∠=︒=︒∴65ACB ∠=︒∵△ABC ∽△ADE∴65AED ACB ∠=∠=︒(2) ∵30cm,18cm AB BD ==∴12cm AD =又∵△ABC ∽△ADE ∴AD DE AB BC = 即:123020DE = ∴8cm DE =.【点睛】本题考查相似三角形,掌握相似三角形的性质是解本题的关键,所以要求考生对相似三角形的性质要熟悉.。
.. . .九年级〔上〕数学期中考试试卷一.选择题〔共10小题〕1.抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象如图,其中正确的选项是〔〕A .B.C.D.2.小军从所给的二次函数图象中观察得出了下面的信息:①a<0;②c=0;③函数的最小值是﹣3;④当x<0时y >0;⑤当0<x1<x2<2时y1>y2.你认为其中正确的个数为〔〕A .2个B.3个C.4个D.5个3.抛物线y=〔x﹣4〕〔x+2〕的对称轴方程为〔〕A .直线x=﹣2 B.直线x=1 C.直线x=﹣4 D.直线X=44.假设一个三角形三个角度数的比为1:2:3,那么这个三角形最小角的正切值为〔〕A .B.C.D.5.如图,小明同学在东西走向的文一路A处,测得一处公共自行车租用效劳点P在北偏东60°方向上,在A处往东90米的B处,又测得该效劳点P在北偏东30°方向上,那么该效劳点P到文一路的距离PC为〔〕A .60米B.45米C.30米D.45米6.反比例函数的图象,当x>0时,y随x的值增大而增大,那么k的取值围是〔〕A .k<2 B.k≤2C.k>2 D.k≥27.如图,△ABC与以下哪一个三角形相似〔〕A .B.C.D.8.对于任意实数m、n,定义m﹡n=m﹣3n,那么函数y=x2﹡x+〔﹣1〕﹡1,当0<x<3时,y的围为〔〕A .﹣1<y<4 B.﹣6<y<4C.﹣1≤y≤4D.﹣6≤y<﹣49.假设x=,且x+2y﹣z=4,那么x+y+z等于〔〕A .6 B.10 C.12 D.1410.在平面坐标系中,正方形ABCD的位置如下列图,点A的坐标为〔1,0〕,点D的坐标为〔0,2〕,延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进展下去,第2021个正方形的面积为〔〕A .B.C.D.二.填空题〔共4小题〕11.如果,那么= _________ .12.甲、乙两地之间的距离为10千米,画在一地图上的距离为5厘米,那么在这地图上量得距离为2厘米的A、B 两地的实际距离为_________ 千米.13.如图,第一象限一点A,OA=s,OA与x轴正半轴所成的夹角为α,且tanα=2,那么点A的坐标是_________ .14.如图,是二次函数y=ax2+bx+c〔a≠0〕的图象的一局部,给出以下命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是_________ .〔只要求填写正确命题的序号〕三.解答题〔共9小题〕15.计算:.16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.如图,图中的△ABC是格点三角形,建立平面直角坐标系,点C的坐标为〔5,﹣1〕.〔1〕把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点A1的坐标;〔2〕把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形并写出B2的坐标;〔3〕把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出AB3C3的图形.18.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣〔x<0〕交于点P〔﹣1,n〕,且F是PE的中点.〔1〕求直线l的解析式;〔2〕假设直线x=a与l交于点A,与双曲线交于点B〔不同于A〕,问a为何值时,PA=PB?19.某体育用品商店试销一款本钱为50元的排球,规定试销期间单价不低于本钱价,且获利不得高于40%.经试销发现,销售量y〔个〕与销售单价x〔元〕之间满足如下列图的一次函数关系.〔1〕试确定y与x之间的函数关系式;〔2〕假设该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q〔元〕与销售单价x〔元〕之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?〔3〕假设该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值围.20.在△ABC中,∠BAC=90°,∠EAF=90°,AB•AF=AC•AE.〔1〕求证:△AGC∽△DGB;〔2〕假设点F为CG的中点,AB=3,AC=4,tan∠DBG=,求DF的长.21.如图,矩形ABCD的边AB=6cm,BC=8cm,在BC上取一点P,在CD边上取一点Q,使∠APQ成直角,设BP=x cm,CQ=y cm,试以x为自变量,写出y与x的函数关系式.并求x为何值时,y有最大值或最小值?22.如图,△ABC中,AB=8,BC=7,AC=6,点D、E分别在AB、AC上,如果以A、D、E为顶点的三角形和△ABC 相似,且相似比为,试求AD、AE的长.23.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,A点坐标是〔2,0〕,B点的坐标是〔8,6〕.〔1〕求二次函数的解析式.〔2〕求函数图象的顶点坐标及D点的坐标.〔3〕该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.〔4〕抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?假设存在,请求出P点的坐标;假设不存在.请说明理由.参考答案与试题解析一.选择题〔共10小题〕1.〔2021•〕抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象如图,其中正确的选项是〔〕A .B.C.D.考点:二次函数的图象;一次函数的图象.分析:此题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.解答:解:A、由二次函数的图象可知a<0,此时直线y=ax+b经过二、四象限,故A可排除;B、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、四象限,故B可排除;C、二次函数的图象可知a>0,此时直线y=ax+b经过一、三,故C可排除;正确的只有D.应选:D.点评:此题主要考察了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.2.〔2021•宁津县模拟〕小军从所给的二次函数图象中观察得出了下面的信息:①a<0;②c=0;③函数的最小值是﹣3;④当x<0时y>0;⑤当0<x1<x2<2时y1>y2.你认为其中正确的个数为〔〕A .2个B.3个C.4个D.5个考点:二次函数的性质.分析:根据开口方向判断①;根据抛物线与y轴的交点判断②;根据抛物线顶点坐标及开口方向判断③;观察当x<0时,图象是否在x轴上方,判断④;在0<x1<x2<2时,函数的增减性不确定,⑤不正确.解答:解:①抛物线开口向上,a>0,错误;②抛物线过原点〔0,0〕,正确;③观察图象可知,抛物线顶点坐标为〔1,﹣3〕,开口向上,函数的最小值是﹣3,正确;④观察图象可知,当x<0时,y>0,正确;⑤当0<x1<x2<2时,函数的增减性不确定,错误.应选B.点评:此题考察了函数图象与抛物线系数的性质关系,要求数形结合,逐一判断.3.〔2021•一模〕抛物线y=〔x﹣4〕〔x+2〕的对称轴方程为〔〕A .直线x=﹣2 B.直线x=1 C.直线x=﹣4 D.直线X=4考点:二次函数的性质.分析:把抛物线解析式整理成顶点式解析式,然后写出对称轴方程即可.解答:解:y=〔x+2〕〔x﹣4〕,=x2﹣2x﹣8,=x2﹣2x+1﹣9,=〔x﹣1〕2﹣9,所以对称轴方程为x=1.应选B.点评:此题考察了二次函数的性质,是根底题,把抛物线解析式整理成顶点式解析式是解题的关键.4.〔2021•东海县模拟〕假设一个三角形三个角度数的比为1:2:3,那么这个三角形最小角的正切值为〔〕A .B.C.D.考点:特殊角的三角函数值;三角形角和定理.分析:这三个角分别为x,2x,3x,根据三角形的角和为180°,列方程求出角的度数,然后根据特殊角的三角函数值求出最小角的正切值.解答:解:设这三个角分别为x,2x,3x,由题意得,x+2x+3x=180°,解得:x=30°,即最小角为30°.那么tan30°=.应选:A.点评:此题考察了特殊角的三角函数值,解答此题的关键是根据三角形的角和公式求出角的度数.5.〔2021•拱墅区一模〕如图,小明同学在东西走向的文一路A处,测得一处公共自行车租用效劳点P在北偏东60°方向上,在A处往东90米的B处,又测得该效劳点P在北偏东30°方向上,那么该效劳点P到文一路的距离PC 为〔〕A .60米B.45米C.30米D.45米考点:解直角三角形的应用-方向角问题.专题:应用题.分析:分别在两个直角三角形中由锐角三角函数的定义用PC分别表示出AC、BC,利用两线段的差等于90列出关于线段PC的式子,求得PC即可.解答:解:∵在Rt△PBC中,,∴BC==PC,∵在Rt△PAC中,,∴AC==PC,∵AB=AC﹣BC=90,∴PC ﹣PC=90,解得:PC=45.应选B.点评:此题考察了解直角三角形的知识,解决此题的关键是弄清直角三角形的三边与其锐角的关系,进而列出有关的等式,解之即可.6.〔2021•〕反比例函数的图象,当x>0时,y随x的值增大而增大,那么k的取值围是〔〕A .k<2 B.k≤2C.k>2 D.k≥2考点:反比例函数的性质;解一元一次不等式.专题:推理填空题.分析:根据反比例函数的性质得出k﹣2<0,求出即可.解答:解:∵当x>0时,y随x的增大而增大,∴k﹣2<0,∴k<2.应选A.点评:此题主要考察对解一元一次不等式,反比例函数的性质等知识点的理解和掌握,能根据反比例函数的性质得出k﹣2<0是解此题的关键.7.〔2021•模拟〕如图,△ABC与以下哪一个三角形相似〔〕A .B.C.D.考点:相似三角形的判定;等腰三角形的性质;勾股定理的逆定理.专题:计算题.分析:△ABC是等腰三角形,底角是40°,顶角是100°,看各个选项是否符合相似的条件.解答:解:第4个图的两边相等,说明其是等腰三角形,∵其底角为40°,∴其顶角为100度,∴△NPM与△ABC三角对应相等,∴两个三角形相似,应选D.