八年级上册数学全册单元测试卷
- 格式:pdf
- 大小:1.47 MB
- 文档页数:58
最新华师大版八年级数学上册单元测试题全册及答案检测内容:第十一章得分_______ 卷后分__________ 评价__________一、选择题(每小题3分,共30分)I.甫的值为(A)A - 2 B. -2 C. ±2 D.不存在2“(一8)$的立方根是(B )A ・一2 B. 2 C. 4 D. -43•下列各式中运算正确的是(C)A - ±V16=4 B,V9=±3 0^8=-2 D.p (_5)空=_54•下列命题中正确的是(C)A •有理数都是有限小数B.无限小数都是无理数C •实数与数轴上的点一一对应D.无理数包括正无理数、0和负无理数5•在实数3.14159,^/64,1.010010001,4.21,n,乍中,无理数有(A)A・1个B. 2个C. 3个D. 4个6•数a在数轴上的位置如图所示,则下列各数中有意义的是(B)1 1 丁a 0A.yfciB.yj _aC.y]—a27• -27的立方根与嗣的平方根的和是(C )A ・ 0 B. -6 C. 0 或一6 D. 68・估算回+3的值(C)A •在5和6之间B.在6和7之间C.在7和8之间D.在8和9乙'可9•比较两个数的大小,错误的是(B )A •一托>一& B.萌一1.74>0 C. 1.42一也>0 D.兀>3.1410•实数a,方在数轴上的位置如图所示,以下说法止确的是(D)a b--- 1_•_I ------- 1_•_I ---------■2-10 1 2A • a+b=0 B. b<a C. ab>0 D. |b|<|d|二、填空题(每小题3分,共24分)II.迈一曲的相反数是二迄_,迈一萌的绝对值是_迈二^/1_.12・一个正数的平方根为2°—3和3a-22,则这个数为塑.13・在数轴上离原点距离是2需的点表示的实数是二且.14-比较大小:(1朋一三_诟;(2)~\/亦—<_一—A/60;(3)朋3_二_么15•已知△ABC的三边长分别为a,b,c、且a,满足(a — 1 )2+y]b—2=0,则c的取值范围是_1 V c V3_.16• 一个正方体的体积变为原来的27倍,则它的棱长变为原来的_3_倍.17 •已知屮0404=102 ‘ 心=0.102 ‘贝Q x= 010 404 :已知^3/78 = 1.558 ‘ 飯=155.8 ‘贝】J y=19・(10分)计算:(1)22 + |-1|-^9;(2寸(~|) 2+^/-0.064.解,2解/ 1.120 • (12分)求下列各式中的兀:(1)*| =晶(2)8(兀一1)—一125;解,'±\[6解:一号(3)25(7—1)=24.解..421 - (10分)己知实数满足p兀一2y +1 + |x+2y—7|=0,求*的平方根.解:±323 • (10分)一个正数a 的算术平方根为2m~6,且a 的平方根为土(2—m). (1) 求m 的值;(2) 求d 的值及d 的平方根.解:(1)由己知得 2m-6>0 » .*.m>3 » .*.2 —m<0 » - (2 — m)>0 » .*.2m -6= — (2 -m) » 解得 m = 4(2) a = (2m - 6)2=4,±*\/a = ±224・(8分)将半径为12 cm 的铅球熔化,重新铸造出8个半径相同的小铅球,不计损耗,则小铅球的半也一4+04—兀 +4x~25求3x+4v 的值.径是多少?(V 球4-322・(8分)已知兀,y 为实数,y= 解:—1025 • (8分)己知5+V7的小数部分是a ,整数部分是m ,5—羽的小数部分是b ,整数部分是n ,求(a + b)2m>—mn 的值.解:甫V 羽V 的,/.m = 7,a = 5+V7-7= -2+^7,n = 2,b = 5—羽一2 = 3— 荷 > .-.(a + b)2015-mn = (-2 4-V7 + 3-V7)2015-7X2 = l-14= -13检测内容:第十二章得分 _______ 卷后分 __________ 评价 __________一、选择题(每小题3分,共30分)1 •计算:(加%尸的结果是(B) A • mn B. mn C.D. mn2 • (2014-丽水)下列式子运算正确的是(A)A • «84-«2=«6B. cr+c^=cPC. (a+l)2=/+lD. 3cT —2cf =1 3 • (2014•安徽)下列四个多项式屮,能因式分解的是(B) A • 672+1 B. 6G +9 C. X 2+5)J D. 5y4 •计算(|)20,5X(|)2016X(-l 严 了 的结果是(°)5 •把 A-2A+/分解因式正确的是(C )A •)心?一2xy+)Z )B . ^y —)\2x —y) C.),(兀一y),D. y (兀+y)“6 •若a m =2,a n=3,cf=5,则严「卩的值是(A ) A ・ 2.4 B. 2 C ・ 1 Dj7 •若 a+b=3,a —b=7,贝ab=( A ) A ・ 一10 B. -40 C. 10 D. 408 •若一多项式除以2? —3,得到的商式为7x-4,余式为一5兀+2,则此多项式是(A ) A • 14^3—8x 2—26x+14 B. 14x 3 — 8x 2—26x~ 10 C - -10X 3+4?-8X -10 D. -10X 3+4? + 22X -109 •因式分解x 2+cLx+b ,甲看错了 a 的值,分解的结果是(x+6)(x —l),乙看错了 b 的值,分解的结果 为(兀一2)(兀+1),那么x"+ax+b 分解因式正确的结果为(B )A •(兀一2)(兀+3) B.(兀+2)(x —3) C. (x —2)(%—3) D. (x+2)(x+3)10 •如图,甲、乙、丙、丁四位同学写出了四种表示该长方形面积的多项式:①(2a+Z?)・O+n);②+n)+b(m+n)\ ③ni(2a+/?)+n(2a+b);④lam+lan+bm+bn.你认为其中正确的有(D )A -①②B.③④C •①②③D.①②③④3--2B 2-3 A3-2 - 2-3二、填空题(每小题3分,共24分)11•计算:(2af ・(一36?)=「-24『_.12•分解因式:一兀\+2兀》一心=_-xy(x- l)2_ .13•二次三项式jC-kx+9是一个完全平方式,则k的值是丸.14•计算:20152 -4026 X 2015 + 20132 = 4 .15•若加=2门+1,则4/??/?+4/?2的值是_X_.16•若\m+6\与n2—2n+\互为相反数5则多项式^+nx+m分解因式为_(x十3)(x —2)_.17・若代数式X2+3X+2可以表示为(X-1)2+«(X-1)+/2的形式,则a+b的值是口 .111X/1 2 1X/13 3 1• • •18 • (2014-巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得屮华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式屮a按次数从大到小排列的项的系数,例如,(a +b)2=a2+2ab+b2展开式中的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2 +扌展开式中的系数1,3,3,1恰好对应图中第四行的数字•请认真观察此图,写出(a-b)4的展开式为一4a'b + 一4ab‘ + b;_・三、解答题(共66分)19・(8分)计算:(1 )3a3b2 4- a2+b^b - 3ab~5a2b)\(2)(2014-宁波)(a+b)2 + (a - b)(a+b) - 2ab.解:原式=3ab2 + a2b2一3ab2 - 5a2b2 = 一4a2b2解;廉式=a? + 2ab 4- b2 + a2 - b2一2ab = 2a220• (10分)先化简,再求值:(1 )(a2b—2ab2—b3)-i-h—(«+b)(a—b),其中G=*,b= —1;解:恳式=a? - 2ab - b2 - (a2 - b2)= 一2ab.占a=j » b= - 1 讨,斥式=1(2)(2兀+3)(2乂一3)—4兀(兀一1)+仗一2)2,其中7=9.解,,^=4X2-9-4X2+4X + X2-4X +4= X2-5.V X2=9> ^ = 9-5 = 421• (12分)因式分解:(1)(2014-莱芜)a‘ 一4ab2; (2)x2一4(x — 1);解:忌式=a(a + 2b)(a-2b)解:煉式= (x-2/(3)(x+2)(x+4)+?-4; (4)9<_y2_4y_4.解:恳式=(x + 2)(x + 4) + (x + 2)(x — 2) =2(x + 2)(x+l)解:原式=9x2-(y24-4y + 4) = (3x)2- (y + 2)2=(3X + y + 2)(3x -y-2)22・(8分)给出三个多项式,X=2a2+3ab+h2,Y=3a+3ab,Z=a2+ab.^你任选两个进行加(或减) 法运算,再将结果分解因式.解;Y - X = 3a2 + 3ab 一2a2一3ab - b2 = a2 - b2 = (a + b)(a - b); Y + Z = 3a2 + 3ab + a2 + ab = 4a2 + 4ab = 4a(a + b); X -Z=2a2 + 3ab + b2-a2-ab = a2 + 2ab + b2=(a + b)2(^案“一)23・(8分)阅读理解:用平方差公式计算:(2°+1)(2°—1)(4/+1)(16/+1).解决本题可采用逐步运用平方差公式计算来进行,答案如下:解:原式=[(2d +1 )(2°一1)](4/ + 1)(16/ +1) = (4a2一1 )(4/ +1)(16/ +1) = [(4a2 +1 )(4/ 一1)](16a4 +1) =(16『一1)(16/+1)=256/—1.拓广应用:计算(X-1 )(X+1)(X2+1)(/+ 1)(丿+ 1)・・・(严+ 1)(兀紈一J.解:^=X128-2X64+124・(10分)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片'拼成一个大长方形,使它的面积等于/+3〃+2沪,并根据你拼成的图形分解因式:a2 + 3aba 2 + 3ab + 2b 2 = (a + b)(a + 2b)25 • (10分)小红家有一块L 形的菜地,要把厶形的菜地按图那样分成面积相等的梯形,种上不同的蔬 菜,这两个梯形的上底都是,下底都是b m ,高都是(b-a )m.请你给小红家算一算,小红家的菜地的 面积共有多少?当10,b=30时,面积是多少?解,(b 2 - a 2) m 2 800 m 2检测内容:第十三章得分 _______ 卷后分 __________ 评价 __________一、选择题(每小题3分,共30分)1・下列语句不是命题的是(B ) A •对顶角相等B.连接A3并延长至C 点 C •内错角相等D.同角的余角相等2•根据下列条件画三角形,不能确定唯一三角形的是(A ) A •已知三个角 B.己知三边C •己知两角和夹边D.已知两边和夹角3 •如图,已知,ZMBA=ZNDC ,下列不能判定△ AEM 竺厶CDN 的条件是(C )A - ZM=ZNB ・ AB=CD C. AM=CN D. AM//CN 4•下列命题是假命题的有(D )①若cT=b 2,则a=b ;②一个角的余角大于这个角;③若a ,b 是有理数,则\a+b\ = \a\ + \b\;④如果 ZA=ZB+ 2员ab‘那ZA与ZB是对顶角.A ・1个 B. 2个 C. 3个 D. 4个5 •如图,已知AB=AC ,AD=AE ,则下列结论正确的是(D ) ①EB=DC;②5BPE 竺/\CPD;③点P 在ABAC 的平分线上. A •①B.②C.①②D.①②③6 •如图,在AABC 中,BC=8 cm ,AB 的垂直平分线交AB 于点D ,交AC 于点E ,/XBCE 的周长等 于18 cm ,则AC 的长等于(C )A • 6 cm B. 8 cm C. 10 cm D.,第5题图)7.等樓△M3C 的•个外角为110° ,则比等腰三角形的顶角的度数为(C ) A ・40° B. 70° C ・40°或70° D.以上都不对8 •如图,在HABC 中,ZC=90。
人教版八年级数学上册单元测试题附答案全套第一单元:有理数单项选择题1.下列数中,哪个是负有理数?a.0b. 5c. -3d. 22.哪组数中,有一个正有理数和一个负有理数?a.{-2, -3}b. {0, 1}c. {5, 7}d. {-4, 4}3.下列数中,哪些是无理数?a.√2b. -7c. 0.5d. 3/74.若 a、b 均为正有理数,且 a > b,那么 a < 0 的可能性是多少?a.0b. 1c. 无穷大d. 无法确定5.若 a 和 b 是互为倒数的数,且 a 是正有理数,则 b 是:a.正有理数b. 负有理数c. 正无理数d. 负无理数解答题1.请用画数轴的方法表示 -2.5 这个有理数。
数轴2.判断下列数中哪些是有理数,哪些是无理数:√3、0.75、-5.5、0、5/4–有理数:0.75、-5.5、0、5/4–无理数:√3答案单项选择题答案:1. c 2. b 3. a 4. a 5. d解答题答案: 1.2. 有理数:0.75、-5.5、0、5/4,无理数:√3第二单元:整式的加减单项选择题1.下列算式中,不是整式的是:a.3x + y + 5b. 2x² - 3x + 4c. 4√2 + 7d. 6x - 5y - 42.下列算式中,能简化为整式的是:a.3x - √2b. 6x - 2/xc. 5x + 1/2d. 4x - √33.若 a = 2x + 3y,b = 4x - 6y,则 a - b 的结果是:a.2x + 3yb. -2x - 9yc. 6x - 3yd. -6x + 9y解答题1.将算式 3xy + 7y² - 4yx - 5x²的项按 x 的次数从高到低写出来。
-5x² + (3xy - 4yx) + 7y²2.将算式 a = 2x + 3y 和 b = 4x - 6y 相加,并合并同类项。
第1章全等三角形单元测试卷(A卷基础篇)【苏科版】考试时间:45分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2018秋•无为县期末)下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形2.(3分)(2019春•临安区期中)如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°3.(3分)(2018秋•吴江区期末)如果△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则AC的长为()A.2B.3C.4D.54.(3分)(2018秋•莆田期末)下列条件中,不能作出唯一三角形的是()A.已知三角形两边的长度和夹角的度数B.已知三角形两个角的度数以及两角夹边的长度C.已知三角形两边的长度和其中一边的对角的度数D.已知三角形的三边的长度5.(3分)(2019春•沙县期末)如图,AB=AC,D,E分别是AB,AC上的点,下列条件不能判断△ABE ≌△ACD的是()A.∠B=∠C B.BE=CD C.AD=AE D.BD=CE6.(3分)(2019春•金水区校级月考)下列条件中,不能判定两个直角三角形全等的是()A.一个锐角和斜边对应相等B.两条直角边对应相等C.两个锐角对应相等D.斜边和一条直角边对应相等7.(3分)(2019春•市中区期末)如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA8.(3分)(2019春•桂林期末)如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD =2,则DE的长是()A.7B.5C.3D.29.(3分)(2019•合浦县二模)如图,在△P AB中,P A=PB,D、E、F分别是边P A,PB,AB上的点,且AD=BF,BE=AF,若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°10.(3分)如图,点D、E分别为△ABC的边AB、AC上的点,BE与CD相交于点O,现有四个条件:①AB =AC;②OB=OC;③∠ABE=∠ACD;④BE=CD,选择其中2个条件作为题设,余下2个条件作为结论,所有命题中,真命题的个数为()A.3B.4C.5D.6第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•凉州区期末)如图所示的方格中,∠1+∠2+∠3=度.12.(3分)(2019•五华区模拟)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的块带去,就能配一块大小和形状与原来都一样的三角形.13.(3分)(2018秋•龙凤区校级月考)一个三角形的三边长为5,y,13,若另一个和它全等的三角形的三边长为5,12,x,则x+y=.14.(3分)如图,在△ABC中,射线AD交BC于点D,BE⊥AD于E,CF⊥AD于F,请补充一个条件,使△BED≌△CFD,你补充的条件是(填出一个即可).15.(3分)(2019春•沙坪坝区校级月考)如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,则∠DEF的度数.16.(3分)(2018秋•岳池县期末)如图,在△ABC中,F是高AD和BE的交点,且AD=BD,AC=8cm,则BF的长是.17.(3分)(2019春•滨湖区期中)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为18.(3分)(2019•中原区校级模拟)如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:(1)∠1=∠2;(2)BE=CF;(3)△ACN≌△ABM;(4)△MCD≌△NBD中,正确的是.评卷人得分三.解答题(共5小题,满分46分)19.(8分)沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形20.(8分)(2019春•醴陵市期末)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.21.(10分)(2018秋•东城区期末)如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.22.(10分)(2019•九龙坡区校级模拟)如图,在等腰△ABC中,AB=AC,CE、BD分别为∠ACB、∠ABC 的角平分线,CE、BD相交于P.(1)求证:CD=BE;(2)若∠A=98°,求∠BPC的度数.23.(10分)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.第1章全等三角形单元测试卷(B卷提升篇)【苏科版】考试时间:45分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2018春•岱岳区期末)如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.45°B.60°C.90°D.100°2.(3分)(2018秋•滨海新区期末)如图,已知AD∥BC,那么添加下列一个条件后,仍无法确定△ABC≌△CDA的是()A.∠B=∠D B.AB∥DC C.AB=CD D.BC=AD3.(3分)(2018秋•永定区校级月考)如图,某同学把三角形玻璃打碎成三片,现在他要去配一块完全一样的,他想了一想,结果带第3片去.理由是根据三角形全等的判定方法中()A.SSS B.SAS C.ASA D.AAS4.(3分)(2019•金牛区校级模拟)如图,在△ABC中,点P,Q分别在BC,AC上,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于点S,则下面结论错误的是()A.∠BAP=∠CAP B.AS=AR C.QP∥AB D.△BPR≌△QPS5.(3分)(2018秋•厦门期末)如图,点F,C在BE上,△ABC≌△DEF,AB和DE,AC和DF是对应边,AC,DF交于点M,则∠AMF等于()A.2∠B B.2∠ACB C.∠A+∠D D.∠B+∠ACB6.(3分)(2018秋•沂水县期中)如图,△ABC中,∠B=∠C=65°,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°7.