2020陕西省考行测数量关系:记住一个公式,解决一类题
- 格式:docx
- 大小:107.12 KB
- 文档页数:2
公务员考试行测中,知识点考察错综复杂,而对于数量关系的考察难度相对较大,中公教育就数学运算的考点、考题形式等进行一一讲解。
一、牛吃草问题例题:一水库原有一定的水量,河水每天均匀入库,5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。
若要求6天抽干,需要()台同样的抽水机。
A.8B.10C.12D.14【中公解析】答案:C。
牛吃草原型公式是原有草量=(牛的头数-草匀速生长的速度)×时间,在这里水库的一定量得水代表原有草量,抽水机的数量代表牛的头数,抽水机每台的速度代表草匀速生长的速度,所以设草匀速生长的速度为X,则(5-x)×20=(6-x)×15=(y-x)×6,解得x=2,y=12,选择C选项。
例题:有一片青草每天生长的速度相同,已知这片青草可供15头牛吃20天,或者供76只羊吃12天,如果一头牛的吃草量等于4只羊的吃草量,那么8头牛与64只羊一起吃,可以吃多少天?A.2B.6C.8D.10【中公解析】答案:C。
题目既存在牛也存在羊,把牛转换成羊进行计算,假设每只羊每天的吃草量为1,则牛的为4,所以(15×4-X)×20=(76-X)×12=(32+64-x)×T,解得X=36,T=8,所以选择C选项。
二、利润问题例题:同一种品牌的电冰箱,甲超市的进价为1760元,比乙超市高10%,如果甲、乙两超市按相同的价格出售,则乙超市利润率比甲超市高15%。
那么甲、乙两超市的售价为()元。
A.2360B.2640C.2680D.2720【中公解析】答案:B。
找到题干等量关系列方程,甲乙超市售价相同,假设甲超市利润率为X,则有1600×(1+x%+15%)=1760×(1+x%)解得X=50%,所以售价为1760×(1+50%)=2640,所以选择B选项。
例题:某商店进了100件同样的衣服,按100%的利润率定价,卖了一段时间后打八折销售,卖掉剩下衣服的一半时为快速清仓,在八折基础上再打五折,售完所有衣服,已知这批衣服的最终利润率为52%,则未打折时共卖了多少件衣服?A.30B.35C.40D.60【中公解析】答案:C。
行测数量关系蒙题口诀在说到行测的数量关系时,大家总是觉得复杂得像是过山车,心里七上八下。
不过啊,其实这些东西也没那么难,只要找到点窍门,就能轻松应对。
今天我们就来聊聊那些蒙题的小口诀,保准让你轻松上阵,迎战各种难题。
大家应该知道,数量关系最怕的就是生疏,特别是那些数学概念,一不小心就容易被绕晕。
就像我小时候做作业,总是把题目看错,哎呀,那感觉真是无奈啊。
所以,先来一个简单的口诀:“相同量同加,异量同减。
”这是什么意思呢?就是如果你们要加的是同一种东西,比如苹果和苹果,那就没问题了,直接加就行;可是要是碰到不同的,比如苹果和橘子,那就得小心翼翼了,可能要进行一些减法运算。
明白这个道理,做题的时候心里就有底了。
再说说比率关系,大家知道的,比例问题经常出现在题目中。
有些朋友看到这个就觉得头痛,脑海中瞬间一片空白。
咱们可以用“比就比,按比例”这个口诀来帮自己理清思路。
比率是个很简单的概念,只要搞清楚A和B的关系,知道了其中一个的量,另一个的量自然就水到渠成了。
想象一下,你和朋友分享一块蛋糕,切的时候只要你们两个一口一个,最终的份额就会很自然地出来了,简单吧!然后,大家都知道“和”字在数量关系中很重要。
特别是求和的时候,容易搞混。
这时咱们就来一个“求和同看,求差分开”的小窍门。
求和的时候,最好把所有相关的量都放在一起,像个大家庭一样,相亲相爱,和气生财;可如果求差,特别是有异量的时候,就要分开来看,像在进行一场辩论,谁的理由更充分,谁就赢了。
记住这些,小心谨慎,自然能够从容应对。
我们再来聊聊速度的问题,速度与时间的关系就像赛跑一样,谁快谁慢,一目了然。
这里可以用“快慢结合,时间分清”来帮助大家。
想象一下,如果你在马路上看到两辆车,一辆飞快,一辆慢悠悠,别忘了时间的因素哦。
我们可以把这看成是一场比赛,谁的时间短,谁就能到达终点,明白了吗?对了,大家常常遇到的就是容积问题。
说到这个,许多人就像碰到“无底洞”一样,怎么也搞不清楚。
行测常用数学公式工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实际问题时,常设总工作量为1或最小公倍数1方阵问题:1.实心方阵:方阵总人数=最外层每边人数2=外圈人数÷4+12=N2最外层人数=最外层每边人数-1×42.空心方阵:方阵总人数=最外层每边人数2-最外层每边人数-2×层数 2=最外层每边人数-层数×层数×4=中空方阵的人数;★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人;边行每边有a人,则一共有Na-1人;4.实心长方阵:总人数=M×N 外圈人数=2M+2N-45.