点评:此题考察了等腰三角形的性质,以及相似三角形的判定方法.8.〔2021•新泰市一模〕对于任意实数m、n,定义m﹡n=m﹣3n,那么函数y=x2﹡x+〔﹣1〕﹡1,当0<x<3时,y 的围为〔〕A .﹣1<y<4 B.﹣6<y<4C.﹣1≤y≤4D.﹣6≤y<﹣4考点:二次函数的性质.专题:新定义.分析:首先根据题意得到y与x之间的函数关系,然后根据自变量的取值围确定函数值的围;解答:解:∵任意实数m、n,定义m﹡n=m﹣3n,∴y=x2﹡x+〔﹣1〕﹡1=x2﹣3x﹣4,∵0<x<3当x=时候有最小值﹣6,当x=0时有最大值﹣4∴﹣6≤y<﹣4应选D.点评:此题考察了函数最大〔小〕值问题,明确对称轴,开口方向,自变量的取值围是解题的关键.9.假设x=,且x+2y﹣z=4,那么x+y+z等于〔〕A .6 B.10 C.12 D.14考点:比例的性质.专题:计算题.分析:根据比例的根本性质,把比例式转换为等积式后,用s分别表示出y和z代入等式,可得出x、y和z的值,即可得出结果.解答:解:由,得y=2x,z=3x,又x+2y﹣z=4,那么x+4x﹣3x=4,x=2,那么y=4,z=6.那么x+y+z=12,应选C.点评:用一个字母表示其它字母,根据条件代入等式求解方程即可.10.〔2021•〕在平面坐标系中,正方形ABCD的位置如下列图,点A的坐标为〔1,0〕,点D的坐标为〔0,2〕,延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进展下去,第2021个正方形的面积为〔〕A .B.C.D.考点:相似三角形的判定与性质;坐标与图形性质;正方形的性质.专题:压轴题;规律型.分析:首先设正方形的面积分别为S1,S2…S2021,由题意可求得S1的值,易证得△BAA1∽△B1A1A2,利用相似三角形的对应边成比例与三角函数的性质,即可求得S2的值,继而求得S3的值,继而可得规律:S n=5×〔〕2n﹣2,那么可求得答案.解答:解:∵点A的坐标为〔1,0〕,点D的坐标为〔0,2〕,∴OA=1,OD=2,设正方形的面积分别为S1,S2 (2021)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x,∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD==,∴AB=AD=BC=,∴S1=5,∵∠DAO+∠ADO=90°,∠DAO+∠BAA1=90°,∴∠ADO=∠BAA1,∴tan∠BAA1===,∴A1B=,∴A1C=BC+A1B=,∴S2=×5=5×〔〕2,∴==,∴A2B1=×=,∴A2C1=B1C1+A2B1=+==×〔〕2,∴S3=×5=5×〔〕4,由此可得:S n=5×〔〕2n﹣2,∴S2021=5×〔〕2×2021﹣2=5×〔〕4022.应选D.点评:此题考察了相似三角形的判定与性质、正方形的性质以及三角函数等知识.此题难度较大,解题的关键是得到规律S n=5×〔〕2n﹣2.二.填空题〔共4小题〕11.〔2021•徐汇区一模〕如果,那么=.考点:比例的性质.专题:计算题.分析:根据比例的性质〔两项之积等于两外项之积〕解答即可.解答:解:∵原式的两个项分别是a+b、5,两个外项分别是a、7,∴7a=5〔a+b〕,即2a=5b,∴=.故答案为:.点评:此题主要考察了比例的根本性质:在比例式中,两项之积等于两外项之积.12.〔2021•长宁区一模〕甲、乙两地之间的距离为10千米,画在一地图上的距离为5厘米,那么在这地图上量得距离为2厘米的A、B两地的实际距离为 4 千米.考点:比例线段.专题:应用题.分析:根据地图上距离的比值等于实际距离的比值即可求解.解答:解:设A、B两地的实际距离为x千米.根据题意得到:=.解得x=4千米.点评:此题主要考察了地图上距离的比值等于实际距离的比值.13.〔2021•黄浦区一模〕如图,第一象限一点A,OA=s,OA与x轴正半轴所成的夹角为α,且tanα=2,那么点A 的坐标是〔,〕.考点:解直角三角形;坐标与图形性质.分析:作AB⊥x轴于点B,利用角α的正切设出AB和OB的长,然后利用勾股定理分别求得AB和OB的长后即可表示出点A的坐标.解答:解:作AB⊥x轴于点B,∵tanα==2,∴设OB=x,那么AB=2x在Rt△ABC中OB2+AB2=OA2,即:5x2=s2解得:x=∴2x=∴点A的坐标为〔,〕,故答案为:〔,〕.点评:此题考察了解直角三角形及坐标与图形性质的知识,解题的关键是正确的构造直角三角形.14.〔2021•日照〕如图,是二次函数y=ax2+bx+c〔a≠0〕的图象的一局部,给出以下命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是①③.〔只要求填写正确命题的序号〕考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.专题:计算题;压轴题.分析:由图象可知过〔1,0〕,代入得到a+b+c=0;根据﹣=﹣1,推出b=2a;根据图象关于对称轴对称,得出与X轴的交点是〔﹣3,0〕,〔1,0〕;由a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,根据结论判断即可.解答:解:由图象可知:过〔1,0〕,代入得:a+b+c=0,∴①正确;﹣=﹣1,∴b=2a,∴②错误;根据图象关于对称轴x=﹣1对称,与X轴的交点是〔﹣3,0〕,〔1,0〕,∴③正确;∵b=2a>0,∴﹣b<0,∵a+b+c=0,∴c=﹣a﹣b,∴a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,∴④错误.故答案为:①③.点评:此题主要考察对二次函数与X轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键.三.解答题〔共9小题〕15.〔2021•模拟〕计算:.考点:特殊角的三角函数值;零指数幂;负整数指数幂.专题:计算题.分析:首先由2﹣1=,=2,sin60°=,〔﹣〕0=1,再进展计算即可求得答案.解答:解:原式==.点评:此题考察实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.16.〔2021•〕如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.考点:解直角三角形;等腰三角形的性质;含30度角的直角三角形;勾股定理.专题:计算题;压轴题.分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解答:解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.点评:此题考察了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.17.如图,图中的△ABC是格点三角形,建立平面直角坐标系,点C的坐标为〔5,﹣1〕.〔1〕把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点A1的坐标;〔2〕把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形并写出B2的坐标;〔3〕把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出AB3C3的图形.考点:作图-位似变换;作图-平移变换;作图-旋转变换.专题:作图题.分析:〔1〕根据平移的性质求出对应点的坐标,根据坐标画出即可;〔2〕根据垂直和点的坐标即可画出图形;〔3〕根据位似中心的性质得出两种情况,根据相似比是1:2画出图形即可解答:解:〔1〕如下列图:A1的坐标是〔﹣5,3〕.〔2〕如下列图:B2的坐标是〔5,5〕.〔3〕如下列图:有两种情况:.点评:此题主要考察对作图﹣位似变换,作图﹣平移变换,作图﹣旋转变换等知识点的理解和掌握,能正确地根据性质进展画图是解此题的关键.18.〔2021•〕如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣〔x<0〕交于点P〔﹣1,n〕,且F是PE的中点.〔1〕求直线l的解析式;〔2〕假设直线x=a与l交于点A,与双曲线交于点B〔不同于A〕,问a为何值时,PA=PB?考点:反比例函数与一次函数的交点问题.专题:数形结合.分析:〔1〕先由y=﹣,求出点P的坐标,再根据F为PE中点,求出F的坐标,把P,F的坐标代入求出直线l的解析式;〔2〕过P作PD⊥AB,垂足为点D,由A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,列出方程求解即可.解答:解:由P〔﹣1,n〕在y=﹣上,得n=4,∴P〔﹣1,4〕,∵F为PE中点,∴OF=n=2,∴F〔0,2〕,又∵P,F在y=kx+b上,∴,解得.∴直线l的解析式为:y=﹣2x+2.〔2〕如图,过P作PD⊥AB,垂足为点D,∵PA=PB,∴点D为AB的中点,又由题意知A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,∴得方程﹣2a+2﹣=4×2,解得a1=﹣2,a2=﹣1〔舍去〕.∴当a=﹣2时,PA=PB.点评:此题主要考察了反比例函数与一次函数的交点,解题的重点是求出直线l的解析式.19.〔2021•〕某体育用品商店试销一款本钱为50元的排球,规定试销期间单价不低于本钱价,且获利不得高于40%.经试销发现,销售量y〔个〕与销售单价x〔元〕之间满足如下列图的一次函数关系.〔1〕试确定y与x之间的函数关系式;〔2〕假设该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q〔元〕与销售单价x〔元〕之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?〔3〕假设该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值围.考点:二次函数的应用;一次函数的应用.专题:应用题;数形结合.分析:〔1〕利用待定系数法将图中点的坐标求出一次函数解析式即可;〔2〕根据利润=〔售价﹣本钱〕×销售量列出函数关系式;〔3〕令函数关系式Q≥600,解得x的围,利用“获利不得高于40%〞求得x的最大值,得出销售单价x的围.解答:解:〔1〕设y=kx+b,根据题意得:解得:k=﹣1,b=120.所求一次函数的表达式为y=﹣x+120.