(3分)如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+β=180°8.(3分)(2018秋•沭阳县期末)已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为()A.2B.2或C.或D.2或或9.(3分)(2018秋•和平区期末)已知AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC及中线AD的取值范围分别是()A.4<BC<20,2<AD<10B.4<BC<20,4<AD<20C.2<BC<10,2<AD<10D.2<BC<10,4<AD<2010.(3分)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO 平分∠BMC.其中正确的个数为()A.4B.3C.2D.1第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•营口期末)如图,∠1=∠2,BC=EC,请补充一个条件:能使用“AAS”方法判定△ABC≌△DEC.12.(3分)如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳).在图中,只要量出CD的长,就能求出工件内槽的宽,依据是.13.(3分)(2018秋•下陆区期末)如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.14.(3分)(2018秋•杭州期中)平面上有△ACD与△BCE,其中AD与BE相交于P点,如图,若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为.15.(3分)(2019春•漳州期末)如图,△ABC中,∠C=90°,AC=8,BC=4,AX⊥AC,点P、Q分别在边AC和射线AX上运动,若△ABC与△PQA全等,则AP的长是.16.(3分)(2018秋•桑植县期末)如图,在△ABC中,AB=3,AC=2,BC边上的中线AD的长是整数,则AD=.17.(3分)如图,在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计).18.(3分)(2019春•马山县期末)将2019个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2…,A2019分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为cm2.评卷人得分三.解答题(共5小题,满分46分)19.(6分)(2018秋•越秀区期末)如图,AC与BD相交于点E,AC=BD,AC⊥BC,BD⊥AD.垂足分别是C、D.(1)若AD=6,求BC的长;(2)求证:△ADE≌△BCE.20.(8分)如图,已知△ABE≌△ACD.(1)如果BE=6,DE=2,求BC的长;(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.21.(10分)(2019•北碚区校级模拟)如图,A、D、B、E四点在同一条直线上,AD=BE,BC∥EF,BC =EF.(1)求证:AC=DF;(2)若CD为∠ACB的平分线,∠A=25°,∠E=71°,求∠CDF的度数.22.(10分)(2018春•灵石县期末)如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C 处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.23.(12分)(2018秋•十堰期末)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.第2章轴对称图形单元测试卷(A卷基础篇)【苏科版】考试时间:45分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•相城区期中)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)(2018秋•谢家集区期中)如图,若△ABC与△DEF关于直线l对称,BE交l于点O,则下列说法不一定正确的是()A.AB∥EF B.AC=DF C.AD⊥l D.BO=EO3.(3分)(2018秋•永定区期中)下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有()A.①②③B.①②④C.①③④D.①②③④4.(3分)(2018秋•西城区校级期中)等腰三角形的两边长分别为6cm和3cm,则它的周长是()A.15cm B.12cmC.15cm或12cm D.以上都不正确5.(3分)(2019春•港南区期中)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm6.(3分)(2019春•南海区期中)如图,在△ABD中,AB的垂直平分线DE交BC于点D,∠B=30°,AD=AC,∠BAC的度数为()A.80°B.85°C.90°D.105°7.(3分)(2018秋•南昌期中)如图,直线l1∥l2,将等边三角形如图放置,若∠α=35°,则∠β等于()A.35°B.30°C.25°D.15°8.(3分)(2018秋•镇江期中)如图,在等腰△ABC中,AB=AC,∠ABC与∠ACB的平分线交于点O,过点O做DE∥BC,分别交AB、AC于点D、E,若△ADE的周长为18,则AB的长是()A.8B.9C.10D.129.(3分)(2018秋•慈溪市期中)如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.5条B.4条C.3条D.2条10.(3分)(2019春•南京期中)如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB 重合于线段EO,若∠CDO+∠CFO=106°,则∠C的度数()A.40°B.37°C.36D.32°第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•谢家集区期中)室内墙壁上挂一平面镜,小明在平面镜内看到他背后的时钟如图,则这时的实际时间是.12.(3分)(2018秋•西城区校级期中)已知等腰三角形一腰上的高与另一腰的夹角为35°,则这个等腰三角形顶角的度数为.13.(3分)(2019春•相城区期中)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠BDC等于.14.(3分)(2018秋•九龙坡区校级期中)如图,在△ABC中,AC=22cm,D是AB的中点,DE⊥AB交AC于点E,连BE,若△BCE的周长是36cm,则BC=cm.15.(3分)(2018秋•滨湖区期中)如图,已知AD∥BC,DE、CE分别平分∠ADC、∠DCB,AB过点E,且AB⊥AD,若AB=8,则点E到CD的距离为.16.(3分)(2018秋•镇江期中)如图,∠AOB=45°,点P在∠AOB内,且OP=8,点P关于直线OA的对称点P1,点P关于直线OB的对称点P2,连接OP1、OP2、P1P2,则△OP1P2的面积等于.17.(3分)(2018秋•绵阳期中)如图所示是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,设较长直角边的中点为M,绕中点M转动三角板ABC,使其直角顶点C 恰好落在三角板A1B1C1的斜边A1B1上,当∠A=30°,AC=10时,两直角顶点C,C1的距离是.18.(3分)(2018秋•温岭市期中)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,第2018个三角形的底角度数是.评卷人得分三.解答题(共5小题,满分46分)19.(6分)(2018秋•赣榆区期中)如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下列图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC成轴对称图形.20.(8分)(2019春•盐湖区期中)如图,△ABC中,AB,AC边的垂直平分线分别交BC于点D,E,垂足分别为点F,G,△ADE的周长为6cm.(1)求△ABC中BC边的长度;(2)若∠BAC=116°,求∠DAE的度数.21.(10分)(2018秋•常熟市期中)如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.22.(10分)(2019秋•垦利区期中)如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥BD.23.(12分)(2019春•盐湖区期中)(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F.试猜想EF、BE、CF之间有怎样的关系,并说明理由.(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,则刚才的结论还成立吗?请说明理由.第2章轴对称图形单元测试卷(B卷提升篇)【苏科版】考试时间:100分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2018秋•思明区校级期中)如图,四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3分)(2018秋•新罗区校级期中)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(A、P、A′不共线),下列结论中,错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′、CC′C.△ABC与△A′B′C′面积相等D.直线AB,A′B′的交点不一定在直线MN上3.(3分)(2018秋•九龙坡区校级期中)如图,AD是△ABC的角平分线,DE⊥AB于E,已知△ABC的面积为28.AC=6,DE=4,则AB的长为()A.6B.8C.4D.104.(3分)(2018秋•慈利县期中)小明用一根长20cm的铁丝做一个周长是20cm的等腰三角形,则腰长x 的取值范围是()A.0<x<10B.0<x<5C.5≤x≤10D.5<x<105.(3分)(2019春•牡丹区期中)如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处6.(3分)(2018秋•邗江区期中)如图,若AB=AC,下列三角形能被一条直线分成两个小等腰三角形的是()A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(4)7.(3分)(2019秋•安徽期中)如图所示,在△ABC中,∠A=60°,AB=AC,BD是△ABC的角平分线,延长BC至E,使CE=CD,若△ABC的周长为20,BD=a,则△DBE的周长是()A.20+a B.15+2a C.10+2a D.10+a8.(3分)(2018秋•南京期中)如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD 上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°9.(3分)(2019春•巴南区期中)如图,点E在线段CD上,点F在AB的延长线上,AB∥CD,CB平分∠ACD,BD平分∠EBF,若BC⊥BD,则下列结论中不正确的是()A.∠CBE+∠D=90°B.AC∥BEC.∠DEB=3∠ABC D.BC平分∠ABE10.(3分)(2018秋•鄂尔多斯期中)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;②∠ADF =2∠ECD;③S△AEC:S△AEG=AC:AG;④S△CED=S△DFB;⑤CE=DF.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•上杭县期中)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.12.(3分)(2018秋•阜宁县期中)如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有个.13.(3分)(2018秋•西城区校级期中)已知等腰三角形一腰上的高与另一腰的夹角为35°,则这个等腰三角形顶角的度数为.14.(3分)(2018秋•海淀区校级期中)如图,把△ABC纸片折叠,点B落在B′处,折痕为DE,则∠B、∠1、∠2满足的等量关系为.15.(3分)(2019春•青原区期中)已知△ABC中,BC=6,AB、AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是.16.(3分)(2018秋•滨海县期中)如图,在△ABC中,∠A=90°,BD平分∠ABC,DE⊥BC于E,AD=4cm,BC=15cm,△BDC的面积为cm217.(3分)(2018秋•西城区校级期中)如图,△ABC中,AD是∠BAC的平分线,DE∥AB交AC于点E,若DE=7,CE=6,则AC的长为.18.(3分)(2018秋•江夏区期中)如图,四边形ABCD中,CD=BC=4,AB=1,E为BC中点,∠AED =120°,则AD的最大值是.评卷人得分三.解答题(共5小题,满分46分)19.(6分)(2018秋•云安区期中)如图在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:∠B=∠C.20.(8分)(2018秋•海淀区校级期中)如图,已知线段AB=CD,求作线段a,使线段a与线段AB成轴对称,与线段CD也成轴对称.(保留作图痕迹)21.(8分)(2018秋•合阳县期中)已知等腰三角形一腰上的中线将三角形的周长分为12cm和21cm两部分,求这个等腰三角形的底边和腰的长度.22.(12分)(2019春•盐湖区期中)(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F.试猜想EF、BE、CF之间有怎样的关系,并说明理由.(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,则刚才的结论还成立吗?请说明理由.23.(12分)(2018秋•鄂尔多斯期中)如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形△AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?第3章勾股定理单元测试卷(A卷基础篇)【苏科版】考试时间:100分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2018秋•宜兴市期中)下列各组数中,是勾股数的( ) A .35,45,1B .1,2,3C .1.5,2,2.5D .9,40,412.(3分)(2018秋•江都区期中)在Rt ABC ∆中,90ACB ∠=︒,CD 是高,4AC m =,3BC m =,则线段CD 的长为( ) A .5mB .125m C .512m D .43m3.(3分)(2019春•丰润区期中)满足下列条件的ABC ∆,不是直角三角形的是( ) A .::3:4:5a b c = B .::9:12:15A B C ∠∠∠= C .C A B ∠=∠-∠D .222b a c -=4.(3分)(2019春•寿光市期中)如图:在一个边长为1的小正方形组成的方格稿纸上,有A 、B 、C 、D 、E 、F 、七个点,则在下列任选三个点的方案中可以构成直角三角形的是( )A .点A 、点B 、点CB .点A 、点D 、点GC .点B 、点E 、点FD .点B 、点G 、点E5.(3分)(2019春•洛阳期中)如图,在ABC ∆中,AB AC ⊥,5AB cm =,13BC cm =,BD 是AC 边上的中线,则BCD ∆的面积是( )A .215cmB .230cm6.(3分)(2019春•西工区校级月考)有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A .1B .2018C .2019D .20207.(3分)(2019春•郯城县期中)如图,一根长5米的竹竿AB 斜靠在一竖直的墙AO 上,这时AO 为4米,如果竹竿的顶端A 沿墙下滑1米,竹竿底端B 外移的距离(BD )A .等于1米B .大于1米C .小于1米D .以上都不对8.(3分)(2019春•岑溪市期末)如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A .16cmB .18cmC .20cmD .24cm9.(3分)(2019春•番禺区期中)如图是“赵爽弦图”, ABH ∆、BCG ∆、CDF ∆和DAE ∆是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果10AB =,2EF =,那么AH 等于( )A .8B .6C .4D .510.(3分)(2018秋•余杭区期中)ABC ∆中,90C ∠=︒,8AC cm =,6BC cm =. 动点P 从点C 开始, 按C A B C →→→的路径运动, 速度为每秒2cm ,运动的时间为t 秒 . 以下结论中正确的有( )①t 为 6 秒时,CP 把ABC ∆的周长分成相等的两部分②t 为 6.5 秒时,CP 把ABC ∆的面积分成相等的两部分, 且此时CP 长为5:cm③t 为 3 秒或 5.4 秒或 6 秒或 6.5 秒时,BCP ∆为等腰三角形,A .①②③B .①②C .②③D .①③第Ⅱ卷(非选择题)评卷人得 分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2017秋•响水县期中)分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有 .(填序号)12.(3分)(2018秋•余杭区期中)如图, 在ABC ∆中,13AB AC ==,10BC =,点D 为BC 的中点,垂足为点E ,则DE 等于 .13.(3分)(2019春•常德期中)如图,一棵大树在离地3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.14.(3分)(2018秋•盐都区期中)如图, 已知AD 是Rt ABC ∆的角平分线,90ACB ∠=︒,6AC =,8BC =,则BD = .15.(3分)(2019春•南岗区校级月考)如图所示,四边形ABCD 中,BA DA ⊥,2AB =,23AD =3CD =,5BC =,则四边形ABCD 的面积为 .16.(3分)(2019•北京)如图所示的网格是正方形网格,则PAB PBA ∠+∠= ︒(点A ,B ,P 是网格线交点).17.(3分)(2018春•旌阳区校级期中)在Rt ABC ∆中,90ACB ∠=︒,13AB cm =,5AC cm =,动点P 从点B 出发沿射线BC 以/lcm s 的速度移动,设运动的时间为t 秒,当ABP ∆为等腰三角形时,t 的值为 .18.(3分)(2019春•商河县期中)如图,在ABC ∆中,5AB AC ==,底边6BC =,点P 是底边BC 上任意一点,PD AB ⊥于点D ,PE AC ⊥于点E ,则PD PE += .评卷人得 分三.解答题(共5小题,满分46分)19.(8分)(2018春•淮上区期中)如图,在ABC ∆中,15AB =,14BC =,13AC =,AD 为BC 边上的高,点D 为垂足,求ABC ∆的面积.20.(8分)(2019春•长汀县期中)在甲村至乙村间有一条公路,在C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA CB⊥,如图所示,为了安全起见,爆破点C周围半径250米范围内不得进入,问:在进行爆破时,公路AB段是否有危险?是否需要暂时封锁?请用你学过的知识加以解答.21.(10分)(2017秋•太仓市校级期中)(1)如图,在66⨯的网格中,请你画出一个格点正方形ABCD,使它的面积是10.(2)如图,A、B是45⨯的网格中的格点,网格中每个小正方形的边长都是单位1,请在图中清晰地标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.22.