方阵:总人数=N2 N排N列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人解:10-3×3×4=84人(2)排队型:假设队伍有N人,A排在第M位;则其前面有M-1人,后面有N-M人(3)爬楼型:从地面爬到第N层楼要爬N-1楼,从第N层爬到第M层要爬NM-层;线型棵数=总长/间隔+1环型棵数=总长/间隔楼间棵数=总长/间隔-11单边线形植树:棵数=总长÷间隔+1;总长=棵数-1×间隔2单边环形植树:棵数=总长÷间隔;总长=棵数×间隔3单边楼间植树:棵数=总长÷间隔-1;总长=棵数+1×间隔4双边植树:相应单边植树问题所需棵数的2倍;5剪绳问题:对折N 次,从中剪M 刀,则被剪成了2N×M +1段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + 2相遇追及型:相遇问题:相遇距离=大速度+小速度×相遇时间 追及问题:追击距离=大速度—小速度×追及时间 背离问题:背离距离=大速度+小速度×背离时间 3流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速; 顺流行程=顺流速度×顺流时间=船速+水速×顺流时间 逆流行程=逆流速度×逆流时间=船速—水速×逆流时间 4火车过桥型:列车在桥上的时间=桥长-车长÷列车速度列车从开始上桥到完全下桥所用的时间=桥长+车长÷列车速度 列车速度=桥长+车长÷过桥时间 (5)环形运动型:反向运动:环形周长=大速度+小速度×相遇时间 同向运动:环形周长=大速度—小速度×相遇时间(6)扶梯上下型:扶梯总长=人走的阶数×1±人梯u u ,顺行用加、逆行用减顺行:速度之和×时间=扶梯总长 逆行:速度之差×时间=扶梯总长(7)队伍行进型:对头→队尾:队伍长度=u 人+u 队×时间 队尾→对头:队伍长度=u 人-u 队×时间 (8)典型行程模型:等距离平均速度:21212u u u u u +=U 1、U 2分别代表往、返速度 等发车前后过车:核心公式:21212t t t t T +=,1212t t t t u u -+=人车 等间距同向反向:2121u u u u t t -+=反同 不间歇多次相遇:单岸型:2321s s s += 两岸型:213s s s -= s 表示两岸距离无动力顺水漂流:漂流所需时间=顺逆顺逆t t t t -2其中t 顺和t 逆分别代表船顺溜所需时间和逆流所需时间浓度=溶质÷溶液 溶质=溶液×浓度 溶液=溶质÷浓度⑵ 浓度分别为a%、b%的溶液,质量分别为M 、N,交换质量L 后浓度都变成c%,则 ⑶ 混合稀释型等溶质增减溶质核心公式:313122r r r r r += 其中r 1、r 2、r 3分别代表连续变化的浓度1利润=销售价卖出价-成本; 利润率=成本利润=成本销售价-成本=成本销售价-1;2销售价=成本×1+利润率; 成本=+利润率销售价1;3利息=本金×利率×时期; 本金=本利和÷1+利率×时期;本利和=本金+利息=本金×1+利率×时期=期限利率)(本金+⨯1;月利率=年利率÷12; 月利率×12=年利率;例:某人存款2400元,存期3年,月利率为10.2‰即月利1分零2毫,三年到期后,本利和共是多少元”∴2400×1+10.2%×36 =2400×1.3672 =3281.28元关键是年龄差不变;①几年后年龄=大小年龄差÷倍数差-小年龄 ②几年前年龄=小年龄-大小年龄差÷倍数差⑴两集合标准型:满足条件I 的个数+满足条件II 的个数—两者都满足的个数=总个数—两者都不满足的个数⑵三集合标准型:C B A =C B A C A C B B A C B A +---++ ⑶三集和图标标数型:⑷三集和整体重复型:假设满足三个条件的元素分别为ABC,而至少满足三个条件之一的元素的总量为W;其中:满足一个条件的元素数量为x,满足两个条件的元素数量为y,满足三个条件的元素数量为z,可以得以下等式:①W=x+y+z ②A+B+C=x+2y+3z核心公式:y=N —xT原有草量=牛数-每天长草量×天数,其中:一般设每天长草量为X 注意:如果草场面积有区别,如“M 头牛吃W 亩草时”,N 用WM代入,此时N 代表单位面积上的牛数;如果有一个量,每个周期后变为原来的A 倍,那么N 个周期后就是最开始的A N 倍,一个周期前应该是当时的A1;调和平均数公式:21212a a a a a +=等价钱平均价格核心公式:21212p p p p p +=P 1、P 2分别代表之前两种东西的价格 等溶质增减溶质核心公式:313122r r r r r += 其中r 1、r 2、r 3分别代表连续变化的浓度核心公式: 2121a a a a a +=核心口诀:“余同取余、和同加和、差同减差、公倍数做周期” 注意:n 的取值范围为整数,既可以是负值,也可以取零值; 闰年被4整除的2月有29日,平年不能被4整除的2月有28日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算;★星期推断:一年加1天;闰年再加1天;注意:星期每7天一循环;“隔N 天”指的是“每N+1天”; 1一元二次方程求根公式:ax 2+bx+c=ax-x 1x-x 2其中:x 1=a ac b b 242-+-;x 2=aac b b 242---b 2-4ac ≥0根与系数的关系:x 1+x 2=-a