凝固组织的控制
- 格式:pptx
- 大小:1.39 MB
- 文档页数:34
此时,四周温度梯度变缓,中心温度下降至结
过去的时间内,大量形核,形成细小等轴晶外
随着外壳形成收缩,形成气隙,传热变慢,枝
4.1铸锭/坯的凝固组织
•正常偏析
•按照异分结晶一般规律进行凝固,由此产生的偏析即为正常偏析
•分四种情况:
•平衡态凝固
•液态均匀,固态不发生扩散
•液态不均匀,固态也不扩散
•液态和固态均有一定程度但不达到平衡的扩散
4.1铸锭/坯的凝固组织
•原因:
•在出现树枝晶的条件下,枝晶尖端部分孤立深入正面液体中,正面的界面很小,而枝晶之间残留大量液
体,所以枝晶要依靠与枝晶主轴垂直的方向扩散而扩
展凝固界面。
相比之下,纵向的扩散较小,。
强磁场下合金凝固过程控制及功能材料制备摘要近些年来关于强磁场下材料加工过程的研究取得了长足的发展和进步。
本文综述了强磁场下金属材料凝固过程控制和新材料制备的研究进展。
重点介绍了强磁场下Lorentz力、热电磁力和磁化力对熔体流动、溶质分布和组织演变的影响规律;磁力矩对磁性相的晶体取向的作用规律;磁偶极间相互作用对相排列的控制作用等。
同时,介绍了利用强磁场下的凝固方法制备MnSb/MnSb-Sb梯度复合材料和梯度磁致伸缩材料、各向异性材料等新型功能材料的研究进展。
通过强磁场控制金属材料凝固过程可以有效改善材料的微观组织,并进一步提高材料性能,这为开发新型功能材料提供新的途径。
关键词强磁场,合金,凝固,功能材料,梯度材料,各向异性材料received2017-12-14,inrevised form 2018-02-03金属材料的性能最终取决于其微观组织结构。
绝大多数金属材料制备过程中都要经历凝固的过程,凝固过程中熔体流动、溶质和相分布、固/液界面形貌演变以及晶体取向等均会对材料的微观组织结构产生显著的影响。
因此,在凝固过程中,通过对合金成分、凝固速率、温度梯度、第二相(溶质、增强相或杂质等)含量及分布等参数[1,2]进行合理的控制,从而获得理想的凝固组织结构,已经成为了提高材料性能甚至开发性能优异新材料的重要途径之一。
近几十年中,研究人员不断尝试采用多种手段对凝固过程进行控制,从而开发出如定向凝固[3~5]、快速凝固[6~8]、离心铸造[9~12]、深过冷[13,14]和外加物理场控制的凝固手段[15~20]等,不但满足了科学技术发展和工业生产的需求,也丰富了金属凝固理论。
近些年来,随着超导材料和超低温冷却技术的进步,强磁场发生技术取得了突破性的进展,磁感应强度大于2 T的稳恒强磁场的产生和应用技术日趋成熟。
因此,强磁场作用下对金属材料凝固行为的研究引起了极大的关注。
磁场对物质通常表现出2种基本作用效果,包括对导电流体产生Lorentz力作用和对物质产生的磁化作用。
第三章铸坯凝固组织凝固组织包括两个方面:(1)宏观组织:指用肉眼观察到的铸坯内部的组织情况,通常包括晶粒的形态、大小、取向和分布等情况。
也就是针对铸坯的宏观状态而言也称为“凝固结构”、“低倍组织”和“低倍结构”。
(2)显微组织:是指借助于显微镜观察到的晶粒内部的结构形态,如树枝晶、胞状晶以及枝晶间距等。
也就是针对铸坯的微观形态而言。
也称为“金相组织”、“微观组织”。
两者表现形式不同,但其形成过程却密切相关,并对铸坯的各项性能,特别是机械性能产生强烈的影响。
第二章讨论了晶粒微观组织的形成过程,本章侧重于分析铸坯宏观组织的成因以及各种因素的影响。
在理论分析基础上,总结生产中控制铸坯结晶组织的各种有效方法。
第一节铸坯的凝固区域一.铸坯凝固的特点(1)钢属于一种合金。
钢液与纯金属的凝固特征的区别在于:①纯金属是在一个固定温度下完成凝固。
在定向凝固时,凝固前沿无过冷,凝固前沿或凝固区域为一个等温平面。
②钢是铁碳合金,钢液凝固是在一定的温度范围内完成的。
由于溶质再分配产生成分过冷,以树枝晶生长方式完成凝固。
即凝固发生在一定范围内,而不再位于一个平面内。
(2)冷却强度高:与铸造和模注工艺相比,连铸采用了强制冷却方式,冷却强度高。
即使在空冷区,铸坯的冷却强度也大于砂模铸造和模注。
(3)定向传热:在凝固过程中,采取铸坯表面冷却,从而形成了由内部向表面的定向传热方式。
从钢液内部到坯壳表面温度逐渐降低,即铸坯内外存在较大的温度梯度G。
二.凝固区域从宏观来看,定向传热使铸坯内部存在温度梯度,而合金性质决定了凝固是在一定温度范围内完成,因此铸坯在凝固过程中会存在三个区域:固相区、两相区和液相区。
如图3-18所示。
左图是平衡相图,钢液的结晶温度范围为S L T T -。
右图是正在凝固的铸坯断面,厚度为D 。
(1) 固相区:铸坯表层区域,其温度低于固相线温度S T 而成为固态,即凝固坯壳。
(2) 液相区:中心温度仍在液相线L T 以上而仍为液态钢水,即液芯;(3) 两相区:在固相区和液相区之间,温度处于液相线L T 和固相线S T 之间,呈固液共存。
液态金属加工中的凝固控制是一个重要环节,因为它对产品的质量和性能有着显著的影响。
通过控制凝固过程,可以确保金属材料得到充分凝固,形成良好的组织和性能。
下面将从三个方面详细介绍液态金属加工中的凝固控制。
一、温度控制在液态金属加工中,温度是影响凝固过程的关键因素之一。
为了确保金属材料充分凝固,需要对加工过程中的温度进行精确控制。
通常,通过使用水冷装置或热管理系统来调节和控制温度。
在加工过程中,温度的波动可能会对金属材料的组织和性能产生不利影响。