(10分)(2018秋•大田县期中)观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,90∠=︒;ACEB D∠=∠=︒,且B,C,D在同一直线上.试说明:90(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.23.(10分)(2018秋•宝安区期中)如图1,Rt ABCAC CB∆⊥,15AB=,点D为斜边上动点.AC=,25(1)如图2,过点D作DE AB⊥交CB于点E,连接AE,当AE平分CAB∠时,求CE;(2)如图3,在点D的运动过程中,连接CD,若ACD∆为等腰三角形,求AD.第3章勾股定理单元测试卷(B卷提升篇)【苏科版】考试时间:100分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•洛龙区期中)由线段a ,b ,c 组成的三角形不是直角三角形的是( )A .222a b c -=B .53,1,44a b c ===C .2a =,3b =,7c =D .::3:4:5A B C ∠∠∠=2.(3分)(2018秋•九龙坡区校级期中)如图,AC BD ⊥,12∠=∠,40D ∠=︒,则BAD ∠的度数是( )A .85︒B .90︒C .95︒D .100︒3.(3分)(2019春•城关区校级期中)在ABC ∆中,90C ∠=︒,1AC =,2BC =,CD AB ⊥于D ,则CD 长为( )A .1B .2C .25D .5 4.(3分)(2018春•忻城县期中)如图,在Rt ABC ∆中,90C ∠=︒,10AC =,8BC =,将ABC ∆折叠,使点A 与BC 边的中点D 重合,折痕为EF ,则线段CF 的长是( )A .4B .4.2C .5D .5.85.(3分)(2019春•番禺区期中)如图是“赵爽弦图”, ABH ∆、BCG ∆、CDF ∆和DAE ∆是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果10AB =,2EF =,那么AH 等于( )A .8B .6C .4D .56.(3分)(2018秋•丹阳市期中)如果正整数a 、b 、c 满足等式222a b c +=,那么正整数a 、b 、c 叫做勾股数某同学将自探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .987.(3分)(2018秋•南明区校级期中)一根长18cm 的牙刷置于底面半径为5cm ,高为12cm 的圆柱形水杯中,牙刷露在杯子外面的长度为h ,则h 的值不可能是( )A .3cmB .cm πC .6cmD .8cm8.(3分)(2019春•海阳市期中)如图,在Rt ABC ∆中,90ACB ∠=︒,3AC =,4BC =,点D 在AB 上,AD AC =,AF CD ⊥交CD 于点E ,交CB 于点F ,则CF 的长是( )A .1.5B .1.8C .2D .2.59.(3分)(2018秋•安国市期中)把两个同样大小的含45︒角的三角尺按如图所示的方式放置,其中一个锐角顶点与另一个的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一条直线上,若2AB =,则CD 的长为( )A 21B 21C 31-D 310.(3分)(2019春•乐陵市期中)正方形ABCD 的边长为1,其面积记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为2S ,⋯按此规律继续下去,则2019S 的值为( )1 () 2B.20181()2C.20192()D.20182()A.2019第Ⅱ卷(非选择题)评卷人得 分二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•兴化市期中)已知一组勾股数中有一个数是2(mn m 、n 都是正整数,且2)m n >,尝试写出其它两个数(均用含m 、n 的代数式表示,只要写出一组): , .12.(3分)(2019春•天宁区校级期中)如图,在Rt ABC ∆中,90B ∠=︒,59ACB ∠=︒,//EF GH ,若158∠=︒,则2∠= ︒.13.(3分)(2018秋•临淄区校级期中)如图是“俄罗斯方块”游戏中的一个图案,由四个完全相同的小正方形拼成,则ABC ∠的度数为 .14.(3分)(2019春•颍州区校级期中)在ABC ∆中,AB 是41的算术平方根,5AC =,若BC 边上的高等于4,则BC 的长为 .15.(3分)(2019春•仓山区期中)《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:原处还有多高的竹子?(1丈10=尺)设竹子折断处离地面x 尺.可列方程 .16.(3分)(2018秋•余杭区期中)如图, 在ABC ∆中,13AB AC ==,10BC =,点D 为BC的中点, 垂足为点E ,则DE 等于 .17.(3分)(2018秋•巴南区期中)如图,在Rt ABC ∆中,AC BC =,点D 是ABC ∆内一点,若AC AD =,30CAD ∠=︒,则ADB ∠= .18.(3分)(2018秋•新吴区校级期中)如图,Rt ABC ∆中,90C ∠=︒,点P 为AC 边上的一点,延长BP 至点D ,使得AD AP =,当AD AB ⊥时,过D 作DE AC ⊥于E ,4AB BC -=,8AC =,则ABP ∆面积为 .评卷人得 分三.解答题(共5小题,满分46分)19.(8分)(2019春•越秀区校级期中)如图,正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且14CE BC =,你能说明AFE ∠是直角吗?。
最新华师大版八年级数学上册单元测试题及答案全套一、单项选择题(每小题1分,共20分)1. ( ) Which date is your birthday?A. WhatB. HowC. WhichD. When2. ( ) That is a______ car. It's Tom's car.A. nurseB. nurse'sC. nurses'D. nurses3. ( ) They are ______ big books.A. a fewB. a littleC. a lotD. a lot of4. ( ) The fish tastes _____. I like it.A. goodB. wellC. badlyD. bad5. ( ) He is going to____home to play the guitar.A. beB. doC. makeD. return6. ( ) Do you often go to the park by______?A. bikesB. bikeC. a bikeD. two bike7. ( ) The students can't____ = it + waterA. drinkB. goC. comeD. eat8. ( ) I have_____ to say.A. somethingB. anythingC. nothingD. sometime9. ( ) He has already ______home.A. goesB. wentC. is goingD. go10. ( ) Did you see_______?A. hearB. to hearC. hearingD. to hearing11. ( ) There are many __________.A. so many applesB. so much applesC. such applesD. such many apples12. ( ) These bags are ______.A. IB. meC. myD. mine13. ( ) This is ________ interesting book.A. aB. anC. theD. that14. ( ) Is this __ fruit?A. herB. her'sC. her orangesD. hers15. ( ) ______me to the zoo right now.A. ComeB. PassC. DriveD. Go16. ( ) Lily often ______ustla.A. goB. goesC. is goingD. went17. ( ) Mike doesn't like sport, ____?A. do heB. does heC. does sheD. is he18. ( ) These shoes ______ me ten dollars.A. spendB. costC. payD. take19. ( ) He _______ many new things in the travelling.A. sawB. seesC. has seenD. see20. ( ) ______ a picture of your grandmother on the wall?A. Have you gotB. Do you haveC. Is thereD. Are there二、单词拼写(每小题1分,共10分)21. I want to buy some________(橙子).22. There are some_______(花)in the garden.23. She has three_______(牙).24. Can you see a red kite in the_________(天空)?25. My uncle's wife is my_______(卧室).26. I want to buy some chicken_______(肉).27. Jenny is a good ________[音乐].28. He has a nice ________(运动).29. Is there a ________[汉堡] restaurant near the school?30. She takes a _________(乐器) lesson on Sundays.三、根据汉语意思完成句子(20)31. 手表在哪里了?__ _____ ______ the watch?32. 每天他们都锻炼身体。
浙教版八年级数学上册单元测试题全套(含答案)第1章三角形的初步知识检测卷(时间:60分钟满分:100分)一、选择题(每题2分,共20分)1.如图,为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )(第1题图)A.5m B.15m C.20m D.28m2.一个三角形三个内角的度数之比为2∶3∶5,这个三角形一定是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形3.张师傅不小心将一块三角形玻璃打破成如图中的三块,他准备去店里重新配置一块与原来一模一样的,最省事的做法是( )(第3题图)A.带1去 B.带2去C.带3去 D.三块都带去4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有( )A.1个 B.2个 C.3个 D.4个5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是( )(第5题图)6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是( )A.1cm B.2cm C.3cm D.5cm7.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是( ) A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN(第7题图)(第8题图)8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( ) A.3 B.4 C.6 D.59.如图,锐角三角形ABC中,直线l为BC的中垂线,直线m为∠ABC的角平分线,l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP是( )A.24° B.30° C.32° D.36°(第9题图)(第10题图)10.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3. A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)11.木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB,CD两个木条),这样做根据的数学道理是____.(第11题图)(第12题图)(第13题图)12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是____________________(只要求写一个条件).13.一副具有30°和45°角的直角三角板,如图叠放在一起,则图中∠α的度数是____.14.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是____ .15.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D.若DC=3,则点D到AB的距离是_______.(第15题图)(第16题图)16.如图,在△ABC中,AB=12,EF为AC的垂直平分线,若EC=8,则BE的长为____.17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________. 18.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于____.19.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是___ .(第18题图)(第19题图)(第20题图)20.如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大,若∠A减少α度,∠B增加β度,∠C增加γ度,则α,β,γ三者之间的等量关系是__ _.三、解答题(共50分)21.(6分)已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.(第21题图)22.(7分)如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.(第22题图)23.(6分)如图,在△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,________,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.(第23题图)24.(7分)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到点E,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.(第24题图)25.(8分)如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E.求∠E的度数.(第25题图)26.(8分)如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且点O的距离是a cm,请用含a的代数式表示△ABC的面积.(第26题图)27.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,求证:BD=2CE.(第27题图)参考答案一、1.D 2.B 3.C 4.D 5.A 6.B 7.C 8.A 9.C 10.D二、11.三角形的稳定性12.AB =AC 或∠B=∠C 或∠ADC=∠AEB13.75°14.答案不唯一,如a =-1,b =3等异号两数15.316.417.1918.70°19.2∠A=∠1+∠220.α=β+γ三、21.略22.∠BFD=90°,∠BED =70°23.答案不唯一,如横线上添加的条件是∠C=∠D.理由如下:在△ABC 与△BAD 中,⎩⎪⎨⎪⎧∠C =∠D(已知),∠2=∠1(已知),AB =BA (公共边),∴△ABC ≌△BAD(AAS).(第24题答图)24.(1)证明:在四边形ABCD 中,∵∠A =∠BCD=90°,∴∠B +∠ADC=180°.又∵∠ADC+∠EDC=180°,∴∠ABC =∠EDC.(2)证明:连结AC.在△ABC 和△EDC 中,⎩⎪⎨⎪⎧BC =DC ,∠ABC =∠EDC,AB =ED ,∴△ABC ≌△EDC.25.∠E=45°26.(1)BC =5cm (2)10acm 227.证明:延长CE 与BA 的延长线交于点F ,∵∠BAC =90°,CE ⊥BD ,∴∠BAC =∠DEC,∵∠ADB =∠CDE,∴∠ABD =∠DCE,在△BAD 和△CAF 中,⎩⎪⎨⎪⎧∠BAD =∠CAF,AB =AC ,∠ABD =∠DCE,∴△BAD ≌△CAF(ASA),∴BD =CF ,在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠1=∠2,BE =BE ,∠BEF =∠BEC,∴△BEF ≌△BEC(ASA),∴CE =EF ,∴DB =2CE.(第27题答图)第2章 特殊三角形检测卷(时间:60分 满分:100分)一、选择题(每题2分,共20分)1.下列图形不是..轴对称图形的是( ) A .线段 B .等腰三角形C .角D .有一个内角为60°的直角三角形2.下列命题的逆命题正确的是( )A .全等三角形的面积相等B .全等三角形的周长相等C .等腰三角形的两个底角相等D .直角都相等3.等腰三角形的两条边长是3和6,则它的周长是( )A .12B .15C .12或15D .15或184.如图,在△ABC 中,AB =AC =5,BC =6,AD 是BC 边上的中线,点E ,F ,M ,N 是AD 上的四点,则图中阴影部分的总面积是( )A .6B .8C .4D .12(第4题图) (第6题图)5.有一个角是36°的等腰三角形,其他两个角的度数是( )A .36°,108°B .36°,72°C .72°,72°D .36°,108°或72°,72°6.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于点D.若BC =4cm ,BD =5cm ,则点D 到AB 的距离是( )A .5cmB .4cmC .3cmD .2cm7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1, 2C .1,1, 3D .1,2, 38.如图,△ABC 的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形(第8题图)9.如图,已知:∠MON=30°,点1A ,2A , 3A …在射线ON 上,点6B 1B 、2B 、3B …在射线OM 上,△1A 1B 2A 、△2A 2B 3A 、△3A 3B 4A …均为等边三角形,若O 1A =1,则△6A 6B 7A 的边长为( )A .6B .12C .32D .64(第9题图) (第10题图)10.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE=90°,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE.下列结论中,正确的结论有( )①CE =BD ;②△ADC 是等腰直角三角形;③∠ADB=∠AEB;④S 四边形BCDE =12BD ·CE ;⑤BC 2+DE 2=BE 2+CD 2. A .1个 B .2个 C .3个 D .4个二、填空题(每题3分,共30分)11.命题“角平分线上的点到角两边的距离相等”的逆命题是______.12.如图,在△ABC 中,AB =AC ,BC =6,AD ⊥BC 于点D ,则BD =________.(第12题图) (第13题图)13.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,若∠A=20°,则∠BDC=____.14.