b,x 1·x 2=ac 2ab b a 2≥+ ab b a ≥+2)2(ab b a 222≥+ abc c b a ≥++3)3( 3abc c b a 3222≥++ abc c b a 33≥++ 推广:n n n x x x n x x x x ......21321≥++++4一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零; 5两项分母列项公式:)(a m m b +=m 1—a m +1×ab6三项分母裂项公式:)2)((a m a m m b ++=)(1a m m +—)2)((1a m a m ++×ab21排列公式:P m n =nn -1n -2…n-m +1,m≤n ; 56737⨯⨯=A 2组合公式:C m n =P m n ÷P m m =规定0n C =1;12334535⨯⨯⨯⨯=c 3错位排列装错信封问题:D 1=0,D 2=1,D 3=2,D 4=9,D 5=44,D 6=265,4N 人排成一圈有N N A /N 种; N 枚珍珠串成一串有NN A /2种;十七、等差数列 (1)s n =2)(1n a a n +⨯=na 1+21nn-1d ; 2a n =a 1+n -1d ; 3项数n =d a a n 1-+1;4若a,A,b 成等差数列,则:2A =a+b ; 5若m+n=k+i,则:a m +a n =a k +a i ; 6前n 个奇数:1,3,5,7,9,…2n —1之和为n 2 其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和十八、等比数列 1a n =a 1qn -1; 2s n =qq a n -11 ·1)-(q ≠1 3若a,G,b 成等比数列,则:G 2=ab ;4若m+n=k+i,则:a m ·a n =a k ·a i ; 5a m -a n =m-nd 6nm a a =q m-n其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和 十九、典型数列前N 项和平方数底数 1 2 3 4 5 6 7 8 9 10 11 平方 1 4 9 16 25 36 49 64 81 100 121 底数 12 13 14 15 16 17 18 19 20 21 22 平方 144 169 196 225 256 289 324 361 400 441 484 底数 23 24 25 26 27 28 29 30 31 32 33 平方 529576625676729784841900961 1024 1089立方数底数 1 2 3 4 5 6 7 8 9 10 11 立方182764125216343512729 1000 1331★1既不是质数也不是合数以内质数 2 3 5 7 101 103 10911 13 17 19 23 29 113 127 13131 37 41 43 47 53 59 149 151 157 163 16761 67 71 73 79 83 89 97 173 179 181 191 193 197 1993.常用“非唯一”变换①数字0的变换:)0(00≠=N N②数字1的变换:)0()1(1120≠-===a a N N③特殊数字变换:244216== 23684264===249381== 281642256=== ④个位幂次数字:12424== 13828== 12939== 1.勾股定理:a 2+b 2=c 2其中:a 、b 为直角边,c 为斜边2.面积公式:正方形=2a 长方形= b a ⨯ 三角形=c ab ah sin 2121= 梯形=h b a )(21+ 圆形=πR 2 平行四边形=ah 扇形=0360n πR 23.表面积:正方体=62a 长方体=)(2ac bc ab ++⨯ 圆柱体=2πr 2+2πrh 球的表面积=4πR 2 4.体积公式正方体=3a 长方体=abc 圆柱体=Sh =πr 2h 圆锥=31πr 2h 球=334R 5.若圆锥的底面半径为r,母线长为l ,则它的侧面积:S 侧=πr l ; 6.图形等比缩放型:一个几何图形,若其尺度变为原来的m 倍,则:1.所有对应角度不发生变化;2.所有对应长度变为原来的m 倍;3.所有对应面积变为原来的m 2倍;4.所有对应体积变为原来的m 3倍; 7.几何最值型:1.平面图形中,若周长一定,越接近与圆,面积越大;2.平面图形中,若面积一定,越接近于圆,周长越小;3.立体图形中,若表面积一定,越接近于球,体积越大;4.立体图形中,若体积一定,越接近于球,表面积越大;数量关系归纳分析一、等差数列:两项之差、商成等差数列1. 60, 30, 20, 15, 12,2. 23, 423, 823,3. 1, 10, 31, 70, 123二、“两项之和差、积商等于第三项”型基本类型: ⑴ 两项之和差、积商=第3项; ⑵ 两项之和差、积商±某数=第3项; 4. -1,1, ,1,1,2 5. ,, ,,0, 6. 1944, 108, 18, 6, 7. 