因此,需要定期检查冷却系统的运行状况,确保其正常工作。
二、速度控制液态金属加工中的速度控制也是至关重要的。
在金属凝固过程中,过快的加工速度可能会导致金属材料变形或产生裂纹。
因此,需要根据金属材料的性质和加工设备的性能,合理设置加工速度。
同时,在加工过程中还需要密切关注金属材料的流动情况,避免过热或过冷现象的发生。
三、冷却速率控制冷却速率是影响金属材料凝固速度和组织结构的重要因素之一。
通过控制冷却速率,可以调整金属材料的凝固过程,使其达到最佳的性能和组织。
在液态金属加工中,通常使用水冷或空气冷却等方式来控制冷却速率。
通过调节冷却水的流量或空气的压力,可以实现对冷却速率的有效控制。
此外,还可以通过调整模具的结构和形状来改变金属材料的凝固过程,以达到最佳的凝固效果。
总之,液态金属加工中的凝固控制是一个综合性的过程,需要从温度、速度和冷却速率等多个方面进行考虑和控制。
通过精确控制这些因素,可以确保金属材料得到充分凝固,形成良好的组织和性能,从而提高产品的质量和性能。
这需要操作人员具备丰富的经验和专业知识,以及对设备和材料的深入了解。
凝固和组织控制原理一、课程介绍《凝固和组织控制原理》是材料科学与工程专业(金属材料工程模块)的主要学科基础课,是研究金属凝固过程相关现象及其物理本质的专业性课程。
本课程按照理论分析-研究手段-工程控制这一主线,以金属凝固过程的物理本质及影响凝固组织的主要因素作为核心内容,开展相关教学。
本课程旨在加深学生对金属材料凝固相关现象和知识的理解和掌握,为学习后续的课程做必要的知识储备;使学生进一步认识到金属材料的重要性,激发学生开展金属材料凝固相关前沿科学研究、推进凝固相关新技术应用的兴趣和热情。
本课程所涵盖的内容包括液态金属的结构与性质、凝固热力学与动力学、凝固过程中的传热与传质、单相合金,多相合金及金属基复合材料的凝固、凝固组织的控制、凝固缺陷、凝固新技术等内容,共10章,共32学时,全部为理论教学,以期末闭卷考试形式结课。
Introduction‘The principles of solidification and microstructure control’ is a specialized course concerning phenomenon and physical essence of solidification and is as well a required course for university students whose major is materials science and engineering. The course is focusing on the physical essence of solidification and main factors that affect the solidification microstructure, and the teaching activities is organized as theoretical analysis, research techniques and engineering control. The purpose of this course is threefold: Firstly, to deepen the understandings of the students about fundamentals of solidification of metallic materials, making them ready for the subsequent other courses. Secondly, to make students recognize the importance of metallic materials and thirdly, to stimulate their interests in frontier researches and development of novel techniques in solidification of metallic materials.The content of this course includes: structures and properties ofliquid metals, thermodynamics and kinetics of solidification, heat and mass transformation during solidification, solidifications of single-phase alloys, multi-phase alloys and metallic composites, control of solidification microstructures, solidification defects and new technologies of solidification. It will take 32 theoretical lessons. The examination adopts close-book mode.课程基本信息二、教学大纲1、教学目的《凝固和组织控制原理》是面向材料科学与工程专业(金属材料工程模块)本科生的一门学科基础课程。