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和12,则b 的面积为____.(第14题图) (第15题图)15.如图,在等边三角形ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE,那么线段DE 的长度为________.(第16题图) (第17题图)16.如图,△ABC 中,CD ⊥AB 于点D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长等于_____.17.如图,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,则EC 的长为___cm.18.如图,在△ABC 中,∠BAC =90°,AB =AC ,AE 是经过点A 的一条直线,且B ,C 在AE 的两侧,BD ⊥AE 于点D ,CE ⊥AE 于点E ,CE =2,BD =6,则DE 的长为_____.19.如图,在Rt △ABC 中,∠C =90°,AC =BC ,将其绕点A 逆时针旋转15°得到Rt △AB ′C ′,B ′C ′交AB 于点E ,若图中阴影部分面积为23,则B′E 的长为__________.(第18题图) (第19题图) 20.在Rt △ABC 中,∠C =90°,BC =8 cm ,AC =4 cm ,在射线BC 上一动点D ,从点B 出发,以5厘米每秒的速度匀速运动,若点D 运动t 秒时,以A ,D ,B 为顶点的三角形恰为等腰三角形,则所用时间t 为_______秒(结果可含根号).三、解答题(共50分)21.(7分)如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,连结MN ,与AC ,BC 分别交于点D ,E ,连结AE.(1)求∠ADE;(直接写出结果)(2)当AB =3,AC =5时,求△ABE 的周长.(第21题图)22.(8分)如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,DE ∥AB ,过点E 作EF⊥DE,交BC 的延长线于点F.(1)求∠F 的度数;(2)若CD =2,求DF 的长.(第22题图)23.(8分)给出两个三角形(如图),请你把图1分割成两个等腰三角形,把图2分割成三个等腰三角形,并在图上标出分割后等腰三角形的顶角的度数.(第23题图)24.(8分)如图,在△ABC 中,D 是BC 边上一点,且BA =BD ,∠DAC =12∠B ,∠C =50°.求∠BAC 的度数.(第24题图)25.(9分)已知:如图,在△ABC 中,AD 是△ABC 的高,作∠DCE=∠ACD,交AD 的延长线于点E ,点F 是点C 关于直线AE 的对称点,连结AF.(1)求证:CE =AF ;(2)若CD =1,AD =3,且∠B=20°,求∠BAF 的度数.(第25题图)26.(10分) 在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=__ _°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.(第26题图)参考答案一、1.D 2. C 3. B 4. A 5. D 6. C 7.D 8. B 9.C 10.C二、11.角的内部到角两边距离相等的点在角平分线上 12.3 13.40° 14.1715.3 3 16.8 17.3 18.4 19.23-2 20.5,4,1655 三、21.(1)∵由题意可知MN 是线段AC 的垂直平分线,∴∠ADE =90°.(2)∵在Rt △ABC 中,∠B =90°,AB =3,AC =5,∴BC =52-32=4.∵MN 是线段AC 的垂直平分线,∴AE =CE ,∴△ABE 的周长=AB +(AE +BE)=AB +BC =3+4=7.22.(1)∵△ABC 是等边三角形,∴∠B =60°.∵DE ∥AB ,∴∠EDC =∠B=60°.∵EF ⊥DE ,∴∠DEF =90°,∴∠F =90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC =60°,∴△EDC 是等边三角形.∴ED=DC =2.∵∠DEF =90°,∠F =30°,∴DF =2DE =4.23.略24.设∠DAC=x °,则∠B=2x °,∠BDA =∠C+∠DAC=50°+x °.∵BD =BA ,∴∠BAD =∠BDA=50°+x °(等边对等角).∵∠B +∠BAD+∠BDA=180°,2x +50+x +50+x =180.解得x =20.∴∠BAD =∠BDA=50°+20°=70°,∠BAC =∠BAD+∠DAC=70°+20°=90°.25.(1)证明:如答图.∵AD 是△ABC 的高,∴∠ADC =∠ADF=90°.又∵点F 是点C 关于直线AE 的对称点,∴FD =CD.∴AF=AC.又∵∠1=∠2,∴∠CAD =∠CED.∴EC=AC.∴CE=AF.(2)在Rt △ACD 中,CD =1,AD =3,∴AC =2,∴∠DAC =30°.同理可得∠DAF=30°,在Rt △ABD 中,∠B =20°,∴∠BAF =40°.(第25题答图)26.(1)90. ∵∠DAE=∠BAC,∠BAC =∠BAD+∠DAC=∠EAC+∠DAC;∴∠CAE=∠BAD;在△ABD 和△ACE中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE,AD =AE ,∴△ABD ≌△ACE(SAS);∴∠B =∠ACE;∴∠BCE =∠BCA+∠ACE=∠BCA+∠B=180°-∠BAC=90°.(2)①由(1)中可知,β=180°-α,∴α、β存在的数量关系为α+β=180°;②当点D 在射线BC 上时,如答图1,α+β=180°;当点D 在射线BC 的反向延长线上时,如答图2,α=β.(第26题答图)第3章 一元一次不等式检测卷(时间:60分钟 满分:100分)一、选择题(每题2分,共20分)1.不等式2x>3-x 的解集是( )A .x<2B .x>2C .x>1D .x<1 2.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃3.已知a<b ,c 是有理数,下列各式正确的是( )A .ac 2<bc 2B .c -a<c -bC .a -3c<b -3c D. a c <b c4.不等式组⎩⎪⎨⎪⎧2x >-4,3x -5≤7的解集在数轴上可以表示为( )5.若2a +3b -1>3a +2b ,则a ,b 的大小关系为( )A .a<bB .a>bC .a =bD .不能确定6.设a ,b ,c 表示三种不同物体的质量,用天平称两次,情况如图,则这三种物体的质量从小到大排序正确的是( )(第6题图)A .c <b <aB .b <c <aC .c <a <bD .b <a <c7.若0<x<1,则x ,1x,x ²的大小关系是( ) A.1x <x<x 2 B .x<1x <x 2 C .x 2<x<1x D. 1x<x 2<x 8.如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x >m 无解,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m ≥29.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打( )A .6折B .7折C .8折D .9折10.如果关于x 的不等式组⎩⎪⎨⎪⎧5x -2a>0,7x -3b≤0的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b)共有( )A .4对B .6对C .8对D .9对二、填空题(每题3分,共30分)11.用不等式表示“7与m 的3倍的和是正数“就是____.12.如果a<b ,那么3-2a___3-2b(用不等号连接).13.满足不等式2x -1<6的最大负整数为________.14.已知3x -2y =0,且x -1>y ,则x 的取值范围是___.15.若不等式组⎩⎪⎨⎪⎧x -m >4,n -2x >0的解集是-1<x <1,则m +n =____. 16.若关于x 的不等式3m -2x <5的解集是x >2,则实数m 的值为______.17.某企业向银行贷款100万元,一年后归还银行106.6多万元,则年利率高于__ %.18.下课时老师在黑板上抄了一道题:x +22≥2x -13+,是被一学生擦去的一个数字,又知其解集为x≤2,则被擦去的数字是_______.19.已知关于x 的方程2x +m x -2=3的解是正数,则m 的取值范围为___ . 20.小军的期末总评成绩由平时、期中、期末成绩按权重比1∶1∶8组成,现小军平时考试得90分,期中考试得60分,要使他的总评成绩不低于79分,那么小军的期末考试成绩x 满足的条件是____ .三、解答题(共50分)21.(6分)解不等式:x 3>1-x -36.22.(6分)解不等式组,并把它们的解集在数轴上表示出来.⎩⎪⎨⎪⎧x -32+3≥x,1-3(x -1)<8-x.23.(6分)已知a =x +43,b =2x -74,并且2b≤52<a.请求出x 的取值范围,并将这个范围在数轴上表示出来.24.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -y =2m +7,①x +y =4m -3.②的解为负数,求m 的取值范围.25.(8分)为了提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了A ,B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A ,B 两种型号的家用净水器分别购进了多少台.(2)为了使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A 型号家用净水器的售价至少是多少元. (注:毛利润=售价-进价)26.(8分)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式x ²-9>0.解:∵x²-9=(x +3)(x -3),∴(x +3)(x -3)>0.由有理数的乘法法则“两数相乘,同号得正”,得(1)⎩⎪⎨⎪⎧x +3>0,x -3>0,(2)⎩⎪⎨⎪⎧x +3<0,x -3<0. 解不等式组(1),得x>3,解不等式组(2),得x<-3,故(x +3)(x -3)>0的解集为x>3或x<-3,即一元二次不等式x ²-9>0的解集为x>3或x<-3.问题:求分式不等式5x +12x -3<0的解集.27.(9分)为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A ,B两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台A 型号设备比购买3台B 型号设备少6万元.(1)求a ,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2 040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案一、1.C 2.B 3.C 4.B 5.A 6.A 7.C 8.D 9.B 10.D二、11.7+3m>0 12.> 13.-1 14.x <-2 15.-316.3 17.6.6 18.1 19.m>-6且m≠-4 20.x≥80三、21.2x >6-(x -3),2x >6-x +3,3x >9,x >3.所以,不等式的解集为x >3.22.-2<x≤3,图略.23.72<x ≤6,图略. 24.⎩⎪⎨⎪⎧x =3m +2,y =m -5.由⎩⎪⎨⎪⎧3m +2<0,m -5<0得m <-23. 25.(1)设A 型号家用净水器购进了x 台,B 型号家用净水器购进了y 台.由题意,得⎩⎪⎨⎪⎧x +y =160,150x +350y =36000. 解得⎩⎪⎨⎪⎧x =100,y =60. 所以,A 型号家用净水器购进了100台,B 型号家用净水器购进了60台.(2)设每台A 型号家用净水器的毛利润为z 元,则每台B 型号家用净水器的毛利润为2z 元.由题意,得100z +60×2z≥11000,解得z≥50,又150+50=200.所以,每台A 型号家用净水器的售价至少为200元.26.∵5x +12x -3<0,∴①⎩⎪⎨⎪⎧5x +1<0,2x -3>0,或②⎩⎪⎨⎪⎧5x +1>0,2x -3<0.解不等式组①无解;解不等式组②,得-15<x<32. 即不等式5x +12x -3<0的解集是-15<x<32. 27.(1)根据题意,得⎩⎪⎨⎪⎧a -b =2,3b -2a =6,∴⎩⎪⎨⎪⎧a =12,b =10; (2)设购买A 型号设备x 台,B 型号设备(10-x)台,则12x +10(10-x)≤105,∴x ≤2.5.∵x 取非负整数,∴x =0,1,2,∴有三种购买方案:①A 型号设备0台,B 型号设备10台;②A 型号设备1台,B 型号设备9台;③A 型号设备2台,B 型号设备8台.(3)由题意,得240x +200(10-x)≥2040,∴x ≥1.又∵x≤2.5,x 取非负整数,∴x 为1,2.当x =1时,购买资金为12×1+10×9=102(万元);当x =2时,购买资金为12×2+10×8=104(万元).∴为了节约资金,应选购A 型号设备1台,B 型号设备9台.第4章 图形与坐标检测卷(时间:60分钟 满分:100分)一、选择题(每题2分,共20分)1.点P(-1,2)关于y 轴对称的点的坐标是( )A .(1,2)B .(-1,-2)C .(1,-2)D .(2,-1)2.如果P(m +3,2m +4)在y 轴上,那么点P 的坐标是( )A .(-2,0)B .(0,-2)C .(1,0)D .(0,1)3.点P(m -1,2m +1)在第二象限,则m 的取值范围是( )A .m>-12或m>1B .-12<m<1C .m<1D .m>-124.点P 在第四象限且到x 轴的距离为4,到y 轴的距离为5,则点P 的坐标是( )A .(4,-5)B .(-4,5)C .(-5,4)D .(5,-4)5.如图,将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A′的坐标是( )A .(6,1)B .(0,1)C .(0,-3)D .(6,-3)(第5题图) (第6题图) (第7题图)6.如图,在平面直角坐标系中,已知点A(a ,0),B(0,b),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是( )A .(-b ,b +a)B .(-b ,b -a)C .(-a ,b -a)D .(b ,b -a)7.如图,△ABC 与△DEF 关于y 轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D 的坐标为( )A .(-4,6)B .(4,6)C .(-2,1)D .(6,2)8.丽丽家的坐标为(-2,-1),红红家的坐标为(1,2),则红红家在丽丽家的( )A .东南方向B .东北方向C .西南方向D .西北方向9.在平面直角坐标系中,任意两点A(1x ,1y ),B(2x ,2y )规定运算:①A⊕B=(1x +2x ,1y +2y );②A ⊗B =1x 2x +1y 2y ;③当1x =2x 且1y =2y 时,A =B.有下列四个命题:(1)若A(1,2),B(2,-1),则A⊕B=(3,1),A ⊗B =0;(2)若A⊕B=B⊕C,则A =C ;(3)若A ⊗B =B ⊗C ,则A =C ;(4)对任意点A ,B ,C ,均有(A⊕B)⊕C=A⊕(B⊕C)成立;其中正确命题的个数为( )A .1个B .2个C .3个D .4个10.如图,一个动点P在平面直角坐标系中按箭头的方向做折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是( ) A.(2012,1) B.(2012,2) C.(2013,1) D.(2013,2)(第10题图)二、填空题(每题3分,共30分)11.如果电影院里的二排六号用(2,6)表示,则(1,5)的含义是____.12.若B地在A地的南偏东50°方向5km处,则A地在B地的____方向___处.13.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_______.14.△ABC在直角坐标系中的位置如图,若△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标为__ .(第14题图)(第15题图)(第16题图)15.如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在位置坐标为____.16.如图,已知A(0,1),B(2,0),把线段AB平移后得到线段CD,其中C(1,a),D(b,1),则a+b=______.17.在直角坐标系中,O为坐标原点,△ABO是正三角形,若点B的坐标是(-2,0),则点A的坐标是______.18.已知点P(2m-1,m)可能在某个象限的角平分线上,则点P坐标为______.19.已知点A(4,y),B(x,-3),若AB∥x轴,且线段AB的长为5,x=___ ,y=___ .20.如图,等边三角形OAB的顶点O在坐标原点,顶点A在x轴上,OA=2,将等边三角形OAB绕原点顺时针旋转105°至OA′B′的位置,则点B′的坐标为______.(第20题图)三、解答题(共50分)21.(7分)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0),(1,0).(1)如图2,添加棋子C ,使四颗棋子A ,O ,B ,C 成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P ,使四颗棋子A ,O ,B ,P 成为轴对称图形,请直接写出棋子P 的位置的坐标.(写出2个即可)(第21题图)22.(7分)已知四边形ABCD 各顶点的坐标分别是A(0,0),B(3,6),C(6,8),D(8,0).(1)请建立适当的平面直角坐标系,并描出点A ,点B ,点C ,点D.(2)求四边形ABCD 的面积.(第22题图)23.(8分)如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC 的长等于________,△ABC 的面积等于____.(2)先将△ABC 向右平移2个单位得到△A′B′C′,则A 点的对应点A′的坐标是______.(3)再将△ABC 绕点C 按逆时针方向旋转90°后得到111A B C ,则A 点对应点1A 的坐标是___.(第23题图)24.(8分)已知边长为4的正方形OABC 在直角坐标系中,(如图)OA 与y 轴的夹角为30°,求点A,点C,点B 的坐标.(第24题图)25.(10分)如图,在平面直角坐标系中,A(0,1),B(2,0),C(4,3).(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.(第25题图)26.(10分)在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).·B·A(第26题图)(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标.(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.参考答案一、1.A 2.B 3.B 4.D 5.B 6.B 7.B 8.B 9.C 10.C二、11.一排五号 12.北偏西50° 5km 13.25 14.(3,2) 15.(-3,1)16.5 17.(-1,3)或(-1,-3) 18.(1,1)或⎝ ⎛⎭⎪⎫-13,13 19.9或-1 -3 20.(2,-2) 三、21.(1)如答图2,直线l 即为所求;(2)如答图1,P(0,-1),P ′(-1,-1)都符合题意.(第21题答图)22.(1)图略(2)过点B 作BE⊥AD 于点E ,过点C 作CF⊥AD 于点111A B C F ,则ABCD S 四边形=ABES +BEFC S 梯形+CFD S=38.23.