〔2〕利润Q与销售单价x之间的函数关系式为:Q=〔x﹣50〕〔﹣x+120〕=﹣x2+170x﹣6000;Q=﹣x2+170x﹣6000=﹣〔x﹣85〕2+1225;∵本钱为50元的排球,规定试销期间单价不低于本钱价,且获利不得高于40%.∴50≤x≤70,∴当试销单价定为70元时,该商店可获最大利润,最大利润是1000元.〔3〕依题意得:﹣x2+170x﹣6000≥600,解得:60≤x≤110,∵获利不得高于40%,∴最高价格为50〔1+40%〕=70,故60≤x≤70的整数.点评:此题主要考察二次函数的应用,根据利润=〔售价﹣本钱〕×销售量列出函数关系式,运用二次函数解决实际问题,比较简单.20.〔2021•虹口区一模〕在△ABC中,∠BAC=90°,∠EAF=90°,AB•AF=AC•AE.〔1〕求证:△AGC∽△DGB;〔2〕假设点F为CG的中点,AB=3,AC=4,tan∠DBG=,求DF的长.考点:相似三角形的判定与性质.分析:〔1〕利用两边的比值相等并且它们的夹角相等的两个三角形相似即可先证明:△EAB∽△CAF,由此得到∠DBG=∠ACF,进而可证明△AGC∽△DGB;〔2〕由〔1〕可证明:△AGC∽△DGB,所以∠CAG=∠GDB=90°,所以△BDG是直角三角形,并且tan∠DBG=tan∠ACG=,由此DG可求,再根据条件求出GF的长即可得到DF的长.解答:解:〔1〕∵∠BAC=90°,∠EAF=90°,∴∠EAF+∠GAF=∠CAF+GAF=90°,∴∠EAB=∠CAF,∵AB•AF=AC•AE,∴,∴∠DBG=∠ACF,∵∠DGB=∠AGC,∴△AGC∽△DGB;〔2〕∵△AGC∽△DGB;∴∠DBG=∠ACG,△DGB是直角三角形,∵tan∠DBG=,∴tan∠ACG=,∵AC=4,∴AG=2,∴CG==2,∵AB=3,∴BG=AB﹣AG=1,∵tan∠DBG=,∴DG=,∴DF=DG+GF=+=.点评:此题考察了相似三角形的判定和性质、勾股定理的运用、解直角三角形的知识,题目的综合性很强,难度不小,对学生的解题能力要求很高,是一道不错的中考题.21.如图,矩形ABCD的边AB=6cm,BC=8cm,在BC上取一点P,在CD边上取一点Q,使∠APQ成直角,设BP=x cm,CQ=y cm,试以x为自变量,写出y与x的函数关系式.并求x为何值时,y有最大值或最小值?考点:相似三角形的判定与性质;二次函数的最值.分析:根据相似三角形的判定定理AA推知△ABP∽△PCQ,然后利用相似三角形的对应边成比例知=,即=,由此可以求得y与x的函数关系式y=﹣〔x﹣4〕2+,根据此函数式来求y的最值.解答:解:∵∠APQ=90°,∴∠APB+∠QPC=90°;又∵∠APB+∠BAP=90°,∴∠QPC=∠BAP,∠B=∠C=90°,∴△ABP∽△PCQ,∴=,即=,∴y=﹣x2+x,即y=﹣〔x﹣4〕2+,∴当x=4时,y有最大值.点评:此题综合考察了相似三角形的判定与性质、二次函数的最值.求二次函数的最大〔小〕值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.此题选择了配方法.22.如图,△ABC中,AB=8,BC=7,AC=6,点D、E分别在AB、AC上,如果以A、D、E为顶点的三角形和△ABC 相似,且相似比为,试求AD、AE的长.考点:相似三角形的性质.专题:计算题.分析:利用三角形相似的性质分△ABC∽△ADE和△ABC∽△AED两种情况讨论即可求得AD、AE的长.解答:解:当△ABC∽△ADE时,相似比为,,即:,解得:AD=2,AE=1.5;当△ABC∽△AED时,,即:,解得:AD=1.5,AE=2.点评:此题考察了相似三角形的性质,解题的关键是分两种情况讨论.23.〔2021•六盘水〕如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,A点坐标是〔2,0〕,B点的坐标是〔8,6〕.〔1〕求二次函数的解析式.〔2〕求函数图象的顶点坐标及D点的坐标.〔3〕该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.〔4〕抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?假设存在,请求出P点的坐标;假设不存在.请说明理由.考点:二次函数综合题.专题:几何综合题;压轴题.分析:〔1〕利用待定系数法求出b,c即可求出二次函数解析式,〔2〕把二次函数式转化可直接求出顶点坐标,由A对称关系可求出点D的坐标.〔3〕由待定系数法可求出BC所在的直线解析式,与抛物线组成方程求出点E的坐标,利用△BDE的面积=△CDB的面积+△CDE的面积求出△BDE的面积.〔4〕设点P到x轴的距离为h,由S△ADP=S△BCD求出h的值,根据h的正,负值求出点P的横坐标即可求出点P的坐标.解答:解:〔1〕∵二次函数y=x2+bx+c的图象过A〔2,0〕,B〔8,6〕∴,解得∴二次函数解析式为:y=x2﹣4x+6,〔2〕由y=x2﹣4x+6,得y=〔x﹣4〕2﹣2,∴函数图象的顶点坐标为〔4,﹣2〕,∵点A,D是y=x2+bx+c与x轴的两个交点,又∵点A〔2,0〕,对称轴为x=4,∴点D的坐标为〔6,0〕.〔3〕∵二次函数的对称轴交x轴于C点.∴C点的坐标为〔4,0〕∵B〔8,6〕,设BC所在的直线解析式为y=kx+b,∴解得∴BC所在的直线解析式为y=x﹣6,∵E点是y=x﹣6与y=x2﹣4x+6的交点,∴x﹣6=x2﹣4x+6解得x1=3,x2=8〔舍去〕,当x=3时,y=﹣,∴E〔3,﹣〕,∴△BDE的面积=△CDB的面积+△CDE的面积=×2×6+×2×=7.5.〔4〕存在,设点P到x轴的距离为h,∵S△BCD=×2×6=6,S△ADP=×4×h=2h∵S△ADP=S△BCD∴2h=6×,解得h=,当P在x轴上方时,=x2﹣4x+6,解得x1=4+,x2=4﹣,当当P在x轴下方时,﹣=x2﹣4x+6,解得x1=3,x2=5,∴P1〔4+,〕,P2〔4﹣,〕,P3〔3,﹣〕,P4〔5,﹣〕.点评:此题主要考察了二次函数的综合题,解题的关键是利用待定系数的方法求出函数解析式以及三角形面积的转化.。
沪科版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1. 将抛物线y=x 2-2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是 A .y=x 2-2x-1B .y=x 2+2x-1C .y=x 2-2D .y=x 2+2 2.若x y =23,则下列各式不成立的是( ) A .x y y +=53 B .y x y -=13 C .2x y =13 D .11x y ++=343.如图,已知一次函数y =ax+b 与反比例函数y =k x 图象交于M 、N 两点,则不等式ax+b >k x解集为( )A .x >2或﹣1<x <0B .﹣1<x <0C .﹣1<x <0或0<x <2D .x >24.如图,已知D 、E 分别是ABC 的AB 、AC 边上的点,DE BC ∥,且:ADE S S △四边形DBCE =1:8,那么:AE AC 等于( )A .1:9B .1:3C .1:D .1:85.如图,A 为反比例函数k y x=图象上一点,AB 垂直于x 轴于点B ,若3AOB S =△,则k 的值为( )A .6-B .3-C .32-D .不能确定6.已知()1A 1,y ,()2B y ,()3C 2,y -在函数21y 2(x 1)2=+-的图象上,则1y ,2y ,3y 的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 1>y 3 7.在三角形纸片ABC 中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC 相似的是( )A .B .C .D . 8.一次函数y =ax +b 和反比例函数y a b x-=在同一直角坐标系中的大致图象是( ) A . B .C .D .9.已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为1x =;③当1x <时,函数值y 随x的增大而增大;④方程20ax bx c ++=有一个根大于4;⑤若221122ax bx ax bx +=+,且12x x ≠,则123x x +=.其中正确的结论有( )A .①②③B .①②③④⑤C .①③⑤D .①③④⑤ 10.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .B .C .D .二、填空题11.已知函数()2113m y m x x +=-+,当m =__________时,它是二次函数.12.如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.13.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是__________m .14.如图,在Rt ABC 中,90ACB ∠=︒,5AB =,4AC =,E ,F 分别为AB 、BC 上的点,沿直线EF 将B 折叠,使点B 恰好落在AC 上的D 处,当ADE 恰好为直角三角形时,BE 的长为__________.三、解答题15.已知二次函数y =﹣2x 2﹣4x+6.(1)用配方法求出函数的顶点坐标;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.16.“今有井径五尺,不知其深,立五尺于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,求井深BD.17.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)一辆宽为2米,高为3米的货船能否从桥下通过?18.如图,一次函数y1=﹣x+5与反比例函数y2=kx的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)求△AOB的面积.19.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE 上一点,且∠AFE =∠B ,(1)求证:△ADF ∽△DEC(2)若AB =4,AD ==3,求AF 的长.20.我们定义两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“和谐值”.(1)求抛物线y =x 2﹣2x+2与x 轴的“和谐值”;(2)求抛物线y =x 2﹣2x+2与直线y =x ﹣1的“和谐值”.21.