2,4,2, ,, 三、平方数、立方数1) 平方数列;1,4,9,16,25,36,49,64,81,100,121;;; 2) 立方数列; 1,8,27,64,125,216,343;;;8. 1, 2, 3, 7, 46, 9. -1, 0, -1, , -2, -5,-33四、升、降幂型10. 24, 72, 216, 648, A. 1296 C. 2552 D. 324011. , , 1, 2, , 24 A. 3 C. 7 D. 10八、跳跃变化数列及其变式13. 9, 15, 22, 28, 33, 39,55, A. 60 C. 66 D. 58九、分数数列分子、分母各成不相关的数列或分子、分母交叉看16. , , , , A. B. C. 1 D.17. ,,,, , A. B. C. D.十、阶乘数列18. 1, 2, 6, 24, , 720 A. 109 B. 120 C. 125 D. 169十一、余数数列19. 15, 18, 54, , 210 A. 106 B. 107 C. 123 D. 112技巧方法:(一)观察数列的变化趋势;1、单调上升或下降的数列; “先减加,再除乘,平方立方增减项”2、波动性的数列; “隔项相关”3、先升后降的数列;“底数上升,指数下降的幂数列”“最后一项为分子为1的分数,倒数第二项为1”1、1^6,2^5,3^4,4^3,5^2,6^1,7^0,8^-1,即 1,32,81,64,25,6,1,1/8;整除判定基本法则1.能被2、4、8、5、25、125整除的数的数字特性能被2或5整除的数余数,末一位数字能被2或5、0整除余数;能被4或25整除的数余数,末两位数字能被4或 25整除余数;能被8或125整除的数余数,末三位数字能被8或125整除余数;2.能被3、9整除的数的数字特性能被3或9整除的数余数,各位数字和能被3或9整除余数;3.能被11整除的数的数字特性能被11整除的数,奇数位的和与偶数位的和之差,能被11整除;4.能被6:能被2和3整除;能被10:末位是0;能被12:能被3和4整除数量关系公式1.两次相遇公式:单岸型S=3S1+S2/2两岸型S=3S1-S2例题:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 720 米处相遇;到达预定地点后, 每艘船都要停留 10 分钟,以便让乘客上船下船,然后返航;这两艘船在距离乙岸 400 米处又重新相遇;问:该河的宽度是多少A. 1120 米B. 1280 米C. 1520 米D. 1760 米典型两次相遇问题,这题属于两岸型距离较近的甲岸 720 米处相遇、距离乙岸 400 米处又重新相遇代入公式3720-400=1760选D 如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸2.漂流瓶公式: T=2t逆t顺/ t逆-t顺例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天A、3天B、21天C、24天D、木筏无法自己漂到B城解:公式代入直接求得243.沿途数车问题公式:发车时间间隔T=2t1t2/ t1+t2 车速/人速=t1+t2/ t2-t1例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的倍A. 3C. 5解:车速/人速=10+6/10-6=4 选B4.往返运动问题公式:V均=2v1v2/v1+v2例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时解:代入公式得23020/30+20=24选A5.电梯问题:能看到级数=人速+电梯速度顺行运动所需时间顺6.能看到级数=人速-电梯速度逆行运动所需时间逆7.6.什锦糖问题公式:均价A=n /{1/a1+1/a2+1/a3+1/an}8.例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖9.每千克费用分别为元,6 元, 元,如果把这三种糖混在一起成为什锦10.糖,那么这种什锦糖每千克成本多少元11. A.元 B.5 元 C.元 D.元12.7.十字交叉法:A/B=r-b/a-r13.例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:14.析:男生平均分X,女生15. 75-X116. 75=17.X 得X=70 女生为849.一根绳连续对折N次,从中剪M刀,则被剪成2的N次方M+1段10.方阵问题:方阵人数=最外层人数/4+1的2次方N排N列最外层有4N-4人例:某校的学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生析:最外层每边的人数是96/4+1=25,则共有学生2525=62511.过河问题:M个人过河,船能载N个人;需要A个人划船,共需过河M-A/ N-A次例题广东05有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完 B. 8 解:37-1/5-1=915.