(1)10 3.5 (2)(1,2) (3)(-3,-2) 24.A(2,23),B(-23+2,2+23),C(-2) 25.(1)过点C 作CH⊥x 轴于点H ,ABC S=AOHC S 梯形-AOB S-CHB S=12(1+3)×4-12×1×2-12×2×3=4; (2)当点P 在x 轴上时,设P(x ,0),得ABP S=12BP ·AO =12|x -2|×1=4,解得x =-6或10,故P(-6,0)或P(10,0),当点P 在y 轴上时,设P(0,y),得S △ABP =12BO ·AP =12|y -1|×2=4,解得y =-3或5,故P(0,-3)或P(0,5),综上,P 的坐标为(-6,0)或(10,0)或(0,-3)或(0,5). 26.(1)如答图①,点A(0,1),点B(4,4).(2)作A 关于x 轴的对称点A′,连结A′B 交x 轴于点P ,则P 点即为水泵站的位置,PA +PB =PA′+PB =A′B 且最短(如图②).过B,A′分别作x 轴,y 轴的垂线交于E ,作AD⊥BE,垂足为D ,则BD =3,在Rt △ABD 中,AD =52-32=4,所以A 点坐标为(0,1),B 点坐标为(4,4);A′点坐标为(0,-1),由A′E =4,BE =5知,在Rt △A ′BE 中,A ′B =42+52=41.故所用水管最短长度为41千米.① ②(第26题图)第5章 一次函数检测卷 (时间:60分钟 满分:100分) 一、选择题(每题2分,共20分)1.关于直线y =-2x ,下列结论正确的是( )A .图象必过点(1,2)B .图象经过第一、三象限C .与y =-2x +1平行D .y 随x 的增大而增大2.在平面直角坐标系上,一直线过(-3,4)和(-7,4)两点,则此直线会过的两象限是( ) A .第一象限和第二象限 B .第一象限和第四象限 C .第二象限和第三象限 D .第二象限和第四象限3.若点A(-3,3y 1y ),B(2,2y ),C(3,3y )是函数y =-x +2图象上的点,则( ) A .y 1>y 2>y 3 B .y 1<y 2<y 3 C .y 1<y 3<y 2 D .y 2>y 1>y 34.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系.下列说法错误的是( )(第4题图)A .小强从家到公共汽车站步行了2公里B .小强在公共汽车站等小明用了10分钟C .公共汽车的平均速度是30公里/小时D .小强乘公共汽车用了20分钟5.下列图形,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 为常数,且mn≠0)的图象的是( )6.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( ) A .1<m <7 B .3<m <4 C .m >1 D .m <4 7.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的若干信息.A .5B .6C .7D .88.如图1,在矩形ABCD 中,动点P 从点B 出发,沿矩形的边由B→C→D→A 运动,设点P 运动的路程为x ,△ABP 的面积为y ,把y 看作x 的函数,函数的图象如图2,则△ABC 的面积为( ) A .10 B .16 C .18 D .20(第8题图) (第9题图)9.如图,直线y =-43x +8与x 轴、y 轴分别交于A ,B 两点,点M 是OB 上一点,若直线AB 沿AM 折叠,点B 恰好落在x 轴上的点C 处,则点M 的坐标是( )A .(0,4)B .(0,3)C .(-4,0)D .(0,-3)10.如图,点A ,B ,C 在一次函数y =-2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( ) A .1 B .3 C .3(m -1) D. 32(m -2)(第10题图)二、填空题(每题3分,共30分)11.在圆的周长C =2πR 中,常量是______.12.若点(m ,m +3)在函数y =-x +2的图象上,则m =____.13.在一次函数y =2x -2的图象上,到x 轴的距离等于1的点的坐标是_______. 14.在函数x -2x -4中,自变量x 的取值范围是____. 15.已知点(3,5)在直线y =ax +b(a ,b 为常数,且a≠0)上,则ab -5的值为______.16.已知函数y =(2m -3)x +(3m +1)的图象经过第二、三、四象限,则m 的取值范围是________. 17.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b>ax +3的解集为___ .(第17题图) (第18题图)18.如图,是在同一坐标系内作出的一次函数1y 、2y 的图象1l 、2l ,设1y =1k x +1b ,2y =2k x +2b ,则方程组2t 的解是_______.19.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC =5,点A ,B 的坐标分别为(1,0),(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为________.(第19题图) (第20题图)20.如图,点M 是直线y =2x +3上的动点,过点M 作MN 垂直x 轴于点N ,y 轴上是否存在点P ,使△MNP 为等腰直角三角形,请写出符合条件的点P 的坐标_______. 三、解答题(共50分)21.(7分)已知1y 与x 成正比例,2y 与x +2成正比例,且y =1y +2y ,当x =2时,y =4;当x =-1时,y =7,求y 与x 之间的函数关系式.22.(8分)已知一次函数y =kx +b 的图象经过点A(-4,0),B(2,6)两点. (1)求一次函数y =kx +b 的表达式; (2)在直角坐标系中,画出这个函数的图象; (3)求这个一次函数与坐标轴围成的三角形面积.(第22题图)23.(8分)某市生态公园计划在园内的坡地上造一片有A ,B 两种树的混合林,需要购买这两种树苗2000棵.种植A ,B 两种树苗的相关信息如表:设购买A 种树苗x (1)写出y(元)与x(棵)(2)如果要求A 种树苗的数量不超过B 种树苗数量的两倍,问:造这片树林最多能种多少棵A 种树苗?24.(8分)如图,直线1l 过点A(0,4),点D(4,0),直线2l :y =12x +1与x 轴交于点C ,两直线1l ,2l 相交于点B.(1)求直线1l 的函数关系式; (2)求点B 的坐标; (3)求△ABC 的面积.(第24题图)25.(9分)某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如下表.(1)(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?26.(10分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问:甲、乙两人何时相距360米?(第26题图)参考答案一、1.C 2.A 3.A 4.D 5.A 6.C 7.B 8.A 9.B 10.B 二、11.2,π 12.-0.5 13.(0.5,-1)或(1.5,1)14.x≥2且x≠4 15.-13 16.m <-13 17.x >1 18.⎩⎪⎨⎪⎧x =-2,y =319.16 20.(0,0),(0,1),(0,34),(0,-3)三、21.设1y =kx ,2y =m(x +2).∵y =1y +2y ,∴y =kx +m(x +2), 当x =2时,y =4;当x =-1时,y =7,可得方程组为⎩⎪⎨⎪⎧4=2k +4m ,7=-k +m ,解得k =-4,m =3, ∴y 与x 之间的函数关系式为y =-x +6. 22.(1)y =x +4 (2)图略 (3)823.(1)y =(15+3)x +(20+4)(2000-x)=-6x +48000. (2)由题意得,x ≤2(2000-x),解得x≤133313.∵A 种树苗的棵数为整数,∴x 的最大值为1333. 答:造这片树林最多能种1333棵A 种树苗.24.(1)设1l 的函数关系式为y =kx +b ,根据题意得⎩⎪⎨⎪⎧b =4,4k +b =0,解得k =-1,所以1l :y =-x +4.(2)由题意得⎩⎪⎨⎪⎧y =-x +4,y =12x +1,解得⎩⎪⎨⎪⎧x =2,y =2, 所以B(2,2).(3)把y =0代入2l :y =12x +1,得x =-2,∴C(-2,0),∴ABC S=ACD S-BCD S=12×6×2=6. 25.(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意可得: 5x +9(140-x)=1000,解得x =65, ∴140-x =75(千克),答:购进甲种水果65千克,乙种水果75千克;(2)由图表,可得甲种水果每千克利润为3元,乙种水果每千克利润为4元. 设总利润为W ,由题意可得出W =3x +4(140-x)=-x +560, 故W 随x 的增大而减小,则x 越小W 越大.因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍, ∴140-x≤3x,解得x≥35,∴当x =35时,W 最大=-35+560=525(元), 故140-35=105(kg).答:当购进甲种水果35千克,乙种水果105千克时,此时利润最大为525元. 26.(1)甲行走的速度:150÷5=30(米/分); (2)补画的图象如答图 (横轴上对应的时间为50);(第26题答图)(3)由函数图象可知,当t =12.5时,s =0. 当12.5≤t≤35时,s =20t -250. 当35<t≤50时,s =-30t +1500.∵甲、乙两人相距360米,即s =360,解得1t =30.5,2t =38. ∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.。
浙教版数学八年级上册第一章测试卷一、选择题(每题3分,共30分)1.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100°D.30°(第1题)(第3题)2.下列各组数分别是三根小木棒的长度,将它们首尾相连能摆成三角形的是()A.3 cm,4 cm,8 cm B.4 cm,4 cm,8 cmC.5 cm,6 cm,8 cm D.5 cm,5 cm,12 cm3.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS4.如图,△ABC≌△A′B′C′,则∠C的度数是()A.56°B.51°C.107°D.73°(第4题)(第5题)(第7题)5.如图,在△ABC中,边AB的垂直平分线交BC于点D,连结AD.若AB=7,BC=8,AC=5,则△ADC的周长为()A.12 B.13 C.15 D.166.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥cB.锐角三角形中最大的角一定大于或等于60°C.两条直线被第三条直线所截,内错角相等D.同角或等角的补角相等7.如图,点B,E在线段FC上,且CE=BF,AB=DE,增加以下条件能判定△ABC≌△DEF的是()A.∠A=∠D B.∠C=∠FC.BC=EF D.AC=DF8.在△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10 cm,BC=8 cm,AC=6 cm,则点O到三边AB,AC,BC的距离分别为()A.2 cm,2 cm,2 cm B.3 cm,3 cm,3 cmC.4 cm,4 cm,4 cm D.2 cm,3 cm,5cm9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,若△ABC 的面积为16,则图中阴影部分的面积为()A.8 B.6 C.4 D.2(第9题) (第12题)(第15题)10.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出()A.3个B.5个C.6个D.7个二、填空题(每题3分,共24分)11.把命题“同角或等角的余角相等”改写成“如果……那么……”的形式为__________________________.12.如图,若△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.14.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是__________,设△ABC的周长是l,则l的取值范围是________.15.如图,在△ABC中,AB,AC的垂直平分线l1,l2相交于点O,若∠BAC=82°,则∠OBC=________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.(第16题)(第17题)(第18题)17.如图,要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED 的长就是AB的长.判定△EDC≌△ABC的理由是____________.18.在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是长方形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠F AE=∠FEA.若∠ACB=24°,则∠ECD的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.写出下列命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;(2)如果两个三角形全等,那么它们对应边上的高相等.20.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.(写上证明的依据)(第20题)21.已知a,b,c为△ABC的三边长,且b,c满足(b-5)2+c-7=0,a为方程|a-3|=2的解,求△ABC的周长,并判断△ABC的形状.22.如图,AB∥CD,AM平分∠CAB,交CD于点M.(1)过点C作AM的垂线,垂足为N;(要求:用直尺和圆规作图,保留作图痕迹,不要求写出作法)(2)求证:△MCN≌△ACN.(第22题)23.在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?直接写出你猜想的结论.(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.(第23题)24.如图①,已知线段AB,CD相交于点O,连结AC,BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D.(2)如图②,若∠CAB和∠BDC的平分线AP和DP相交于点P,AP与CD交于点M,AB与DP交于点N.①以线段AC为边的“8字型”有________个,以点O为交点的“8字型”有________个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B,∠C之间存在的数量关系,并说明理由.(第24题)答案一、1.C 2.C 3.A 4.D 5.B 6.C 7.D 8.A 9.C 10.D 二、11.如果两个角是同角或等角的余角,那么这两个角相等 12.120° 13.4:314.1<c <7;8<l <14 15.8°16.5 点拨:由已知可得∠ADC =∠BDF =∠BEC =90°,易得∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DC =DF =3.所以AF =AD -DF =8-3=5. 17.ASA18.22° 点拨:∵四边形ABCD 是长方形,∴AB ∥CD .∴∠ECD =∠BEC .∵∠F AE =∠FEA ,∴∠ACF =∠AFC =2∠BEC ,∴∠ACD =∠ACF +∠ECD =3∠ECD .∵∠ACB =24°,∴∠ACD =90°-24°=66°, ∴∠ECD =13∠ACD =22°.三、19.解:(1)条件:两条直线被第三条直线所截;结论:同旁内角互补.(2)条件:两个三角形全等;结论:它们对应边上的高相等. 20.证明:∵AB ∥CD (已知),∴∠B =∠C (两直线平行,内错角相等). 在△ABE 和△DCF 中,⎩⎨⎧∠B =∠C (已证),∠A =∠D (已知),AE =DF (已知),∴△ABE ≌△DCF (AAS )∴AB =CD (全等三角形的对应边相等). 21.解:∵(b -5)2+c -7=0,∴⎩⎨⎧b -5=0,c -7=0,解得⎩⎨⎧b =5,c =7. ∵a 为方程|a -3|=2的解, ∴a =5或a =1.当a =1,b =5,c =7时,1+5<7,不能组成三角形, 故a =1不符合题意. ∴a =5,∴△ABC 的周长=5+5+7=17. ∵a =b =5,∴△ABC 是等腰三角形. 22.(1)解:作图略.(2)证明:∵CN ⊥AM , ∴∠CNA =∠CNM =90°. ∵AB ∥CD ,∴∠CMA =∠MAB . ∵AM 平分∠CAB ,∴∠MAB =∠CAM .∴∠CMA =∠CAM . 在△MCN 和△ACN 中,∵⎩⎨⎧∠CMN =∠CAN ,∠CNM =∠CNA ,CN =CN ,∴△MCN ≌△ACN (AAS ). 23.解:(1)BD =CE ,BD ⊥CE .(2)BD =CE ,BD ⊥CE .理由如下:∵∠BAC =∠DAE =90°,∴∠BAC -∠DAC =∠DAE -∠DAC .∴∠BAD =∠CAE .在△ABD 与△ACE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE .延长BD 交AC 于点F ,交CE 于点H .在△ABF 与△HCF 中,∵∠ABF =∠HCF ,∠AFB =∠HFC ,∴∠CHF =∠BAF =90°,∴BD ⊥CE .24.(1)证明:∵∠A +∠C =180°-∠AOC ,∠B +∠D =180°-∠BOD ,∠AOC=∠BOD ,∴∠A +∠C =∠B +∠D . (2)解:①3;4②以M 为交点的“8字型”中,有∠P +∠CDP =∠C +∠CAP , 以N 为交点的“8字型”中,有∠P +∠BAP =∠B +∠BDP ,∴2∠P +∠BAP +∠CDP =∠B +∠C +∠CAP +∠BDP . ∵AP ,DP 分别平分∠CAB 和∠BDC , ∴∠BAP =∠CAP ,∠CDP =∠BDP , ∴2∠P =∠B +∠C . ∵∠B =100°,∠C =120°,∴∠P =12(∠B +∠C )=12×(100°+120°)=110°. ③3∠P =∠B +2∠C ,其理由是: ∵∠CAP =13∠CAB ,∠CDP =13∠CDB ,∴∠BAP =23∠CAB ,∠BDP =23∠CDB .以M 为交点的“8字型”中,有∠P +∠CDP =∠C +∠CAP , 以N 为交点的“8字型”中,有∠P +∠BAP =∠B +∠BDP , ∴∠C -∠P =∠CDP -∠CAP =13(∠CDB -∠CAB ),∠P -∠B =∠BDP -∠BAP =23(∠CDB -∠CAB ), ∴2(∠C -∠P )=∠P -∠B , ∴3∠P =∠B +2∠C .第二章 测试卷一、选择题(每题3分,共30分)1.下列四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( )2.如图,在△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( ) A .18°B .24°C .30°D .36°(第2题) (第4题) (第8题)3.在直角三角形ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( ) A.365B.1225C.94D.3344.如图,已知∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC ≌Rt △ABD ,以下给出的条件合适的是( ) A .AC =ADB .BC =ADC .