如图在锐角ABC 中,6BC =,高4=AD ,两动点M 、N 分别在AB 、AC 上滑动(不包含端点),且MN BC ,以MN 为边长向下作正方形MPQN ,设MN x =,正方形MPQN 与ABC 公共部分的面积为y .(1)如图(1),当正方形MPQN 的边P 恰好落在BC 边上时,求x 的值.(2)如图(2),当PQ 落ABC 外部时,求出y 与x 的函数关系式(写出x 的取值范围)并求出x 为何值时y 最大,最大是多少?22.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?BC=,点M在BC上,连接AM点N在直线AD 23.如图,矩形ABCD中,3AB=,2∠=∠,MN交CD于点E.上,且AMN AMB(1)求证:AMN是等腰三角形;(2)求证:22=⋅;AM BM AN(3)当M为BC中点时,求ME的长.参考答案1.C【分析】抛物线y=x2-2x+1化为顶点坐标式再按照“左加右减,上加下减”的规律平移则可.【详解】解:根据题意y=x2-2x+1=(x-1)2向下平移2个单位,再向左平移1个单位,得y=(x-1+1)2-2,y=x2-2.故选:C.【点睛】此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.2.D【分析】根据比例设x=2k,y=3k,然后代入比例式对各选项分析判断利用排除法求解.【详解】:∵23xy=,∴设x=2k,y=3k,A.23533x y k ky k++==,正确,故本选项错误;B.32133y x k ky k--==,正确,故本选项错误;C.212233x ky k==⋅,正确,故本选项错误;D.12131314x ky k++=≠++,故本选项正确.故选D.【点睛】本题考查了比例的性质,利用“设k法”表示出x、y求解更加简便.3.A【分析】根据函数图象写出一次函数图象在反比例函数图象上方部分的x的取值范围即可.【详解】解:由图可知,x >2或﹣1<x <0时,ax+b >xk . 故选A .【点睛】 本题考查了反比例函数与一次函数的交点,利用数形结合,准确识图是解题的关键. 4.B【分析】根据DE ∥BC ,可以得到△ADE ∽△ABC ,通过S △ADE :S 四边形DBCE =1:8,可以得到△ADE 与△ABC 的面积的比,根据相似三角形面积的比等于相似比的平方,即可求解.【详解】解:∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,∴△ADE ∽△ABC ,又∵S △ADE :S 四边形DBCE =1:8,∴S △ADE :S △ABC =1:9,∴AE :AC=1:3.故选B.【点睛】本题考查相似三角形的判定和性质,相似三角形面积的比等于相似比的平方.根据已知条件求出两个三角形的相似比是解决问题的关键.5.A【分析】先设出A 点的坐标,由△AOB 的面积可求出xy 的值,即xy=-6,即可写出反比例函数的解析式.【详解】解:设A 点坐标为A (x ,y ),由图可知A 点在第二象限,∴x <0,y >0,又∵AB ⊥x 轴,∴|AB|=y ,|OB|=|x|,∴S△AOB=12×|AB|×|OB|=12×y×|x|=3,∴-xy=6,∴k=-6故选A.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.6.B【分析】利用函数的对称性将A、B、C三个点放在对称轴同侧,利用函数增减性进行比较.【详解】解:由题可知抛物线对称轴为x=-1,则A点关于对称轴的对称点为(-3,1y),由于抛物线开口向上,则当x<-1时,函数值y随x的增大而减小,故y1>y3>y2.故选择B.【点睛】本题考察了运用二次函数对称性比较函数值大小.7.D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=6.A.44182AB==,对应边631842ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.338AB=,对应边633848ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.22163AC==,对应边631843ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.22142BC==,对应边411822BCAB===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.8.A【分析】先由一次函数的图象确定a、b的正负,再根据a-b判断双曲线所在的象限.能统一的是正确的,矛盾的是错误的.【详解】图A、B直线y=ax+b经过第一、二、三象限,∴a>0、b>0,∵y=0时,x=-ba,即直线y=ax+b与x轴的交点为(-ba,0)由图A、B的直线和x轴的交点知:-ba>-1,即b<a,所以b-a<0,∴a-b>0,此时双曲线在第一、三象限,故选项B不成立,选项A正确;图C、D直线y=ax+b经过第二、一、四象限,∴a<0,b>0,此时a-b<0,双曲线位于第二、四象限,故选项C、D均不成立;故选A.【点睛】本题考查了一次函数、反比例函数的性质.解决本题用排除法比较方便.9.C【分析】根据二次函数的图象具有对称性和表格中的数据,可以得到对称轴为x=32,再由图象中的数据可以得到当x=32取得最大值,从而可以得到函数的开口向下以及得到函数当x<32时,y随x的增大而增大,当x>32时,y随x的增大而减小,然后根据x=0时,y=1,x=-1时,y=-3,可以得到方程ax2+bx+c=0的两个根所在的大体位置,若ax12+bx1=ax22+bx2,且x1≠x2,得到123=22x x +,从而可以解答本题. 【详解】解:由表格可知,由表格可知,x=0和x=3时,函数值y 都是1,∴抛物线的对称轴为直线x=033=22+, 当x=32时,二次函数y=ax 2+bx+c 取得最大值, ∴抛物线的开口向下,故①正确,②错误; 当x <32时,y 随x 的增大而增大,故③正确, 方程ax 2+bx+c=0的一个根大于-1,小于0,则方程的另一个根大于3,小于4,故④错误, 若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则123=22x x +, ∴x 1+x 2=3,故⑤正确,故选:C .【点睛】本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用表格中数据和二次函数的性质判断题目中各个结论是否正确.10.D【详解】试题解析:设BP =x ,CQ =y ,则AP 2=42+x 2,PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△APQ 为直角三角形,∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得:y =−14x 2+32x 整理得:y=−14(x −3)2+94 根据函数关系式可看出D 中的函数图象与之对应.故选D .【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.11.1-【分析】根据二次函数的定义列出关于m 的方程,求出m 的值即可.【详解】解:∵y=(m-1)x m2+1是二次函数,∴m 2+1=2,∴m=-1或m=1(舍去).故答案为:-1.【点睛】本题考查了二次函数的定义,关键是根据定义列出方程,在解题时要注意m-1≠0. 12.6【分析】根据题意,画出示意图,易得:Rt △EDC ∽Rt △FDC ,进而可得ED DC DC FD=;即DC 2=ED?FD ,代入数据可得答案.【详解】根据题意,作△EFC ,树高为CD ,且∠ECF=90°,ED=3,FD=12,易得:Rt △EDC ∽Rt △DCF , 有ED DC DC FD=,即DC 2=ED×FD , 代入数据可得DC 2=36,DC=6,故答案为6.13.10【分析】令y =0解方程,保留正值,即为该男生将铅球推出的距离.【详解】解:当y =0时,212501233x x -++= 解得,x 1=10,x 2=-2(负值舍去),∴该男生把铅球推出的水平距离是10m .【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数与一元二次方程的关系是解题的关键.14.158或157 【分析】先在Rt △ABC 中利用勾股定理求出AC=6cm ,再根据折叠的性质得到BE=DE ,直线EF 将∠B 折叠,使点B 恰好落在BC 上的D 处,△ADE 恰好为直角三角形,有两种可能:①∠ADE=90°,②∠AED=90°,设BE=x ,运用三角形相似列比例式解方程即可得解.【详解】解:在Rt △ABC 中,∵∠C=90°,AB=5,AC=4,∴BC=3.直线EF 将∠B 折叠,使点B 恰好落在BC 上的D 处,当△ADE 恰好为直角三角形时, 根据折叠的性质:BE=DE设BE=x ,则DE=x ,AE=10-x①当∠ADE=90°时,则DE ∥BC , ∴=DE AE CB AB, ∴5=35x x -, 解得:15=8x , ②当∠AED=90°时,则△AED ∽△ACB , ∴=DE AE BC AC, ∴5=34x x -, 解得:x=157, 故所求BE 的长度为:158或157.故答案为:158或157.【点睛】本题考查了折叠的性质,勾股定理以及相似三角形的判定与性质,能够全面的思考问题进行分类讨论是本题的关键.15.(1)(﹣1,8);(2)将抛物线y =﹣2x 2﹣4x+6向右平移3个单位,可使平移后所得图象经过坐标原点,平移后所得图象与x 轴的另一个交点的坐标为(4,0).【分析】(1)利用配方法将二次函数一般式化为顶点式,从而求出顶点坐标;(2)根据二次函数的与x 轴的交点坐标确定如何平移后经过原点;【详解】解:(1)∵y =﹣2x 2﹣4x+6∴222(211)62(1)8y x x x =-++-+=-++∴抛物线的顶点坐标为(﹣1,8);(2)当y =0时,﹣2(x+1)2+8=0,解得x 1=1,x 2=﹣3,抛物线y =﹣2x 2﹣4x+6与x 轴的交点坐标为(1,0),(﹣3,0),所以将抛物线y =﹣2x 2﹣4x+6向右平移3个单位,可使平移后所得图象经过坐标原点, 平移后所得图象与x 轴的另一个交点的坐标为(4,0).【点睛】 本题考查二次函数一般式化为顶点式及二次函数的平移,掌握配方法的方法2222224()()()2224b b b b ac b y ax bx c a x x c a x a a a a a -⎡⎤=++=++-+=++⎢⎥⎣⎦ 是解题关键. 