植树问题:线型棵数=总长/间隔+1环型棵数=总长/间隔楼间棵数=总长/间隔-1例题:一块三角地带,在每个边上植树,三个边分别长156M 186M 234M,树与树之间距离为6M,三个角上必须栽一棵树,共需多少树A 93B 95C 96D 9912.星期日期问题:闰年被4整除的2月有29日,平年不能被4整除的2月有28日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算例:2002年 9月1号是星期日 2008年9月1号是星期几因为从2002到2008一共有6年,其中有4个平年,2个闰年,求星期,则:4X1+2X2=8,此即在星期日的基础上加8,即加1,第二天;例:2004年2月28日是星期六,那么2008年2月28日是星期几4+1=5,即是过5天,为星期四;08年2 月29日没到13.复利计算公式:本息=本金{1+利率的N次方},N为相差年数例题:某人将10万远存入银行,银行利息2%/年,2年后他从银行取钱,需缴纳利息税,税率为20%,则税后他能实际提取出的本金合计约为多少万元两年利息为1+2%的平方10-10= 税后的利息为1-20%约等于,则提取出的本金合计约为万元14.牛吃草问题:草场原有草量=牛数-每天长草量天数例题:有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时A、16B、20C、24D、28解:10-X8=8-X12 求得X=410-48=6-4Y 求得答案Y=24 公式熟练以后可以不设方程直接求出来16:比赛场次问题:淘汰赛仅需决冠亚军比赛场次=N-1淘汰赛需决前四名场次=N单循环赛场次为组合N人中取2双循环赛场次为排列N人中排2人传接球M次公式:次数=N-1的M次方/N 最接近的整数为末次传他人次数,第二接近的整数为末次传给自己的次数例题:四人进行篮球传接球练习,要求每人接球后再传给别人;开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式;A. 60种B. 65种C. 70种D. 75种公式解题: 4-1的5次方 / 4= 最接近的是61为最后传到别人次数,第二接近的是60为最后传给自己的次数。
公务员行测数量关系速算公式归纳在公务员行测考试中,数量关系部分往往是让众多考生感到头疼的模块。
然而,掌握一些实用的速算公式,能够帮助我们在考场上快速解题,提高答题效率和准确率。
接下来,就为大家归纳一下常见的公务员行测数量关系速算公式。
一、行程问题1、相遇问题路程和=速度和 ×相遇时间相遇时间=路程和 ÷速度和速度和=路程和 ÷相遇时间例如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 米/秒,乙的速度为 3 米/秒,经过 10 秒相遇,那么 A、B 两地的距离就是(5 + 3)× 10 = 80 米。
2、追及问题路程差=速度差 ×追及时间追及时间=路程差 ÷速度差速度差=路程差 ÷追及时间比如:甲在乙后面 20 米,甲的速度为 7 米/秒,乙的速度为 5 米/秒,那么甲追上乙所需的时间就是 20 ÷(7 5)= 10 秒。
3、流水行船问题顺水速度=船速+水速逆水速度=船速水速船速=(顺水速度+逆水速度)÷ 2水速=(顺水速度逆水速度)÷ 2假设一艘船在静水中的速度为 15 千米/小时,水流速度为 3 千米/小时,那么顺水速度就是 15 + 3 = 18 千米/小时,逆水速度就是 15 3 =12 千米/小时。
二、工程问题工作总量=工作效率 ×工作时间工作效率=工作总量 ÷工作时间工作时间=工作总量 ÷工作效率例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么两人合作完成这项工程需要的时间就是 1 ÷(1/10 + 1/15)=6 天。
三、利润问题利润=售价成本利润率=利润 ÷成本 × 100%售价=成本 ×(1 +利润率)成本=售价 ÷(1 +利润率)比如:一件商品的成本是 80 元,售价是 100 元,那么利润就是 10080 = 20 元,利润率就是 20 ÷ 80 × 100% = 25%。
行测公式口诀大全一、数量关系。
(一)数字推理。
1. 等差数列。
- 通项公式:a_n=a_1+(n - 1)d(a_1为首项,d为公差,n为项数)- 口诀:数列等差有规律,首项公差要牢记。
n项数值轻松觅,通项公式来帮你。
2. 等比数列。
- 通项公式:a_n=a_1q^n-1(a_1为首项,q为公比,n为项数)- 口诀:等比数列看公比,首项乘上它幂次。
n项数值由此知,通项公式莫忽视。
(二)数学运算。
1. 工程问题。
- 基本公式:工作总量 = 工作效率×工作时间。
- 口诀:工程问题三要素,总量效率和时间。
已知两者求其一,公式变形来计算。
2. 行程问题。
- 基本公式:路程 = 速度×时间。
- 相遇问题公式:s=(v_1+v_2)t(s为路程,v_1、v_2为两者速度,t为相遇时间)- 追及问题公式:s=(v_1-v_2)t(s为路程,v_1为快者速度,v_2为慢者速度,t 为追及时间)- 口诀:行程问题路速时,相遇追及有公式。
相向速度来求和,同向速度做差之。