∠ABC =∠ABD D .∠BAC =∠BAD5.已知一个等腰三角形的两个内角度数之比为1:4,则这个等腰三角形顶角的度数为( ) A .20°B .120°C .20°或120°D .36°6.在△ABC 中,AB 2=(a +b )2,AC 2=(a -b )2,BC 2=4ab ,且a >b >0,则下列结论中正确的是( ) A .∠A =90° B .∠B =90°C .∠C =90°D .△ABC 不一定是直角三角形7.直角三角形两条直角边长分别是5和12,则第三条边上的中线长是( ) A .5B .6C .6.5D .128.如图,在△ABC 中,AD ,CE 分别是△ABC 的中线和角平分线,若AB =AC ,∠CAD =20°,则∠ACE 的度数是( ) A .20°B .35°C .40°D .70°9.如图,在直线l 上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积从左往右依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4等于( ) A .3B .4C .5D .6(第9题)(第10题)10.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连结AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连结PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.请写出“三个角都相等的三角形是等边三角形”的逆命题:______________________.12.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为____________.13.已知实数x,y满足(x-4)2+(y-8)2=0,则以x,y的值为两边长的等腰三角形的周长是________.14.已知a,b,c是△ABC的三边长,且满足关系式(c2-a2-b2)2+|a-b|=0,则△ABC的形状为____________.15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.(第15题)(第16题)(第17题)(第18题)16.如图,由四个边长为1的小正方形构成一个大正方形,连结小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.17.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内一个空白小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.18.如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,沿EF折叠后,点C与点O重合,则∠OEC的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知命题“等腰三角形两腰上的高相等”.(1)写出该命题的逆命题.(2)该逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”“求证”,再进行“证明”;如果是假命题,请举反例说明.20.如图,点E,F在△ABC的边BC上.若AE=AF,BE=CF,则AB=AC,并说明理由.(第20题)21.如图,AB∥CD,EG,FG分别是∠BEF和∠DFE的平分线.求证:△EGF 是直角三角形.(第21题)22.如图,∠ABC的平分线BF与△ABC中∠ACB的邻补角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪几个等腰三角形?为什么?(2)BD,DE,CE之间存在着什么数量关系?并说明理由.(第22题)23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.(第23题)24.如图,等腰直角三角形DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,连结AC.(1)求证:△FBD≌△ACD;(2)如图,延长BF交AC于点E,且BE⊥AC,求证:CE=12BF.(3)在(2)的条件下,H是BC边的中点,连结DH,与BE相交于点G.试探索CE,GE,BG之间的数量关系,并证明你的结论.(第24题)答案一、1.D 2.A3.A 点拨:利用等积法解答.根据勾股定理求得AB =15,设点C 到AB 的距离是x ,可列方程12×9×12=12×15x ,解之即可. 4.A 5.C6.C 点拨:由题意可得,AB 2=AC 2+BC 2,所以△ABC 为直角三角形,AB 所对的角为直角,所以∠C =90°. 7.C8.B 点拨:因为△ABC 是等腰三角形,AD 是其底边上的中线,所以AD 也是底边上的高线,所以∠ACB =90°-∠CAD =70°.又因为CE 是∠ACB 的平分线,所以∠ACE =12∠ACB =35°.9.B 点拨:本题不能直接求出S 1,S 2,S 3,S 4,但我们可以利用三角形全等和勾股定理求出S 1+S 2+S 3+S 4.根据“AAS ”很容易证明△ABC ≌△CDE ,所以AB =CD .又因为CD 2+DE 2=CE 2,AB 2=S 3,CE 2=3,DE 2=S 4,所以S 3+S 4=3.同理可得S 1+S 2=1,所以S 1+S 2+S 3+S 4=1+3=4.10.D 点拨:∵△ABD ,△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°. 在△ABE 和△DBC 中,⎩⎨⎧AB =DB ,∠ABE =∠DBC ,BE =BC ,∴△ABE ≌△DBC (SAS ). ∴①正确. ∵△ABE ≌△DBC , ∴∠BAE =∠BDC .∵∠BDC +∠BCD =∠ABD =60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°. ∴②正确.易证△ABP ≌△DBQ (ASA), ∴BP =BQ .又∵∠DBQ =60°, ∴△BPQ 为等边三角形. ∴③正确.二、11.等边三角形的三个角都相等 12.75°或15° 13.20 14.等腰直角三角形15.3 点拨:△OPE ≌△OPF ,△OP A ≌△OPB ,△AEP ≌△BFP ,所以共有3对全等三角形.16.322 点拨:在网格中求三角形的高,应借助三角形的面积求解.以AC ,AB ,BC 为斜边的三个直角三角形的面积分别为1,1,12,因此△ABC 的面积为2×2-1-1-12=32.用勾股定理计算出BC 的长为2,因此BC 边上的高为322. 17.318.100° 点拨:连结OB ,OC .易得△AOB ≌△AOC (SAS). ∴∠ACO =∠ABO .又∵OD 垂直平分AB ,∴OB =OA , ∴∠ABO =∠BAO =12∠BAC =25°. ∴∠ACO =25°.在△ABC 中,∵∠BAC =50°,AB =AC , ∴∠ACB =12×(180°-50°)=65°. ∴∠ECO =∠ACB -∠ACO =40°. 由折叠可知,OE =EC . ∴∠EOC =∠ECO =40°. ∴∠OEC =100°.三、19.解:(1)两边上的高相等的三角形是等腰三角形.(2)真命题.已知:如图,在△ABC 中,BE ⊥AC 于E ,CD ⊥AB 于D ,且CD =BE . 求证:AB =AC .证明:∵BE ⊥AC ,CD ⊥AB , ∴∠BEA =∠CDA =90°, 又∵∠A =∠A ,BE =CD , ∴△ABE ≌△ACD ,∴AB =AC .(第19题)20.解:∵AE =AF ,∴∠AEF =∠AFE .∵BE =CF ,∴BE +EF =CF +EF ,∴BF=CE .在△ACE 和△ABF 中,⎩⎨⎧AE =AF ,∠AEC =∠AFB ,CE =BF ,∴△ACE ≌△ABF (SAS), ∴AB =AC .21.证明:∵AB ∥CD ,∴∠BEF +∠DFE =180°(两直线平行,同旁内角互补). ∵EG ,FG 分别是∠BEF 和∠DFE 的平分线, ∴∠GEF =12∠BEF ,∠GFE =12∠DFE ,∴∠GEF +∠GFE =12(∠BEF +∠DFE )=12×180°=90°, ∴△EGF 是直角三角形. 22.解:(1)△BDF 和△CEF .∵BF 平分∠ABC , ∴∠ABF =∠FBC ,∵DF ∥BC ,∴∠FBC =∠DFB , ∴∠DFB =∠DBF ,∴DB =DF , ∴△BDF 是等腰三角形. 同理,△CEF 也是等腰三角形.(2)BD =DE +CE .由(1)知△CEF 是等腰三角形,且EC =EF ,∵BD =DF =DE +EF ,∴BD =DE +CE .点拨:“平行线+角平分线”是等腰三角形中常见的基本图形之一,应注意在其他图形中的发掘与应用.23.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .又∵BD =DF ,∴Rt △CDF ≌Rt △EDB (HL). ∴CF =EB .(2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE .∴AC =AE .∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE ,再根据Rt △CDF ≌Rt △EDB ,得CF =EB .(2)利用(1)中结论证明Rt △ADC ≌R t △ADE ,∴AC =AE ,再将线段AB 进行转化.24.(1)证明:∵△BCD 是等腰直角三角形,且∠BDC =90°,∴BD =CD ,∠BDC =∠CDA =90°. 在△FBD 和△ACD 中,⎩⎨⎧BD =CD ,∠BDF =∠CDA ,DF =DA ,∴△FBD ≌△ACD (SAS). (2)证明:∵BE ⊥AC , ∴∠BEA =∠BEC =90°.∵BF 平分∠DBC ,∴∠ABE =∠CBE , 又∵BE =BE ,∴△ABE ≌△CBE (ASA), ∴AE =CE .∴CE =12AC . 由(1)知△FBD ≌△ACD , ∴BF =AC ,∴CE =12BF . (3)解:BG 2=GE 2+CE 2.证明:连结CG ,∵H 是BC 边的中点,BD =CD ,∴DH 垂直平分BC ,∴BG =CG (线段垂直平分线上的点到这条线段两个端点的距离相等).∵BE ⊥AC ,∴CG 2=GE 2+CE 2,∴BG 2=GE 2+CE 2. 点拨:本题综合考查全等三角形的判定与性质,以及通过添加辅助线利用勾股定理解决问题.第3章 测试卷一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A .5+4>8B .2x -1C .2x ≤5D.1x -3x ≥02.若x >y ,则下列式子中错误的是( )A .x -3>y -3B.x 3>y 3C .x +3>y +3D .-3x >-3y3.下列选项中的不等式,其解集是在如图所示的数轴上表示的是( )(第3题)A .x +1<0B .x -1≤0C .x -1<0D .x -1>04.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >05.若不等式组⎩⎨⎧x -a >2,b -2x >0的解集是-1<x <2,则(a +b )2 019=( )A .1B .-1C .2 019D .-2 0196.不等式组⎩⎨⎧x <4,x >m 无解,则m 的取值范围是( )A .m <4B .m >4C .m ≥4D .m ≤47.若关于x 的不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是( )A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <08.方程组⎩⎨⎧2x +y =k +1,x +2y =3的解满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .-4<k <-1D .k >-49.一次智力测验,有20道选择题,评分标准:答对1题给5分,答错1题扣2分,不答题不给分也不扣分,小明有两道题未答,他最后的总分不低于60分,则小明至少答对的题数是( ) A .14道 B .13道C .12道D .11道10.我们定义⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,其中的运算为通常的减法和乘法,例如⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4=-2,若x 满足-2≤⎪⎪⎪⎪⎪⎪423 x <2,则x 的整数值有( ) A .0个B .1个C .2个D .3个二、填空题(每题3分,共24分)11.x 与23的差的一半是正数,用不等式表示为____________.12.如图是某机器零件的设计图纸(单位:mm),用不等式表示零件长度的合格尺寸,则合格零件长度l 的取值范围是________________.(第12题)13.不等式2x +3<-1的解集为________.14.用“>”或“<”填空:若a <b <0,则-a 5________-b 5;1a ________1b ;2a-1________2b -1.15.不等式6-4x ≥3x -8的非负整数解有________个.16.某校规定期中考试成绩的40%与期末考试成绩的60%的和作为学生的学期总成绩.该校李红同学期中考试数学考了86分,她希望自己这学期数学总成绩不低于95分,她在期末考试中数学至少应考多少分?设她在期末考试中数学考x 分,可列不等式为__________________.17.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.18.已知实数x ,y 满足2x -3y =4,并且x ≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.解下列不等式或不等式组,并把它们的解集在数轴上表示出来. (1)5x +15>4x -13; (2)2x -13≤3x -46;(3)⎩⎨⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x 3,①1+3x >2(2x -1).②20.若式子5x +46的值不小于78-1-x3的值,求满足条件的x 的最小整数值.21.先阅读,再解题.解不等式:2x +5x -3>0. 解:根据两数相除,同号得正,异号得负,得 ①⎩⎨⎧2x +5>0,x -3>0或②⎩⎨⎧2x +5<0,x -3<0.解不等式组①,得x >3,解不等式组②,得x <-52. 所以原不等式的解集为x >3或x <-52.参照以上解题过程所反映的解题思想方法,试解不等式:2x -31+3x<0.22.若关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k 的解都是非负数.(1)求k 的取值范围;(2)若M =3x +4y ,求M 的取值范围.23.今年某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设购买甲种树苗x棵,有关甲、乙两种树苗的信息如图所示.(第23题)(1)当n=500时,①根据信息填表(用含x的式子表示):②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.24.某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?(3)某企业投入1 000万元购买设备,每天能淡化5 000 m3海水,淡化率为70%.每淡化1 m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本?(结果精确到个位)答案一、1.C 2.D 3.C4.A 点拨:方程4x -2m +1=5x -8的解为x =9-2m .由题意得9-2m <0,则m >92. 5.A 6.C7.A 点拨:不等式组⎩⎨⎧x <1,x >m -1的解集为m -1<x <1.又∵不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,∴-2≤m -1<-1,解得-1≤m <0.8.C 点拨:两个方程相加得3x +3y =k +4,∴x +y =k +43,又∵0<x +y <1,∴0<k +43<1,∴-4<k <-1. 9.A10.B 点拨:根据题意得-2≤4x -6<2,解得1≤x <2,则x 的整数值是1,共1个.故选B. 二、11.12⎝ ⎛⎭⎪⎫x -23>012.39.8 mm≤l ≤40.2 mm 13.x <-2 14.>;>;< 15.3 16.86×40%+60%x ≥95 17.018.1≤k <3 点拨:由已知条件2x -3y =4,k =x -y 可得x =3k -4,y =2k -4.又∵x ≥-1,y <2,∴⎩⎨⎧3k -4≥-1,2k -4<2,解得⎩⎨⎧k ≥1,k <3.∴k 的取值范围是1≤k <3.三、19.解:(1)移项,得5x -4x >-13-15,所以x >-28.不等式的解集在数轴上表示如图.[第19(1)题](2)去分母,得2(2x -1)≤3x -4,去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数轴上表示如图.[第19(2)题](3)解不等式①,得x <-6;解不等式②,得x >2.不等式①②的解集在数轴上表示如图.[第19(3)题]所以原不等式组无解.(4)解不等式①,得x ≥45;解不等式②得,x <3.故原不等式组的解集为45≤x <3.不等式组的解集在数轴上表示如图.[第19(4)题]20.解:由题意得5x +46≥78-1-x 3,解得x ≥-14,故满足条件的x 的最小整数值为0.21.解:根据两数相除,同号得正,异号得负,得①⎩⎨⎧2x -3>0,1+3x <0或②⎩⎨⎧2x -3<0,1+3x >0.不等式组①无解,解不等式组②,得-13<x <32,所以原不等式的解集为-13<x <32. 22.解:(1)解关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k ,得⎩⎨⎧x =k +10,y =20-2k , ∴⎩⎨⎧k +10≥0,20-2k ≥0,解得-10≤k ≤10. 故k 的取值范围是-10≤k ≤10.(2)M =3x +4y =3(k +10)+4(20-2k )=110-5k ,∴k =110-M5,∴-10≤110-M5≤10,解得60≤M ≤160,即M 的取值范围是60≤M ≤160. 23.解:(1)①500-x ;50x ;80(500-x )②50x +80(500-x )=25 600,解得x =480,500-x =20.答:甲种树苗购买了480棵,乙种树苗购买了20棵.(2)依题意,得90%x +95%(n -x )≥92%×n ,解得x ≤35n .又50x +80(n -x )=26 000,解得x =8n -2 6003,∴8n -2 6003≤35n ,∴n ≤4191131.∵n 为整数,∴n 的最大值为418.24.解:(1)设年降水量为x 万m 3,每人年平均用水量为y m 3.由题意,得⎩⎨⎧12 000+20x =16×20y ,12 000+15x =(16+4)×15y ,解得⎩⎨⎧x =200,y =50.答:年降水量为200万m 3,每人年平均用水量为50 m 3. (2)设该镇居民人均每年用水量为z m 3才能实现目标. 由题意,得12 000+25×200=(16+4)×25z ,解得z =34, 50-34=16(m 3).答:该镇居民人均每年需节约16 m 3水才能实现目标.(3)设该企业n 年后能收回成本.由题意,得[3.2×5 000×70%-(1.5-0.3)×5 000]×300n 10 000-40n ≥1 000,解得n ≥81829. 答:该企业至少9年后能收回成本.解题归纳:本题考查了一元一次不等式、二元一次方程组的应用,解答本题的关键是仔细审题,建立等量关系与不等关系.第4章 测试卷一、选择题(每题3分,共30分) 1.