16.BD =57.5尺.【分析】根据相似三角形的性质求得AD 的长度,进而求解.【详解】解:依题意可得:CB∥ED ∴△ABF∽△ADE,∴AB BF AD DE=,即50.45 AD=,解得:AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.【点睛】掌握相似三角形对应边成比例是本题的解题关键.17.(1)抛物线解析式为y=﹣425x2+85x;(2)货船能从桥下通过.【分析】(1)根据题意确定抛物线顶点坐标,利用待定系数法求函数解析式;(2)由抛物线对称轴直线x=5分析,船宽2米时,计算x=6是函数值是否大于3即可求解.【详解】(1)根据题意,得抛物线的顶点坐标为(5,4),经过(0,0),∴设:抛物线解析式为y=a(x﹣5)2+4,把(0,0)代入,得25a+4=0,解得a=4 25 -,所以抛物线解析式为:y=425-(x﹣5)2+4=425-x2+85x.(2)货船能从桥下通过.理由如下:由(1)可知,抛物线对称轴为直线x=5,又∵货船宽为2米,高为3米,∴当x=6时,y=425(6﹣5)2+4=3.84,∵3.84>3,∴货船能从桥下通过.答:货船能从桥下通过.【点睛】此题考查待定系数法求函数解析式,及二次函数的实际应用,根据二次函数对称轴及船宽,求当x=6时的函数值是解题关键.18.(1)A点坐标为(1,4),B点坐标为(4,1),反比例函数解析式为y2=4x;(2)7.5.【分析】(1)将A,B两点坐标代入一次函数解析式求解,然后用待定系数法求得反比例函数的解析式;(2)设一次函数图象与x轴交于点C,利用S△AOB=S△AOC﹣S△BOC求解.【详解】(1)分别把A(1,m)、B(4,n)代入y1=﹣x+5,得m=﹣1+5=4,n=﹣4+5=1,所以A点坐标为(1,4),B点坐标为(4,1),把A(1,4)代入y2=kx,得k=1×4=4,所以反比例函数解析式为y2=4x;(2)如图,设一次函数图象与x轴交于点C,当y=0时,﹣x+5=0,解得x=5,则C点坐标为(5,0),所以S△AOB=S△AOC﹣S△BOC=12×5×4﹣12×5×1=7.5.【点睛】掌握待定系数法求函数解析式及三角形面积公式,数形结合的思想解题是本题的解题关键.19.(1)见解析(2)【详解】(1)证明:∵四边形ABCD 是平行四边形∴AD ∥BC AB ∥CD∴∠ADF=∠CED ∠B+∠C=180°∵∠AFE+∠AFD=180︒,∠AFE=∠B∴∠AFD=∠C∴△ADF ∽△DEC(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC CD=AB=4又∵AE ⊥BC ∴ AE ⊥AD在Rt △ADE 中,6== ∵△ADF ∽△DEC∴AD AF DE CD =∴64AF =∴AF=20.(1)抛物线y =x 2﹣2x+2与x 轴的“和谐值”为1;(2)抛物线y =x 2﹣2x+3与直线y =x ﹣1的“和谐值”为34. 【分析】(1)根据题意将抛物线化成顶点式,找到函数最值即可求解;(2)取P 点为抛物线y =x 2﹣2x+2任意一点,作PQ ∥y 轴交直线y =x ﹣1于Q ,分析PQ 的长度,得到二次函数解析式,求其顶点坐标即可.【详解】(1)∵y =(x ﹣1)2+1,∴抛物线上的点到x 轴的最短距离为1,∴抛物线y =x 2﹣2x+2与x 轴的“和谐值”为1;(2)如图,P 点为抛物线y =x 2﹣2x+2任意一点,作PQ ∥y 轴交直线y =x ﹣1于Q , 设P(t ,t 2﹣2t+2),则Q(t ,t ﹣1),∴PQ =t 2﹣2t+2﹣(t ﹣1)=t 2﹣3t+3=(t ﹣32)2+34, 当t =32时,PQ 有最小值,最小值为34, ∴抛物线y =x 2﹣2x+3与直线y =x ﹣1的“和谐值”为34.【点睛】充分理解题意“和谐值”的含义即函数最值的绝对值是本题的解题关键.21.(1)当125x =时正方形MPQN 的边P 恰好落在BC 边上;(2)()224 2.463y x x x =-+<<,当3x =时,y 最大6= 【分析】(1)因为正方形的位置在变化,但是△AMN ∽△ABC 没有改变,利用相似三角形对应边上高的比等于相似比,得出等量关系,代入解析式即可.(2)用含x 的式子表示矩形MEFN 边长,从而求出面积的表达式.【详解】解:(1)设AD 与MN 相交于点H ,∵MN BC ,∴AMN ABC △∽△, ∴AHMN AD BC =,即446xx-=, 解得,125x =, 当125x =时正方形MPQN 的边P 恰好落在BC 边上;(2)设MP 、NQ 分别与BC 相交于点E 、F , 设D a =,则4A a =-,由∴AH MN AD BC =,即46a xx -=, 解得,243a x =-+,∵矩形MEFN 的面积MN HD =⨯, ∴()22244 2.4633y x x x x x =-+=⎛⎫ ⎪⎭+<⎝-<()22363y x =--+∴当3x =时,y 最大6=.本题结合相似三角形的性质及矩形面积计算方法,考查二次函数的综合应用,解题时,要始终抓住相似三角形对应边上高的比等于相似比,表示相关边的长度.22.(1)、y=2100(010x ){3130(1030,x )x x x x ≤≤-+≤,且为整数且为整数;(2)、22件.【详解】试题分析:(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案; (2)根据销量乘以每台利润进而得出总利润,即可求出即可. 试题解析:(1)2300200100(010,){[3003(10)200]3130(1030,)x x x x x y x x x x x -=≤≤=---=-+≤且为整数<且为整数, (2)在0≤x≤10时,y=100x ,当x=10时,y 有最大值1000;在10<x≤30时,y=-3x 2+130x ,当x=2123时,y 取得最大值, ∵x 为整数,根据抛物线的对称性得x=22时,y 有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.考点:二次函数的应用.23.(1)详见解析;(2)详见解析;(3)54ME =【分析】(1)由矩形的性质得出AD ∥BC ,由平行线的性质得出∠NAM=∠BMA ,由已知∠AMN=∠AMB ,得出∠AMN=∠NAM ,即可得出结论;(2)由矩形的性质得出AD ∥BC ,AD=BC=2,AB=CD=3,由平行线的性质得出∠NAM=∠BMA ,作NH ⊥AM 于H ,由等腰三角形的性质得出AH=12AM ,证明△NAH ∽△AMB ,得出=AN AH AM BM ,即可得出结论; (3)求出BM=CM=12BC=12×2=1,由(2)得AM 2=2BM•AN ,得出AM 2=2AN ,由勾股定理得出AM 2=AB 2+BM 2=10,求出AN=5,得出DN=AN-AD=3,设DE=x ,则CE=3-x ,证明△DNE ∽△CME ,得出=DN DE CM CE ,求出DE=94,得出CE=DC-DE=34,再由勾股定理即可得出答案.解:(1)证明:∵四边形ABCD 是矩形,∴AD BC ∥,∴NAM BMA ∠=∠,又AMN AMB ∠=∠,∴AMN NAM ∠=∠,∴AN MN =,即AMN 是等腰三角形;(2)解:作NH AM ⊥于H ,∵AN MN =,NH AM ⊥, ∴12AH AM =,∵90NHA ABM ∠=∠=︒,AMN AMB ∠=∠,∴NAH AMB △∽△, ∴ANAHAM BM =, ∴212AN BM AH AM AM ⋅=⋅=∴22AM BM AN =⋅(3)解:∵M 为BC 中点, ∴112BM CM BC ===,由(2)得,22AM BM AN =⋅,∵2223110AM =+=,∴5AN =,∴523DN =-=,设DE x =,则3CE x =-,∵AN BC , ∴DNDECM CE =,即313xx =-, 解得,94x =,即94DE =, ∴34CE =,∴54ME =.【点睛】本题是相似形综合题目,考查的是相似三角形的判定和性质、勾股定理的应用、等腰三角形的性质和矩形的性质等知识;熟练掌握矩形的性质和等腰三角形的判定,证明三角形相似是解题的关键.。
一、选择题1.下面四个图案是常用的交通标志,其中为中心对称图形的是( )A .B .C .D . 2.下列四个图案中,是中心对称图形的是( )A .B .C .D .3.已知Rt ABC ∆中,两条直角边4AC =,3BC =,将ABC ∆绕斜边中点O 旋转,使直角顶点与点B 重合,得到与ABC ∆全等的EDB ∆,BE 边和AC 相交于点F ,则EF 的值是( )A .78B .1C .45D .234.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D . 5.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转90︒得到月牙②,则点A 的对应点A’的坐标为 ( )A .(2,2)B .(2,4)C .(4,2)D .(1,2) 6.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 7.如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(﹣2,﹣3),(1,﹣3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为( )A .﹣1B .﹣3C .﹣5D .﹣78.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .9.抛物线2288y x x =-+-的对称轴是( )A .2x =B .2x =-C .4x =D .4x =- 10.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -< 11.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m <B .3mC .3m <且2m ≠D .3m 且2m ≠ 12.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠ 13.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20% 14.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2-二、填空题15.