3. 利润问题。
- 基本公式:利润 = 售价 - 成本;利润率=(利润)/(成本)×100%;售价 = 成本×(1 + 利润率)- 口诀:利润问题要记清,售价成本和利润。
利润率也很重要,公式之间会变形。
二、资料分析。
(一)增长相关。
1. 增长量。
- 公式:增长量=现期量 - 基期量;增长量=(基期量×增长率)/(1 + 增长率)- 口诀:增长量,有两种,现减基期最普通。
还有基期乘率除一加率,计算准确就成功。
2. 增长率。
- 公式:增长率=(现期量 - 基期量)/(基期量)×100%=(增长量)/(基期量)×100%- 口诀:增长率,分式求,现减基期除以基。
增长量与基期比,概念理解不费力。
(二)比重相关。
1. 比重。
- 公式:比重=(部分量)/(整体量)- 口诀:比重部分比整体,公式简单要牢记。
公务员行政职业能力测试之数量关系数学公式汇总代入与排除法一、倍数特性法(1)2、4、8整除及余数判定基本法则:1.一个数能被2(或5)整除,当且仅当其末一位数能被2(或5)整除;2.一个数能被4(或25)整除,当且仅当其末两位数能被4(或25)整除;3.一个数能被8(或125)整除,当且仅当其末三位数能被8(或125)整除;4.一个数被2(或5)除得的余数,就是其末一位数被2(或5)除得的余数;5.一个数被4(或25)除得的余数,就是其末两位数被4(或25)除得的余数;6.一个数被8(或125)除得的余数,就是其末三位数被8(或125)除得的余数。
(2)3、9整除及余数判定基本法则:1.一个数能被3整除,当且仅当其各位数字和能被3整除;2.一个数能被3整除,当且仅当其各位数字和能被3整除;3.一个数被3除得的余数,就是其各位数字和被3除得的余数;4.一个数被9除得的余数,就是其各位数字和被9除得的余数。
(3)7整除判定基本法则:1.一个数是7的倍数,当且仅当其末一位的两倍,与剩下的数之差为7的倍数;2.一个数是7的倍数,当且仅当其末三位数,与剩下的数之差为7的倍数。
(4)11整除判定基本法则:1.一个数是11的倍数,当且仅当其奇数位之和与偶数位之和做的差为11的倍数;2.一个数是11的倍数,当且仅当其末三位,与剩下的数之差为11的倍数。
(5)13整除判定基本法则:一个数是13的倍数,当且仅当其末三位,与剩下的数之差为13的倍数。
二、比例倍数若a:b=m:n,则说明a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。
三、十字交叉法“十字交叉法”实际上是一种简化方程的形式,凡是符合下图左边方程形式的,都可以用右边的“十字交叉”的形式来简化:Aa+Bb=(A+B)A/B=r-b/a-r→A:ar-br→A/B=r-b/a-rB:ba-r四、极端思维法当试题中出现了“至多”、“至少”、“最多”、“最少”、“最大”、“最小”、“最快”、“最慢”、“最高”、“最低”等字样时,我们通常需要考虑“极端思维法”,即分析题意,构造出满足题意要求的最极端的情形。
2020 年陕西省考行测真题参考答案第一部分:常识判断(20 题)1. A. 爱国主义2. D. 外贸外资保持稳定3. A. 完善正确处理新形势下人民内部矛盾有效机制4. D. 老骥伏枥,老马识途5. B. 巴塞罗那6. D. 对民管企业实行公平竞争审查制度的软性约束7. B. 甲方除了提交证据外,还需要提交乙方实际付款的凭证,才能证明甲、乙双方之间的借贷关系真实发生8. B. 二十四桥仍在,波心荡、冷月无声9. D. 要重点解决全国易地扶贫搬迁中的贫困人口搬得出的问题10. B. 产生激光的必要条件是要有泵浦源和谐振腔11. A. 关中协同创新发展、陕南绿色循环发展、陕北转型持续发展12. C. 李某必须提供商户侵权的初步证据13. C. 新冠肺炎疫情改变了我国经济的基本局面,其冲击是长期的14. C. 人定胜天15. A. 用瓷砖铺地,只有用正三角、四角、六角、八角这四种正多角砖才能刚好将地铺满16. B. 陀螺仪17. B. 毛泽东、朱德、刘少奇、周恩来、任弼时18. C. 2 台摄影机、2 台放映机、2 个正交偏振片19. B. 闵恩泽——从事石油炼制催化剂制造技术领城研究,被誉为“中国催化剂之父”20. D. 基因诊断的基本原理就是DNA 分子杂交第二部分:言语理解(40 题)21.B 冲击金科玉律22.B 精神振奋兴旺发达人心涣散23.A 警惕戒备24.D 抵达连接25.A 鬼斧神工五彩缤纷26.C 绽放喧嚣栖息27.C 了无生机连绵不断机缘巧合28.B 初心不改沉重打击乐观向上29.B 穷经皓首严谨赋予30.B 宝贵已知免受31.B 日臻完善囊括32.A 挖掘契合33.C 获取伪装34.B 结果摒弃35.D 品读洞悉36.C 浸透吐放37.A 追求塑造38.A 相去甚远昙花一现39.A 各有千秋交相辉映40.D 肆虐销声匿迹41.C 潮汐波42.B 在纾解停车难问题上进行的有益探索43.B 市场的反馈44.A 医患关系的治理仍需要加强45.C 传统村镇和古厝的开发与保护46.C 朊病毒能够引发疾病47.D 隐球菌病的危害性大48.C 对产业结构优化升级所起到的推动作用49.D 