下列各点中,在第三象限的是( )A .(1,7)B .(-1,-7)C .(1,-7)D .(-1,7)2.给新同学指路,介绍文具店的位置时,其中表达正确的是( )A .在学校的右边B .距学校900 m 处C .在学校的西边D .在学校的西边距学校900 m 处3.如图,已知棋子“相”的坐标为(-2,3),棋子“兵”的坐标为(1,3),则棋子“炮”的坐标为( ) A .(3,2)B .(3,1)C .(2,2)D .(-2,2)(第3题) (第9题)4.在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于x 轴对称,则a +b的值为( ) A .33B .-33C .-7D .75.若点P (3,-4),Q (x ,-4)之间的距离是5,则x 的值为( )A .-2B .-2或2C .8D .-2或86.在平面直角坐标系xOy 中,若点A 的坐标为(-3,3),点B 的坐标为(2,0),则三角形ABO 的面积是( ) A .15B .7.5C .6D .37.在平面直角坐标系中,点A (1,2)平移后的坐标是A ′(-3,3),按照此平移方式平移其他点,则下列变换符合这种要求的是( ) A .(3,2)→ (4,2) B .(-1,0) → (-5,-4) C.⎝ ⎛⎭⎪⎫2.5,-13 →⎝ ⎛⎭⎪⎫-1.5,23 D .(1.2,5) → (-3.2,6)8.在平面直角坐标系中,下列各点关于y 轴的对称点在第一象限的是( )A .(2,1)B .(2,-1)C .(-2,1)D .(-2,-1)9.如图,A,B两点的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3 C.4D.510.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP 为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.下列结论:①点(3,2)与(2,3)是同一个点;②点(0,-2)在x轴上;③点(0,0)是坐标原点;④点(1,1)在第二象限;⑤点(2,0)在x轴的正半轴上.其中正确的是________.(填序号)12.某市区有3个自行车站点,位置如图所示,若站点1的位置表示为(B,1),站点2的位置表示为(C,3),则站点3的位置可表示为____________.(第12题)(第15题)(第16题)(第17题)13.若点A(3,x-1)在x轴上,点B(2y+2,1)在y轴上,则x2+y2的值为________.14.在平面直角坐标系中,点A(-3,2)关于x轴对称的点B,将点B向右平移3个单位得到点C,则点C的坐标是________.15.如图,在平面直角坐标系中,平行于x轴的线段AB上所有点的纵坐标都是-1,横坐标x的取值范围是1≤x≤5,则线段AB上任意一点的坐标可以用“(x,-1)(1≤x≤5)”表示.若射线CD垂直平分AB于点C,那么按照类似这样的规定,射线CD上任意一点的坐标可以表示为____________.16.如图,在平面直角坐标系中,点A的坐标为(1,3),将线段OA向左平移2个单位,得到线段O′A′,则点A的对应点A′的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.将正整数按以下规律排列:第一列第二列第三列第四列第五列第一行 1 4 5 16 17 …第二行 2 3 6 15 …第三行9 8 7 14 …第四行10 11 12 13…第五行……表中数2在第二行,第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应.根据这一规律,数2 019对应的有序数对为________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.如果规定北偏东30°的方向记做30°,从O点出发沿这个方向走50米记做50,图中点A记做(30°,50);北偏西45°的方向记做-45°,从O点出发沿着该方向的反方向走20米记做-20,图中点B记做(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).(第19题)20.根据下列条件建立适当的直角坐标系,标出学校、少年宫、体育馆、新华书店的位置.从学校向东走300 m,再向北走300 m是少年宫;从学校向西走100 m,再向北走200 m是体育馆;从学校向南走150 m,再向东走250 m,再向南走50 m是新华书店.21.已知点P(2x,3x-1)是平面直角坐标系内的点.(1)若点P在第一象限的角平分线上,求x的值;(2)若点P在第三象限,且到两坐标轴的距离之和为16,求x的值.22.如图,已知A(0,4),B(-2,2),C(3,0).(第22题)(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标A1(________),B1(________),C1(________);(3)△A1B1C1的面积为________.23.如图,梯形ABCD是直角梯形.(1)直接写出点A,B,C,D的坐标;(2)画出直角梯形ABCD关于y轴的对称图形;(3)直角梯形ABCD与其关于y轴的对称图形构成一个等腰梯形,将这个等腰梯形向上平移4个单位,画出平移后的图形.(不写画法)(第23题)24.如图,在平面直角坐标系中,A,B,C三点的坐标分别为(0,1),(2,0),(2,1.5).(1)求△ABC的面积.(2)如果在第二象限内有一点P(a,2),试用含a的式子表示四边形ABOP的面积.(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.(第24题)答案一、1.B 2.D 3.A4.B点拨:因为P,Q关于x轴对称,所以a=-13,b=-20,所以a+b=-33.5.D6.D点拨:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO,然后运用转化思想将点的坐标转化为线段的长度,底BO=2,BO边上的高为3,所以三角形ABO的面积=12×2×3=3.7.C8.C9.A点拨:由A点的横坐标的变化可知线段AB向右平移了1个单位,由B 点的纵坐标的变化可知线段AB向上平移了1个单位.10.D点拨:本题利用分类讨论思想.当OA为等腰三角形的腰时,以O为圆心,OA为半径的圆与y轴有两个交点,以A为圆心,AO为半径的圆与y轴除点O外还有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共有4个.故选D.二、11.③⑤点拨:两个点的横纵坐标均不相等,表示的不是同一个点,所以①错误;横坐标为0的点在y轴上,所以②错误;第二象限的点的符号的特征是(-,+),所以④错误.12.(D,2)13.214.(0,-2)15.(3,y)(y≥-1)16.(-1,3)17.(2,1)点拨:由题意知四边形BEB′D是正方形,∴点B′的横坐标与点E 的横坐标相同,点B′的纵坐标与点D的纵坐标相同,∴点B′的坐标为(2,1).18.(45,7)三、19.解:(1)(-75°,-15)表示南偏东75°距O点15米处,(10°,-25)表示南偏西10°距O点25米处.(2)略.20.解:选取学校所在的位置为原点,以正东方向为x轴的正方向,以正北方向为y轴的正方向建立平面直角坐标系,学校、少年宫、体育馆、新华书店的位置如图所示.(第20题)21.解:(1)由题意得2x =3x -1,解得x =1.(2)∵点P (2x ,3x -1)在第三象限,∴⎩⎨⎧2x <0,3x -1<0,∴x <0,∴点P (2x ,3x -1)到坐标轴的距离之和为|2x |+|3x -1|=-2x -3x +1=16,解得x =-3. 22.解:(1)如图.(第22题)(2)0,-4;-2,-2;3,0 (3)723.解:(1)点A ,B ,C ,D 的坐标分别为(-2,-1),(-4,-4),(0,-4),(0,-1).(2)略. (3)略.24.解:(1)由点B (2,0),点C (2,1.5),可知CB ⊥x 轴.过点A 作AD ⊥BC ,垂足为D ,则S △ABC =12BC ·AD =12×1.5×2=1.5.(2)过点P 作PE ⊥y 轴,垂足为E .则S 四边形ABOP =S △AOB +S △AOP =12AO ·OB +12AO ·PE =12×1×2+12×1×(-a )=1-12a .(3)存在点P ,使得四边形ABOP 的面积与△ABC 的面积相等.依题意,得1-12a =1.5,解得a =-1.所以存在点P (-1,2),使得四边形ABOP 的面积与△ABC 的面积相等.第5章测试卷一、选择题(每题3分,共30分)1.函数y=1x-2+x-2的自变量x的取值范围是()A.x≥2 B.x>2 C.x≠2 D.x≤2 2.有一本书,每20页厚1 mm,设从第1页到第x页的厚度为y mm,则y关于x的函数表达式是()A.y=120x B.y=20x C.y=120+x D.y=20x3.已知点(-1,y1),(6,y2)在一次函数y=2x-3的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1 4.已知一次函数y=kx+b(k,b是常数,且k≠0)中x与y的部分对应值如下表,则不等式kx+b<0的解集是()A.x<0 B.x>0 C.x<1 D.x>15.已知一次函数y=kx+b,y随x的增大而减小,且kb>0,则这个函数的大致图象是()6.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的位置如图所示,则关于x的不等式k2x<k1x+b的解集为()A .x <-1B .x >-1C .x >2D .x <2(第6题) (第7题)7.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是( ) A .y =2x +3B .y =x -3C .y =2x -3D .y =-x +38.如图,在等腰三角形ABC 中,直线l 垂直于底边BC ,现将直线l 沿线段BC从B 点匀速平移至C 点,直线l 与△ABC 的边相交于E ,F 两点,设线段EF 的长度为y ,平移时间为t ,则能较好地反映y 与t 的函数关系的图象是( )(第8题)9.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为( ) A .(0,0) B.⎝ ⎛⎭⎪⎫22,-22C.⎝ ⎛⎭⎪⎫-12,-12 D.⎝ ⎛⎭⎪⎫-22,-22(第9题) (第10题) (第14题)10.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t (h )之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560 km ;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60 km ;④相遇时,快车距甲地320 km.其中正确的个数是( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.若函数y=(m-2)x+m2-4是正比例函数,则m=________.12.一次函数y=2x-6的图象与y轴的交点坐标为________.13.如果直线y=12x+n与直线y=mx-1的交点坐标为(1,-2),那么m=________,n=________.14.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有____________(把你认为说法正确的序号都填上).15.若一次函数y=(2m-1)x+3-2m的图象经过第一、二、四象限,则m的取值范围是__________.16.如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组__________的解.(第16题)(第18题)17.在平面直角坐标系中,点O是坐标原点,过点A(1,2)的直线y=kx+b与x 轴交于点B,且S△AOB=4,则k的值是______________.18.一次越野跑中,当小明跑了1 600 m时,小刚跑了1 400 m,小明、小刚在此后距离出发点的路程y(m)与时间t(s)之间的函数关系如图,则这次越野跑的全程为________m.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知关于x的一次函数y=(6+3m)x+(n-4).(1)当m,n为何值时,y随x的增大而减小?(2)当m,n为何值时,函数的图象与y轴的交点在x轴的下方?(3)当m,n为何值时,函数图象经过原点?。
华东师大版八年级数学上册单元测试题全套(含答案)第11章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.(2015·泰州)下列4个数:9、227、π、(3)0,其中无理数是( ) A .9 B .227 C .π D .(3)02.8的平方根是( ) A .4 B .±4 C .8 D .±83.(2015·安徽)与1+5最接近的整数是( ) A .4 B .3 C .2 D .1 4.下列算式中错误的是( ) A .-0.64=-0.8 B .±1.96=±1.4 C .925=±35 D .3-278=-325.如图,数轴上点N 表示的数可能是( ) A .10 B . 5 C . 3 D . 2(第5题)6.比较32,52,-63的大小,正确的是( )A .32<52<-63B .-63<32<52 C .32<-63<52 D .-63<52<327.若a 2=4,b 2=9,且ab >0,则a +b 的值为( ) A .-1 B .±5 C .5 D .-58.如图,有一个数值转换器,原理如下:(第8题)当输入的x 为64时,输出的y 等于( ) A .2 B .8 C . 2 D .89.已知2x -1的平方根是±3,3x +y -1的立方根是4,则y -x 2的平方根是( ) A .5 B .-5 C .±5 D .2510.如图,已知正方形的面积为1,其内部有一个以它的边长为直径的圆,则阴影部分的面积与下列各数最接近的是()(第10题)A.0.1 B.0.04 C.30.08 D.0.3二、填空题(每题3分,共30分)11.实数3-2的相反数是________,绝对值是________.12.在35,π,-4,0这四个数中,最大的数是________.13.4+3的整数部分是________,小数部分是________.14.某个数的平方根分别是a+3和2a+15,则这个数为________.15.若2x-y3+|y3-8|=0,则yx是________理数.(填“有”或“无”)16.点P在数轴上和原点相距3个单位长度,点Q在数轴上和原点相距2个单位长度,且点Q在点P的左边,则P,Q之间的距离为______________.(注:数轴的正方向向右)17.一个正方体盒子的棱长为6 cm,现要做一个体积比原正方体体积大127 cm3的新盒子,则新盒子的棱长为________ cm.18.对于任意两个不相等的实数a,b,定义运算※如下:a※b=a+ba-b,那么7※9=________.19.若20n是整数,则正整数n的最小值是________.20.请你认真观察、分析下列计算过程:(1)∵112=121,∴121=11;(2)∵1112=12 321,∴12 321=111;(3)∵1 1112=1 234321,∴ 1 234 321=1 111;…由此可得:12 345 678 987 654 321=______________________.三、解答题(22题9分,26题7分,27,28题每题10分,其余每题6分,共60分) 21.求下列各式中x的值.(1)4x2=25;(2)(x-0.7)3=0.027.22.计算:(1)⎝⎛⎭⎫-122+38-|1-9|; (2)3-1+3(-1)3+3(-1)2+(-1)2; (3)⎝⎛⎭⎫-132+89+(-3)2+(2-7-|7-3|).23.已知|3x -y -1|和2x +y -4互为相反数,求x +4y 的平方根.24.已知3既是x -1的算术平方根,又是x -2y +1的立方根,求4x +3y 的平方根和立方根.25.实数a、b、c在数轴上的对应点如图所示,其中|a|=|c|,化简|b+3|+|a-2|+|c-2|+2c.(第25题)26.某段公路规定汽车行驶速度不得超过80 km/h,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数.在一次交通事故中,已知d=16,f=1.69.请你判断一下,肇事汽车当时的速度是否超出了规定的速度?27.观察下列一组等式,然后解答后面的问题:(2+1)(2-1)=1,(3+2)(3-2)=1,(4+3)(4-3)=1,(5+4)(5-4)=1,…(1)观察上面的规律,计算下面的式子:12+1+13+2+14+3+…+12 015+ 2 014;(2)利用上面的规律,试比较11-10与12-11的大小.28.李奶奶新买了一套两室一厅的住房,将原边长为1 m的方桌换成边长是1.3 m的方桌,为使新方桌有块桌布,且能利用原边长为1 m的桌布,既节约又美观,问在读八年级的孙子小刚有什么方法,聪明的小刚想了想说:“奶奶,你再去买一块和原来一样的桌布,按照如图①,图②所示的方法做就行了.”(1)小刚的做法对吗?为什么?(2)你还有其他方法吗?请画出图形.(第28题)答案一、1.C 2.D 3.B 4.C 5.A 6.D 7.B 8.D 9.C10.B 点拨:由题意可得,正方形的边长为1,则圆的半径为12,阴影部分的面积为1-π4≈0.2,故选B .二、11.2-3;2-3 12.π 13.5;3-1 14.9 15.有 16.2-3或2+3 17.7 18.-2 19.5 20.111 111 111 三、21.解:(1)因为4x 2=25,所以x 2=254,所以x =±52;(2)因为(x -0.7)3=0.027,所以x -0.7=0.3,所以x =1. 22.解:(1)原式=14+2-2=14.(2)原式=-1-1+1+1=0. (3)原式=19+89+3+(2-7-3+7)=1+3-1=3.23. 解:根据题意得:||3x -y -1+2x +y -4=0,即⎩⎪⎨⎪⎧3x -y -1=0,2x +y -4=0,解得⎩⎪⎨⎪⎧x =1,y =2,所以x +4y =9.所以x +4y 的平方根是 ±3.24.解:根据题意得x -1=9且x -2y +1=27,解得x =10,y =-8.∴4x +3y =16,其平方根为±4,立方根为316.25.解:由题图可知,a >2,c <2,b <-3,∴原式=-b -3+a -2+2-c +2c =-b -3+a +c.又|a|=|c|,∴a +c =0,∴原式=-b - 3.26.解:把d =16,f =1.69代入v =16df ,得v =16×16×1.69=83.2(km /h ),∵83.2>80,∴肇事汽车当时的速度超出了规定的速度.27.解:(1)12+1+13+2+14+3+…+12 015+ 2 014=(2-1)+(3-2)+(4-3)+…+( 2 015- 2 014)= 2 015-1.(2)因为111-10=11+10,112-11=12+11,且11+10<12+11,所以111-10<112-11.又因为11-10>0,12-11>0,所以11-10>12-11.点拨:此题运用归纳法,先由具体的等式归纳出一般规律,再利用规律来解决问题.28.解:(1)小刚的做法是对的,因为将边长为1 m 的两个正方形分别沿着一条对角线剪开,成为四个大小相同形状完全一样的等腰直角三角形,然后拼成一个大正方形,这个大正方形的面积为2,其边长为2,而2>1.3,故能铺满新方桌;(2)有.如图所示.(第28题)第12章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.计算(-a 3)2的结果是( ) A .a 5 B .-a 5 C .a 6 D .-a 6 2.下列运算正确的是( )A .(a +1)2=a 2+1B .3a 2b 2÷a 2b 2=3abC .(-2ab 2)3=8a 3b 6D .x 3·x =x 43.下列从左边到右边的变形,是因式分解的是( )A .(3-x)(3+x)=9-x 2B .