已知点()12,A y -,()23,B y -在二次函数22y x x c =--+的图象上,则1y 与2y 的大小关系为1y ______2y .(填“>”“<”或“=”)16.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.17.将二次函数y=x 2-4x+5化成=(x-h )2+k 的形式,则y= _____.18.已知12,x x 是一元二次方程21402x mx m -+-=的两个实数根且12111x x +=,则m 的值为______.19.三角形两边长分别为3和5,第三边满足方程x 2-6x+8=0,则这个三角形的形状是__________.20.关于x 的方程2880kx x -+=有两个实数根,则k 的取值范围______________.三、解答题21.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE=1,求FM 的长.22.如图,△ABC 的顶点坐标分别为(﹣2,﹣4),B (0,﹣4),C (2,﹣1). (1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1,直接写出点C 1的坐标为 . (2)画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2,直接写出点C 2的坐标为 . (3)若△ABC 内一点P (m ,n )绕原点O 逆时针旋转180°的对应点为Q ,则Q 的坐标为 .23.如图,在平面直角坐标系中,有抛物线y =ax 2+bx+3,已知OA =OC =3OB ,动点P 在过 A 、B 、C 三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标,若不存在,说明理由;24.如图,已知抛物线2y ax c =+过点()2,2-,()4,5,过定点()0,2F 的直线y kx b =+与抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)直接写出抛物线的解析式.(2)求证:BF BC =.(3)若1k =,在直线y kx b =+下方抛物线上是否存在点Q ,使得QBF 的面积最大?若存在,求出点Q 的坐标及QBF 的最大面积;若不存在,请说明理由.25.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?26.先化简,再求值:(1﹣1a)21aa,其中a满足方程a2﹣a﹣2=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据中心对称图形的概念进行判断即可;【详解】A、图形旋转180度之后不能与原图形重合,故不是中心对称图形;B、图形旋转180度之后不能与原图形重合,故不是中心对称图形;C、图形旋转180度之后能与原图形重合,故是中心对称图形;D、图形旋转180度之后不能与原图形重合,故不是中心对称图形;故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合;2.B解析:B【分析】根据中心对称图形的概念和各图特点即可解答.【详解】解:根据中心对称图形的概念,可知B中的图形是中心对称图形,而A、C和D中的图形不是中心对称图形.故选:B.【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.A解析:A由旋转的性质得O 为DE 中点,可证OB=OE ,∠OBE=∠E ,进而证明AF=BF ,然后设设AF=BF=x ,根据勾股定理求解即可.【详解】解:∵ABC ∆≌EDB ∆,∴BE=AC=4, ∠A=∠E , ∠C=∠DBE=90°.∵O 为AB 中点,且△ABC 绕点O 旋转,∴O 为DE 中点,∴OB=OE ,∴∠OBE=∠E ,∴∠OBE=∠A ,∴AF=BF ,设AF=BF=x ,则CF=4-x ,∵222BC CF BF +=,∴2223(4)x x +-=, ∴258x =, ∴258BF =, ∴257488EF BE BF =-=-=. 故选A .【点睛】本题考查了全等三角形的性质,直角三角形斜边上的中线等于斜边的一半,等腰三角形的判定与性质,以及勾股定理等知识,熟练掌握各知识点是解答本题的关键. 4.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,但不是中心对称图形,故此选项正确;B 、是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,是中心对称图形,故此选项错误;D 、不是轴对称图形,是中心对称图形,故此选项错误;故选A .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 5.B【详解】解:连接A′B,由月牙①顺时针旋转90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(-2,0)、B(2,0)得AB=4,于是可得A′的坐标为(2,4).故选B.6.C解析:C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.C解析:C【分析】当图象顶点在点B时,点N的横坐标的最大值为4,求出a=13;当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,求出x值,即可求解.【详解】当图象顶点在点B时,点N的横坐标的最大值为4,则此时抛物线的表达式为:y=a(x﹣1)2﹣3,把点N的坐标代入得:0=a(4﹣1)2﹣3,解得:a=13,当顶点在点A 时,M 点的横坐标为最小,此时抛物线的表达式为:y =13(x +2)2﹣3, 令y =0,则x =﹣5或1,即点M 的横坐标的最小值为﹣5,故选:C .【点睛】本题考查的是二次函数与x 轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键. 8.C解析:C【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象.【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势.对称轴再y 轴左边,故02b a-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项故本题选择C .【点睛】本题属于二次函数与一次函数的综合,关键在意找到系数的正负.9.A解析:A【分析】利用抛物线对称轴公式求解即可.【详解】解:∵2288y x x =-+-,∴对称轴为直线x=-822(2)=⨯-, 故选:A .【点睛】 本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键.10.C解析:C【分析】由二次函数的开口方向,对称轴0x >,以及二次函数与y 的交点在x 轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.【详解】A 、观察图象,二次函数的开口向下,∴0a <,与y 轴的交点在x 轴上方,∴0c >,又∵对称轴为2b x a =-,在x 轴的正半轴上, 故02b x a=->,即0b >. ∴0abc <,故选项A 不正确;B 、观察图象,抛物线对称轴为直线12122x -+== ∴在对称轴右侧,当1x =时,函数值0y a b c =++>,故选项B 不正确; C 、观察图象,当2x =时,函数值420y a b c =++=,故选项C 正确;D 、∵二次函数与x 轴有两个交点,∴240b ac =->,故D 不正确. 故选:C .【点睛】本题考查了二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键. 11.D解析:D【分析】根据一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac 的意义得到m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,然后解不等式组即可得到m 的取值范围.【详解】解:∵关于x 的一元二次方程(m-2)x 2-2x+1=0有实数根,∴m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,解得m≤3,∴m 的取值范围是 m≤3且m≠2.故选:D .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 12.D解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.13.D解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 14.D解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.二、填空题15.【分析】抛物线开口向下且对称轴为直线x=-1根据二次函数的图象性质:在对称轴的左侧y 随x 的增大而增大判断即可【详解】解:∵二次函数的解析式为y=-x2-2x+c=-(x+1)2+1+c ∴该抛物线开口解析:>【分析】抛物线开口向下,且对称轴为直线x=-1,根据二次函数的图象性质:在对称轴的左侧,y 随x 的增大而增大判断即可.【详解】解:∵二次函数的解析式为y=-x 2-2x+c=-(x+1)2+1+c ,∴该抛物线开口向下,且对称轴为直线:x=-1.∵点A (-2,y 1),B (-3,y 2)在二次函数y=-x 2-2x+c 的图象上,且-3<-2<-1, ∴y 1>y 2.故答案为>.【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.16.【分析】首先求出点A 和点B 的坐标然后求出解析式分别求出直线过抛物线顶点时m 的值以及直线过原点时m 的值结合图形即可得到答案【详解】令解得:或则A (20)B (-20)∵与关于y 轴对称:顶点为(12)∴的解析:02m <<【分析】首先求出点A 和点B 的坐标,然后求出2C 解析式,分别求出直线y m =过抛物线顶点时m的值以及直线y m =过原点时m 的值,结合图形即可得到答案. 