培训农民工学会用法规维护自己合法权益50.C 大气中二氧化碳的平衡51.C 形成解决相对贫困的多层次资源支撑52.C ④②⑥③⑤①53.B 该视频平台公司的会员付费模式优于国内视频网站54.B 农村劳动者整体素质提升的策略55.B 信息公开透明有动于疫情防护56.C 似曾相识是对过去不完整的记忆57.D 知识经济将人的实践活动要素——实践的主体、方式、对象和目的构成一个具有内在联系的有机价值整体58.C 在距离测量方面遇到的困难59.C 5G 网络所带来的更完美感受60.B 糖皮质激素的功用第三部分:数量关系(10 题)61、C 19962、B 2 天63、B 564、B 2126065、A 丙领先甲2350 米66、B 4%67、B 6068、C 14069.A.1270、C 96%第四部分:判断推理(30 题)71.A72.C73.D74.D75.A76.B 某地实行“有事好商量”协商议事工作法,解决大量群众关心的事,化解了社会矛盾77.D 小强在上课的时候,头脑中总是出现网络游戏的画面,这让他很难静下心来学习78.C 自从万师傅的老伴儿半年前去世后他就一直很忧郁,估计一时半会儿好不起来79.A 小杨一想到下周要当众发言,紧张得一连几天都睡不好觉80.D 公司员工自觉遵守公司关于垃圾分类的规定81.C 王医生常常为自己所从事的职业感到无比自豪82.A 服装设计师小王为公司设计了一系列新型饰品,因与公司发展定位不符被否定后,他仍在继续悄悄改进83.C 消防队以便于防火为由,禁止消防队员留长发,导致的结果是基本上没有一线女性消防员84.D 越来越多中国人付出更多成本,去享受健康、快乐、体验好且富有内涵的高端商品和服务85.C 丙企业为了治理因生产所造成的环境污染,成立专门基金进行长效维护86.B 伏虎降龙:强大87.D 顺风转舵:见机行事88.D 动荡不安趾高气扬89.C 冰肌玉骨:劲骨丰肌90.B 价值:价格91:A 实验发现采用地中海饮食的低脂餐谱的男性比其他男性的睾酮水平偏低92:B 充满益生菌的肠道,可以长时间的保护人类心脏健康93:D 强大的人工智能技术可以用来检测虚假或欺骗性内容94:D 太阳系大行星必须有的特点之一是清理了轨道周边的其他天体95:A 世界粮食供应紧张状况还将持续,开发昆虫等新食材,可有效应对食物需求增长96:B 绿茶中含有的黄酮醇类,具有预防血液凝块及血小板成团的作用97:C 将不同品种的鸡蛋放置在阳光中,颜色更深的鸡蛋比浅色鸡蛋升温更快,而且其蛋壳表面保持较高温度的时间更长98:D 仅仅是拥有DNA 的所需物质是远远不够的,只有上千万甚至是上亿万分之一的概率才能满足生命99:C 现代医学的进步降低了人类患病频次,炎症反应逐渐减少100:D 七夕节到了,小王准备给女朋友送一支口红,不知道女朋友是喜欢001 色号是006 色号,同事小林建议说:“你上网查下哪个色号最热门,就选哪个呗”。
整除是数量关系计算中的一种解题技巧,那么什么是整除呢?如果被除数,除数,商都是正整数且余数为0,那么我们就说被除数能够被除数或商整除。
具体举个例子:6÷2=3,这就说明6是能够被2整除,也是能够被3整除的,或者说2或3是能够整除6的。
整除在数量关系的题目中到底是怎样用的,中公教育接下来通过几个例题来学习一下。
例1.小李参加了某次竞赛,赛后小王问小李得了第几名,小李说:“我考的分数、名次和我的年龄的乘积是2134”,小王想了想立即说出了小李的竞赛得分和名次,问当年小李的年龄是多少岁?A.14B.13C.12D.11【答案】D。
中公解析:这道题描述的是小李的分数、名次和年龄的乘积的问题,让我们求小李的年龄是多少。
我们知道名次数,年龄都是正整数,而2134也是正整数,说明分数也是正整数,那么我们就知道2134除以年龄等于正整数且没有余数。
所以2134是能够被年龄整除的,那么我们只需要看2134能够被四个选项中哪个整除就可以了。
2134除以14,13,12都是除不尽的,而2134除以11等于194。
所以四个选项只有11能够整除2134,故选D。
例2.小明今年17岁,他邻居家有三个和他年龄相近的小伙伴,已知三位小伙伴的年龄之积为4800,并且小明和年龄最小的伙伴的年龄之和比其他两位伙伴的年龄之和小4岁,则三位小伙伴中年龄最大的是( )岁。
A.19B.20C.21D.25【答案】B。
中公解析:这道题描述的是四个小伙伴年龄的乘积的事,让我们求三个小伙伴中年龄最大的是多少岁。
我们知道年龄是正整数,说明四个正整数的积是4800,换句话说,4800是能够被四个小伙伴的年龄整除的,当然也能够被最大的年龄整除。
所以我们只需要看四个选项中哪一个是能够整除4800的,很明显4800是不能够被19和21整除的,所以排除A、C选项。
而题干说小明和年龄最小的伙伴的年龄之和比其他两位伙伴的年龄之和小4岁,也就是说小明的年龄+三个伙伴中最小的年龄+4=三个伙伴中最大的年龄+三个伙伴中的中间年龄,因为最小年龄<三个伙伴中的中间年龄,所以最大的年龄<17+4=21岁,所以选择20。
数量关系的题型多种多样,针对不同题型如何快速求解就成了广大考生备考的一个重中之重的问题。
在数量关系部分的题目中有这样一类题目,题目的数据给出形式往往是倍数,分数,比例,百分数。