【详解】令2240y x x =-+=,解得:0x =或2x =,则A (2,0),B (-2,0),∵1C 与2C 关于y 轴对称,1C :()2224212y x x x =-+=--+,顶点为(1,2), ∴2C 的解析式为()2221224y x x x =-++=--(20x -≤≤),顶点为(-1,2),当直线y m =过抛物线顶点时,它与1C ,2C 共有2个不同的交点,此时2m =;当直线y m =过原点时,它与1C ,2C 共有3个不同的交点,此时0m =; ∴当02m <<时,直线y m =与1C ,2C 共有4个不同的交点. 故答案为:02m <<.【点睛】本题考查了抛物线与x 轴的交点、二次函数的图象与几何变换、一次函数与二次函数的关系,数形结合是解题的关键.17.【分析】将二次函数的右边配方即可化成的形式【详解】解:故答案为:【点睛】本题考查了二次函数的解析式有三种形式关键是熟练掌握以下三种形式:(1)一般式:y=ax2+bx+c (a≠0abc 为常数);(2解析:2(2)1x -+【分析】将二次函数245y x x =-+的右边配方即可化成2()y x h k =-+的形式.【详解】解:245y x x =-+, 24445y x x =-+-+,2441y x x =-++,22()1y x =-+.故答案为:2(2)1x -+.【点睛】本题考查了二次函数的解析式有三种形式,关键是熟练掌握以下三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x-h )2+k ;(3)交点式(与x 轴):y=a (x-x 1)(x-x 2).18.-8【分析】先利用根与系数的关系得到再把变形为从而代入得到方程解之即可【详解】解:∵是一元二次方程的两个实数根∴∵∴即解得:m=-8故答案为:-8【点睛】本题考查了根与系数的关系根据根与系数的关系找解析:-8【分析】先利用根与系数的关系得到12x x m +=,12142x x m ⋅=-,再把12111x x +=变形为1212x x x x +=,从而代入得到方程,解之即可.【详解】解:∵12,x x 是一元二次方程21402x mx m -+-=的两个实数根, ∴12x x m +=,12142x x m ⋅=-, ∵12111x x +=, ∴1212x x x x +=,即142m m =-, 解得:m=-8,故答案为:-8.【点睛】 本题考查了根与系数的关系,根据根与系数的关系,找出12x x m +=,12142x x m ⋅=-是解题的关键. 19.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形【分析】先利用因式分解法解方程得到x 1=4,x 2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x 2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x 1=4,x 2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.20.且【分析】利用根的判别式b2-4ac 由于原方程有实数根那么判别式大于或等于零【详解】解:∵关于x 的方程有两个实数根且解得:且故答案为且【点睛】关于x 的方程有两个实数根(1)说明这是一个一元二次方程故 解析:k 2≤且0k ≠【分析】利用根的判别式b 2-4ac .由于原方程有实数根,那么判别式大于或等于零.【详解】解:∵关于x 的方程2880kx x -+=有两个实数根,2(8)480k ∆=--⋅⋅≥,且0k ≠,解得:k 2≤且0k ≠,故答案为k 2≤且0k ≠,.【点睛】关于x 的方程有两个实数根,(1)说明这是一个一元二次方程,故“二次项系数不能为0”;(2)“根的判别式△的值要大于或等于0”;这两个条件要同时满足,解题时不要忽略了第一个条件.三、解答题21.52【分析】由旋转可得DE=DM ,∠EDM 为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF 为45°,可得出∠EDF=∠MDF ,再由DF=DF ,利用SAS 可得出三角形DEF 与三角形MDF 全等,由全等三角形的对应边相等可得出EF=MF ;则可得到AE=CM=1,正方形的边长为3,用AB-AE 求出EB 的长,再由BC+CM 求出BM 的长,设EF=MF=x ,可得出BF=BM-FM=BM-EF=4-x ,在直角三角形BEF 中,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即为FM 的长.【详解】解:∵∆DAE 逆时针旋转90°得到∆DCE ,∴∠FCM=∠FCD+∠DCM=180°,∴F 、C 、M 三点共线,∴DE=DM ,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在∆DEF 和∆DMF 中,DE DM EDF FDM DF DF =⎧⎪∠=∠⎨⎪=⎩∴∆DEF ≌∆DMF(SAS),∴EF=MF ,设EF=MF=x ,∵AE=CM=1,且BC=3,∴BM=BC+CM=4,∴BF=BM-MF=BM-EF=4-x ,∵EB=AB-AE=3-1=2,在Rt∆EBF 中222EB BF EF +=即2222(4)x x +-=解得x=52, ∴FM=52【点睛】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理.此题难度适中,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.22.(1)图见解析,()2,1-;(2)图见解析,()1,2;(3)(),m n --【分析】(1)分别画出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)分别画出A ,B ,C 的对应点A 2,B 2,C 2即可.(3)根据中心旋转图形的性质解决问题即可.【详解】解:(1)如图,△A 1B 1C 1即为所求,点C 1的坐标为(﹣2,1).故答案为:(﹣2,1).(2)如图,△A 2B 2C 2即为所求,点C 2的坐标为(1,2),故答案为:(1,2).(3)若△ABC 内一点P (m ,n )绕原点O 逆时针旋转180°的对应点为Q ,则Q 的坐标为(﹣m ,﹣n ).故答案为:(﹣m ,﹣n ).【点睛】本题考查作图-旋转变换,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.(1)2y x 2x 3=-++;(2)存在,()1,4P 或()2,5--.【分析】(1)根据A 的坐标,即可求得OA 的长,则B 、C 的坐标即可求得,然后利用待定系数法即可求得函数的解析式;(2)分点A 为直角顶点时,和C 的直角顶点两种情况讨论,根据等腰三角形的性质得到两直角边相等,即可列方程分别求解.【详解】解:(1)由题意可知:c =3∴OC =OA =3OB=3,∴点A 、B 、C 的坐标分别为:(0,3)、(﹣1,0)、(3,0),将点B 、C 代入抛物线的表达式为:09a 3303b a b =++⎧⎨=-+⎩, 解得:a 12b =-⎧⎨=⎩∴抛物线的表达式为:y =﹣x 2+2x+3;(2)过点A 、C 分别作直线AC 的垂线,分别交抛物线于P 1、P 2.过点P 1作P 1M ⊥ y 轴,垂足为M .∵OC =OA∴ ∠OAC=∠OCA=45º∴ ∠MAP 1=∠MP 1A=45º∴MA=MP 1设P 1点坐标(a ,﹣a 2+2a+3)则MP 1=a ,OP 1=﹣a 2+2a+3∵OA =3∴MA=﹣a 2+2a+3-3=﹣a 2+2a∴﹣a 2+2a=a解之得:a 1=0(舍去),a 2=1∴﹣a 2+2a+3=4∴P 的坐标为(1,4)过点P 2作P 2N ⊥ x 轴,垂足为N .∵OC =OA ∴ ∠OAC=∠OCA=45º∴ ∠NAP 2=∠NP 2C=45º∴CN=NP 2设P 2点坐标(a ,﹣a 2+2a+3)则NP 2=a 2-2a-3,ON=﹣a∵a 2-2a-3=3-a解之得:a 1=3(舍去), a 2=-2,∴﹣a 2+2a+3=-5∴点P 的坐标为(﹣2,﹣5)∴当点P 的坐标为(1,4)或(﹣2,﹣5)时,使得△ACP 是以AC 为直角边的直角三角形.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求抛物线的解析式,以及等腰三角形的性质.在求有关动点问题时要注意分析题意分情况讨论结果.24.(1)2114y x =+;(2)见解析;(3)存在,最大值为222+,此时Q 点坐标为()2,2.【分析】(1)利用待定系数法求抛物线解析式;(2)设B(x ,2114x +),而F (0,2),利用两点间的距离公式得到BF=2114x +,而BC=2114x +,所以BF=BC ; (3)作//QE y 轴交AB 于点E ,设2114Q t t ⎛⎫+ ⎪⎝⎭,,利用QBF EQF EQB S S S =+△△△和二次函数的性质即可求解.【详解】(1)把点(-2,2),(4,5)代入2y ax c =+得:42165a c a c +=⎧⎨+=⎩, 解得:141a c ⎧=⎪⎨⎪=⎩,所以抛物线解析式为2114y x =+; (2)设B(x ,2114x +),已知F (0,2), ∴2222222221111211444BF x x x x x ⎛⎫⎛⎫⎛⎫=++-=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴2114BF x =+, ∵BC x ⊥轴,∴2114BC x =+, ∴BF BC =; (3)作//QE y 轴交AB 于点E .经过点F (0,2),且1k =时,∴一次函数解析式为2y x =+,解方程组22114y x y x =+⎧⎪⎨=+⎪⎩, 得22242x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 则(22222B ++,, 设2114Q t t ⎛⎫+ ⎪⎝⎭,,则()2E t t +,, ∴221121144EQ t t t t ⎛⎫=+-+=-++ ⎪⎝⎭, ∴QBF EQF EQB S S S =+△△△((21112222221224EQ t t ⎛⎫=⋅+⋅=⋅+-++ ⎪⎝⎭)21224t +=--++当2t =时,QBF S △有最大值,最大值为2+,此时Q 点坐标为()22,. 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求函数解析式;要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.25.(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x ,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平均日产量.【详解】(1)设口罩日产量的月平均增长率为x ,根据题意,得30000(1+x )2=36300,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系.26.11a +,13. 【分析】 先根据分式的基本性质化简,再求解关于a 的一元二次方程,代入求解即可;【详解】 解:原式=()()11111a a a a a a -=++-, 解方程a 2﹣a ﹣2=0得,a 1=2,a 2=﹣1,当a =2时,原式=11=2+13, 当a =﹣1时,分式无意义,则分式的值为13. 【点睛】本题主要考查了分式化简求值,与一元二次方程的求解,准确分析计算是解题的关键.。
第2题图田家炳中学2015届九年级上学期数学期中卷一、选择题:(本大题共6题,每题4分,满分24分) 1. 已知Rt △ABC 中,∠A =90º,则cb是∠B 的( ) A .正切; B .余切; C .正弦 ; D .余弦;2. 如图,E 是平行四边形ABCD 的边BA 延长线上的一点,CE 交AD 于点F ,下列各式中错误..的是( )A . AE EF AB CF = ; B .BC AFBE AE =; C . AE AF AB DF = ; D . AE AFAB BC= 3. 已知抛物线2)1(2++=x m y 的顶点是此抛物线的最高点,那么m 的取值范围是( ) A . 0≠m ; B. 1-≠m ; C. 1->m ; D. 1-<m .4. 已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b的是A. a ∥c ,b ∥c ;B. a =c 2,b =c ;C. a=b 5-;=5. 根据你对相似的理解,下列命题中,不.正确的是( ). A. 三边之比为2:3:4的两个三角形一定相似 B. 三内角之比为2:3:4的两个三角形一定相似 C. 两邻边之比为2:3的两个直角三角形一定相似 D. 两邻边之比为2:3的两个矩形一定相似6. 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE //BC ,AD ∶BD = 1∶2,那么S △DBE ∶S △CBE 等于( )A. 1∶2;B. 1∶3;C. 1∶4;D. 1∶6.二、填空题:(本大题共12题,每题4分,满分48分)7. 已知线段b 是线段a 、c 的比例中项,且a =9,c =4,那么b = . 8. 若23a c b d ==(其中0b d +≠),则a cb d+=+__________. 9. 两个相似三角形周长的比为2:3,则其对应的面积比为________.10. 为了测量铁塔的高度,在离铁塔底部a 米的地方,用测角仪测得塔顶的仰角为α,已知测角仪的高度为h 米,那么铁塔的高度为 _____________米.11. 如果将抛物线228y x =-+向右平移a 个单位后,恰好过点(3,6),那么a 的值为_________.(第6题图)DE FCBA12. 定义[a ,b ,c]为函数c bx ax y ++=2的特征数,若特征数为[2m ,1﹣m ,﹣1﹣m]的二次函数经过原点,则m=____________13. 已知G 是ABC △的重心,设b AC a AB ==,,用向量b a , 表示向量,则 = . 14. 如果在△ABC 中,AB =AC = 3,BC =2,那么顶角的正弦值为 .15. 如图,已知矩形ABCD ,AB=1,又ABEF 是正方形,若矩形CDEF 与矩形ABCD 相似,则AD 长为: 。
16. 已知:如图,Rt ABC ∆中,090C ∠=,在Rt ABC ∆内有三个正方形,且这三个正方形都有一边在BC 上,都有一个顶点在AB 上,点D 在AC 上,第一个正方形边DE 长9 cm ,第二个正方形边FG 长6 cm ,那么第三个正方形的边PQ 长为 . 17. 在△ABC 中,AB =AC ,如果中线BM 与高AD 相交于点G ,那么ADAG= . 18. 如图,在△ABC 中,AB=AC ,BC=8,tanC=23,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D ,那么BD 的长为__________. 三、解答题19.(10分)计算:()︒⋅︒+︒︒45sin 230cot 45cos 60sin 220.(10分,第(1)小题6分,第(2)小题4分) 如图,在梯形ABCD 中,AB ‖CD ,E 是CD 的中点, 且AB EC 52=,AC 与BE 交于点F . (1)若,A B m A D n ==,请用,m n 来表示DC 、AF (2).请直接在图中画出AC 在,m n 方向上的分向量21. (10分)如图所示,小杰发现垂直地面的旗杆AB 的影子落在地面和斜坡上,影长分别为BC 和CD ,经 测量得10BC =米,10CD =米,斜坡CD 的坡度为(15题)F B 第16CABD第21题C(第23题图)1:3i =,且此时测得垂直于地面的1米长标杆在地面上影长为2米.求旗杆AB 的长度.3.2≈)22. (10分) 如图,在平面直角坐标系xOy 中,抛物线y = ax 2+bx +c 与x 轴交于A 、B 两 点,点A 在x 轴负半轴,点B 在x 轴正半轴, 与y 轴交于点C ,且tan ∠ACO =12,CO =BO , AB =3,求这条抛物线的函数解析式.23. (12分,其中第(1)小题5分,第(2)小题7已知:如图,在△ABC 中,AB =AC , DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE . 求证:(1)△DEF ∽△BDE ;(2)EF DB DF DG ⋅=⋅.24.(12分,每小题4分) 如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C 的坐标为(0 ,﹣ ),点M 是抛物线C 2:y =mx 2﹣2mx ﹣3m (m <0)的顶点. (1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值.25. 如图,在平行四边形□ OABC中,点A在x轴上,∠AOC=60o,0C=4cm.OA=8cm.动点P从点0出发,以1cm/s的速度沿线段OA→AB运动;动点Q同时..从点O出发,以a cm/s的速度沿线段OC→CB运动,其中一点先到达终点B时,另一点也随之停止运动.设运动时间为t秒.(1)填空:点C的坐标是(___,____),对角线OB的长度是_______cm;(2)当a=1时,设△OPQ的面积为S,求S与t的函数关系式,并直接写出当t为何值时,S的值最大?(3)当点P在OA边上,点Q在CB边上时,线段PQ与对角线OB交于点M.若以O、M、P为顶点的三角形与△OAB相似,求a与t的函数关系式,并直接写出t的取值范围.九年级数学学科期中练习卷答案要点与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.;2.;3.;4.;5.;6..二、填空题:(本大题共12题,每题4分,满分48分)7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18..三、解答题(本大题共7题,满分78分)19.20.21.22.23.24.解:(1)y=mx2﹣2mx﹣3m=m(x﹣3)(x+1),∵m≠0,∴当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:,解得,故C1:y=x2﹣x﹣.如图:过点P作PQ∥y轴,交BC于Q,由B、C的坐标可得直线BC的解析式为:y=x﹣,设P(x,x2﹣x﹣),则Q(x,x﹣),PQ=x﹣﹣(x2﹣x﹣)=﹣x2+x,S△PBC=PQ•OB=×(﹣x2+x)×3=﹣(x﹣)2+,当x=时,S△PBC有最大值,Smax=,×()2﹣﹣=﹣,P(,﹣);(3)y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,顶点M坐标(1,﹣4m),当x=0时,y=﹣3m,∴D(0,﹣3m),B(3,0),∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,MB2=(3﹣1)2+(0+4m)2=16m2+4,BD2=(3﹣0)2+(0+3m)2=9m2+9,当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2.①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,解得m=﹣1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时有:m2+1+16m2+4=19m2+9,解得m =﹣(m =舍去).综上,m =﹣1或﹣时,△BDM 为直角三角形.25.为顶点的三角形与△OAB 相似,求a 与t 的函数关系式,并直接写出t 的取值范围. 解:(1)C (2,23),OB =47cm .……………………4分 (2) ①当0<t ≤4时,过点Q 作QD ⊥x 轴于点D (如图1),则QD =23t . ∴S =21OP ·QD =43t 2. ………………………5分 ②当4≤t ≤8时,作QE ⊥x 轴于点E (如图2),则QE =23. ∴S =21DP ·QE =3t . ……………………6分 ③当8≤t <12时,解法一:延长QP 交x 轴于点F ,过点P 作PH ⊥AF 于点H (如图3). 易证△PBQ 与△PAF 均为等边三角形,∴OF =OA +AP =t ,AP =t -8. ∴PH =23(t -8). ∴S =S △OQF -S △OPF =21t ·23-21t ·23(t -8) =-43t 2+33t .当t =8时,S 最大.(3)①当△OPM ~△OAB 时(如图4),则PQ ∥AB .∴CQ =OP . ∴at -4=t ,a =1+t4. t 的取值范围是0<t ≤8.②当△OPM ~△OBA 时(如图5), 则OA OM OB OP =,∴874t OM =, ∴OM =t 772. 又∵QB ∥OP , ∴△BQM ~△OPM , ∴OMBMOP QB =, ∴t 772772-74tat-12=, 整理得t -at =2,∴a =1-t 2.t 的取值范围是6≤t ≤8.综上所述:a =1+t 4(0<t ≤8)或a =1-t2(6≤t ≤8).。