此时我们可以采用数学中份数的思想来解决这类题目。
份数是实际量之间的一种对比关系。
份数的核心思想就是把数据间的对比关系看成份数来使用。
比如班级男女生的人数比是3:2,我们就可以把男生人数看成3份,女生人数看成2份,全班人数就是5份,通过份数的思想那么接下来再结合题目中的其他数据就可以进行求解了。
我们来看这样一道例子。
例1.长方体棱长的和是48,其长、宽、高之比为3:2:1,则长方体的体积是:A.24B.48C.384D.3072【答案】:B。
中公解析:长方体有长、宽、高各4条,且已知其和为48,则1条长,1条宽,1条高这3条棱长之和为12,长,宽,高的比例之和为(3+2+1)=6,则有:6份代表12,可推得:1份对应2,2份对应4,3份对应6。
故体积为:2×4×6=48,选择B项。
通过这个题目,我们在面对多个未知数且未知数之间有对比关系的时候,就可以借助份数的思想,直接利用份数和实际量的关系去求解,列式会很简单而且计算的难度也不大。
再比如以下几个题目。
例2.一笔经费,上级要求1∶2∶3的比例分配到3类项目中,已知第3类项目分得180万元,那么这笔经费总共为多少( )。
A.60 0万B.500万C.450万D.360万【答案】:D。
第3类项目占总钱数的3份,3份对应的实际钱数为180万,则每一份对应60万,项目总费用占1+2+3=6份,则总费用为360万,选D选项。
例3.钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢产量之和的一半,而其它产品共为3万吨。
问该钢铁厂当年的产量为多少万吨?A.48B.42C.36D.28【答案】:D。
在近几年的考试中,我们常常会考到一种问题是计算问题,在计算问题中往往考的不会很难,所以我们要能够掌握好基本的知识点,然后能够把这一类型的题型计算出来,接下来中公教育就来和大家解决其中的一种问题——等差数列。
一、等差数列公式
二、题目巩固
例1.某校大礼堂共25排座位,后一排均比前一排多两个座位,已知最后一排有80个座位,问这个剧院一共有多少个座位?
A.1200
B.1400
C.1600
D.1800
例2.某商店10月1日开业后,每天的营业额均以100元的速度上涨,已知该月15日这一天的营业额为5000元,问该商店10月份的营业额为多少元?
A.163100
B.158100
C.155000
D.150000
例3.某一梯一户住宅楼共17层,电梯费按季度缴纳,分摊规则为:第一层的住户不缴费;第三层及以上的住户,每层比下一层多缴纳10元。
若一季度该住宅楼某单元的电梯费共计1904元,则该单元第7层住户一季度应缴纳的电梯费是:
A.72元
B.82元
C.84元
D.94元
其实等差数列在考试中主要就是要能够对题干进行简单的分析,从题干中找到相对应的条件,通过我们学习过的公式进行简单计算即可。
也希望通过以上的讲解大家能够理解到等差数列的基本公式和形态,做到对其了然于心,平时多练习分析题干的能力,考试的时候就能将学习的知识点进行很好的应用,希望以上知识对大家在学习中有所帮助。
众所周知,行测数量关系是大部分考生的“拦路虎”。
在公务员考试过程中,有一些较为难以理解的题目,中公教育专家就这部分题构建了解题模型和方法,考生只要理解模型,掌握方法,就能在考试中多拿几分,接下来,我们就“牛吃草”问题给学员们进行分析。
一、题型特征
【模型】一个牧场长满青草,青草每天均匀生长。
若放养27头牛,6天把草吃尽;若放养23头牛,9天把草吃尽。
若放养21头牛,几天能把草吃尽?
典型特征出现了类似于语文当中的排比句式:“放养27头牛,6天把草吃尽;若放养23头牛,9天把草吃尽。
若放养21头牛,几天能把草吃尽”,所以考生也可以将直观的排比句式作为判断是否是牛吃草问题的特征之一。
二、模型推导
为了方便考生理解,牛吃草问题题干描述转化成二维线段即为:
【推导】牧场上原有的草量是一定的,草每天生长,牛每天来吃。
要想把草吃完那么必须满足牛吃草的速度>草长的速度,我们很容易发现,其实牛吃草问题就是行程问题中的追及问题。
根据追及问题公式:追及路程=速度差×时间,此时我们不妨假设一头牛一天吃1份草,设每天草生长的速度为V,根据追及路程相等即可得到方程:
(27-V)×6=(23-V)×9=(21-V)×T 根据方程解出T即可。
我们可根据此方程推导出一般公式为:
S=(牛数-V)×T
三、小试牛刀
商场举办大型周年庆活动,推出优惠活动。
在周年庆当天上午9点准时开门迎客,商场开门之前已有顾客排队。
假定每分钟排队人数相等,若同时开5个门,30分钟恰好没人排队;若同时开6个门,20分钟恰好没人排队。
问第一位顾客到达时间是上午()。
A.8:30
B.8:45
C.8:40
D.8:20
【答案】C。
中公解析:本题考查牛吃草问题中“第一颗草生长时间”。
设每分钟排队速度为v,开门之前排队人数为M,则有M=(5-v)×30=(6-v)×20,可得v=3,M=60,即第一个顾客来的时间为60÷3=20分钟之前,即8:40,所以答案为C。
通过以上题目各位考生会发现,牛吃草问题简单应用其实并不难,但是需要灵活把握命题特点和分析。
中公教育预祝各位考生能一举成“公”!。