(y +1)(y -3)=-(3-y)(y +1)C .4yz -2y 2z +z =2y(2z -yz)+zD .-8x 2+8x -2=-2(2x -1)2 4.计算⎝⎛⎭⎫232 013×⎝⎛⎭⎫322 014×(-1)2 015的结果是( ) A .23 B .32 C .-23 D .-32 5.若a m =2,a n =3,a p =5,则a 2m +n -p的值是( )A .2.4B .2C .1D .06.下列各式中,不能用两数和(差)的平方公式分解因式的个数为( ) ①x 2-10x +25;②4a 2+4a -1;③x 2-2x -1;④-m 2+m -14;⑤4x 4-x 2+14.A .1B .2C .3D .47.已知a ,b 都是整数,则2(a 2+b 2)-(a +b)2的值必是( ) A .正整数 B .负整数 C .非负整数 D .4的整数倍8.已知一个长方形的面积为18x 3y 4+9xy 2-27x 2y 2,长为9xy ,则宽为( ) A .2x 2y 3+y +3xy B .2x 2y 3-2y +3xy C .2x 2y 3+2y -3xy D .2x 2y 3+y -3xy9.因式分解x 2+ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)10.用四个完全一样的长方形(长和宽分别设为x ,y)拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )(第10题)A .x +y =6B .x -y =2C .xy =8D .x 2+y 2=36二、填空题(每题3分,共30分)11.(1)计算:(2a)3·(-3a 2)=____________;(2)若a m =2,a n =3,则a m +n =__________,a m -n =__________.12.已知x +y =5,x -y =1,则代数式x 2-y 2的值是________. 13.若x +p 与x +2的乘积中不含x 的一次项,则p 的值是________. 14.计算:2 015×2 017-2 0162=__________.15.若|a +2|+a 2-4ab +4b 2=0,则a =________,b =________.16.若一个正方形的面积为a 2+a +14,则此正方形的周长为________.17.(2015·东营)分解因式:4+12(x -y)+9(x -y)2=__________. 18.观察下列等式:1×32×5+4=72=(12+4×1+2)2 2×42×6+4=142=(22+4×2+2)2 3×52×7+4=232=(32+4×3+2)2 4×62×8+4=342=(42+4×4+2)2 …根据你发现的规律:可知n(n +2)2(n +4)+4=________.19.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab cd ,定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________.20.根据(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1,…的规律,则可以得出22 014+22 013+22 012+…+23+22+2+1的末位数字是________.三、解答题(27题12分,其余每题8分,共60分) 21.计算:(1)[x(x 2-2x +3)-3x]÷12x 2; (2)x(4x +3y)-(2x +y)(2x -y);(3)5a 2b÷⎝⎛⎭⎫-13ab ·(2ab 2)2; (4)(a -2b -3c)(a -2b +3c).22.先化简,再求值:(1)(x +5)(x -1)+(x -2)2,其中x =-2;(2)(2015·随州)(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12.23.把下列各式分解因式:(1)6ab 3-24a 3b ; (2)2x 2y -8xy +8y ;(3)a 2(x -y)+4b 2(y -x); (4)4m 2n 2-(m 2+n 2)2.24.已知x 3m =2,y 2m =3,求(x 2m )3+(y m )6-(x 2y)3m ·y m 的值.25.已知a ,b ,c 是△ABC 的三边长,且a 2+2b 2+c 2-2b(a +c)=0,你能判断△ABC 的形状吗?请说明理由.26.因为(x +a)(x +b)=x 2+(a +b)x +ab ,所以x 2+(a +b)x +ab =(x +a)(x +b).利用这个公式我们可将形如x 2+(a +b)x +ab 的二次三项式分解因式.例如:x 2+6x +5=x 2+(1+5)x +1×5=(x +1)(x +5), x 2-6x +5=x 2+(-1-5)x +(-1)×(-5)=(x -1)(x -5), x 2-4x -5=x 2+(-5+1)x +(-5)×1=(x -5)(x +1), x 2+4x -5=x 2+(5-1)x +5×(-1)=(x +5)(x -1). 请你用上述方法把下列多项式分解因式: (1)y 2+8y +15; (2)y 2-8y +15; (3)y 2-2y -15; (4)y 2+2y -15.27.(中考·达州)选取二次三项式ax 2+bx +c ()a ≠0中的两项,配成完全平方式的过程叫配方.例如 ①选取二次项和一次项配方:x 2-4x +2=()x -22-2;②选取二次项和常数项配方:x 2-4x +2=()x -22+()22-4x , 或x 2-4x +2=()x +22-()4+22x ; ③选取一次项和常数项配方:x 2-4x +2=()2x -22-x 2. 根据上述材料,解决下面的问题: (1)写出x 2-8x +4的两种不同形式的配方; (2)已知x 2+y 2+xy -3y +3=0,求x y 的值.答案一、1.C 2.D 3.D 4.D 5.A 6.C 7.C 8.D 9.B 10.D 二、11.(1)-24a 5 (2)6;23 12.5 13.-2 14.-115.-2;-1 16.|4a +2| 17.(3x -3y +2)2 18.(n 2+4n +2)2 19.220.7 点拨:由题意可知22 014+22 013+22 012+…+23+22+2+1=(2-1)×(22 014+22 013+22 012+…+23+22+2+1)=22 015-1,而21=2,22=4,23=8,24=16,25=32,26=64,…,可知2n (n 为正整数)的末位数字按2、4、8、6的顺序循环,而2 015÷4=503……3,所以22 015的末位数字是8,则22 015-1的末位数字是7.三、21.解:(1)原式=(x 3-2x 2+3x -3x)÷12x 2=(x 3-2x 2)÷12x 2=2x -4.(2)原式=4x 2+3xy -(4x 2-y 2)=4x 2+3xy -4x 2+y 2=3xy +y 2.(3)原式=5a 2b÷⎝⎛⎭⎫-13ab ·4a 2b 4=-60a 3b 4. (4)原式=[(a -2b)-3c][(a -2b)+3c]=(a -2b)2-(3c)2=a 2-4ab +4b 2-9c 2. 22.解:(1)原式=x 2-x +5x -5+x 2-4x +4=2x 2-1. 当x =-2时,原式=2×(-2)2-1=7.(2)原式=4-a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-a 2+a 2-5ab +3ab =4-2ab. 当ab =-12时,原式=4-2×⎝⎛⎭⎫-12=5. 23.解:(1)原式=6ab(b 2-4a 2)=6ab(b +2a)(b -2a). (2)原式=2y(x 2-4x +4)=2y(x -2)2.(3)原式=a 2(x -y)-4b 2(x -y)=(x -y)(a 2-4b 2)=(x -y)(a +2b)(a -2b). (4)原式=(2mn +m 2+n 2)(2mn -m 2-n 2)=-(m +n)2(m -n)2.24.解:原式=(x 3m )2+(y 2m )3-(x 3m )2·(y 2m )2=22+33-22×32=4+27-4×9=-5. 25.解:△ABC 是等边三角形.理由如下:∵a 2+2b 2+c 2-2b(a +c)=0,∴a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b)2+(b -c)2=0.∴a -b =0,且b -c =0,即a =b =c.故△ABC 是等边三角形.26.解:(1)y 2+8y +15=y 2+(3+5)y +3×5=(y +3)(y +5). (2)y 2-8y +15=y 2+(-3-5)y +(-3)×(-5)=(y -3)(y -5). (3)y 2-2y -15=y 2+(-5+3)y +(-5)×3=(y -5)(y +3). (4)y 2+2y -15=y 2+(5-3)y +5×(-3)=(y +5)(y -3).27.解:解:(1)答案不唯一,例如:x 2-8x +4=x 2-8x +16-16+4=(x -4)2-12或x 2-8x +4=(x -2)2-4x.(2)因为x 2+y 2+xy -3y +3=0, 所以⎝⎛⎭⎫x +y 22+34(y -2)2=0, 即x +y2=0,y -2=0,所以y =2,x =-1,所以x y =(-1)2=1.第13章达标检测卷(120分,90分钟) 得 分一、选择题(每题3分,共30分) 1.下列判断不正确的是( )A .形状相同的图形是全等图形B .能够完全重合的两个三角形全等C .全等图形的形状和大小都相同D .全等三角形的对应角相等 2.下列方法中,不能判定三角形全等的是( ) A .S .S .A . B .S .S .S . C .A .S .A . D .S .A .S .3.如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的是( )(第3题)A .甲、乙B .甲、丙C .乙、丙D .乙4.在△ABC 中,∠B =∠C ,与△ABC 全等的△DEF 中有一个角是100°,那么在△ABC 中与这个100°角对应相等的角是( )A .∠AB .∠BC .∠CD .∠B 或∠C(第5题)5.如图,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列不正确的等式是( ) A .AB =AC B .∠BAE =∠CAD C .BE =DC D .AD =DE6.在△ABC 和△A′B′C′中,AB =A′B′,∠B =∠B′,补充条件后仍不一定能保证△ABC ≌△A′B′C′,则补充的这个条件是( )A .BC =B′C ′B .∠A =∠A′C .AC =A′C′D .∠C =∠C′ 7.下列命题中,逆命题正确的是( )A.全等三角形的对应角相等B.全等三角形的周长相等C.全等三角形的面积相等D.全等三角形的对应边相等8.如图,在△ABC中,AB=m,AC=n,BC边的垂直平分线交AB于E,则△AEC的周长为() A.m+n B.m-n C.2m-n D.2m-2n9.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD∶CD=9∶7,则点D到AB边的距离为()A.18 B.32 C.28 D.24(第8题) (第9题) (第10题)10.如图,将含有30°角的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB,EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB 平分∠AED;④△ABD为等边三角形.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.把命题“等边对等角”的逆命题写成“如果……,那么……”的形式为________________________________________________________________________.12.如图,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“H.L.”说明Rt________≌Rt________得到AB=DC,再利用“________”证明△AOB≌△DOC得到OB=OC.13.如图,在△ABC中,边AB的垂直平分线DE交AC于E,△ABC和△BEC的周长分别是30 cm 和20 cm,则AB=________ cm.(第12题) (第13题)(第14题) (第16题) 14.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA =________.15.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC≌△A′B′C′,则△A′B′C′的腰长等于________.16.(2015·怀化)如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是______.17.(2015·永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=________.18.如图,AB=12 m,CA⊥AB于点A,DB⊥AB于点B,且AC=4 m.点P从点B开始以1 m/min 的速度向点A运动;点Q从点B开始以2 m/min的速度向点D运动.P,Q两点同时出发,运动________后,△CAP≌△PBQ.(第17题) (第18题) (第19题) (第20题)19.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC 的面积是________.20.如图,△ABC中,BC的垂直平分线与∠BAC的邻补角的平分线相交于点D,DE⊥AC于E,DF⊥AB 交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CA-AB=2AE;③∠BDC+∠FAE=180°;④∠BAC=90°.其中正确的有____________.(填序号)三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.如图,电信部门要在公路m,n之间的S区域修建一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P应建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).(第21题)22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.(第22题)23.如图,在△A BC中,AD平分∠BAC,G是CA延长线上一点,GE∥AD交AB于F,交BC于E.试判断△AGF的形状并加以证明.(第23题)24.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第24题)25.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.(第25题)26.如图①,点A,E,F,C在同一条直线上,AE=CF,过点E,F分别作ED⊥AC,FB⊥AC,AB =CD.(1)若BD与EF交于点G,求证:BD平分EF;(2)若将△DEC沿AC方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.(第26题)27.如图a,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图b,线段CF,BD所在直线的位置关系为________,线段CF,BD的数量关系为________;②当点D在线段BC的延长线上时,如图c,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C,F 不重合),并说明理由.(第27题)答案一、1.A 2.A 3.C 4.A 5.D 6.C7.D8.A9.C10.B二、11.如果一个三角形有两个角相等,那么这两个角所对的边相等12.△ABC;△DCB;A.A.S.13.1014.55°15.8 cm或5 cm16.90°17.318.4 min点拨:本题运用了方程思想,设未知数,利用全等三角形的性质列方程求解.设运动t min 后,△CAP≌△PBQ,由题意得AP=AB-BP=12-t,BQ=2t.当△CAP≌△PBQ时,AP=BQ,即12-t=2t,解得t=4.即运动4 min后,△CAP≌△PBQ.19.1520.①②③三、21.解:如图.(第21题)22.解:(1)EF =MN ,EG =HN ,FG =MH ,FH =MG ,∠F =∠M ,∠E =∠N ,∠EGF =∠MHN ,∠FHN =∠MGE.(2)∵△EFG ≌△NMH ,∴MN =EF =2.1 cm ,GF =HM =3.3 cm ,∵FH =1.1 cm ,∴HG =GF -FH =3.3-1.1=2.2 cm .23.解:△AGF 是等腰三角形.证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC. ∵GE ∥AD ,∴∠GFA =∠BAD ,∠G =∠DAC. ∴∠G =∠GFA.∴AF =GA.∴△AGF 是等腰三角形.24.解:(1)∵DE 垂直平分AC ,∴AE =CE ,∴∠ECD =∠A =36°. (2)∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =72°. ∵∠BEC =∠A +∠ACE =72°, ∴∠B =∠BEC ,∴BC =CE =5.25.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC , ∴DE =DC.又∵BD =DF ,∴Rt △CDF ≌Rt △EDB(H .L .),∴CF =EB. (2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE ,∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB.点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得CD =DE.进而证得Rt △CDF ≌Rt △EDB ,得CF =EB.(2)利用角平分线的性质证明Rt △ADC ≌Rt △ADE ,得AC =AE ,再将线段AB 进行转化.26.(1)证明:∵ED ⊥AC ,FB ⊥AC ,∴∠DEG =∠BFE =90°.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE.在Rt △ABF 和Rt △CDE 中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE(H .L .).∴BF =DE.在△BFG 和△DEG 中,⎩⎪⎨⎪⎧∠BGF =∠DGE ,∠BFG =∠DEG ,BF =DE ,∴△BFG ≌△DEG(A .A .S .).∴FG =EG ,即BD 平分EF.(2)解:BD 平分EF 的结论仍然成立.理由:∵AE =CF ,FE =EF ,∴AF =CE.∵ED ⊥AC ,FB ⊥AC ,∴∠AFB =∠CED =90°.在Rt △ABF 和Rt △CDE 中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE.∴BF =DE.在△BFG 和△DEG 中,⎩⎪⎨⎪⎧∠BGF =∠DGE ,∠BFG =∠DEG ,BF =DE ,∴△BFG ≌△DEG.∴GF =GE ,即BD 平分EF ,结论仍然成立.点拨:本题综合考查了三角形全等的判定方法.(1)先利用H .L .判定Rt △ABF ≌Rt △CDE ,得出BF =DE ;再利用A .A .S .判定△BFG ≌△DEG ,从而得出FG =EG ,即BD 平分EF.(2)中结论仍然成立,证明过程同(1)类似.27.解:(1)①CF ⊥BD ;CF =BD②当点D 在线段BC 的延长线上时,①中的结论仍然成立.理由如下:由正方形ADEF 得AD =AF ,∠DAF =90°.∵∠BAC =90°,∴∠DAF =∠BAC ,∴∠DAB =∠FAC ,又∵AB =AC ,∴△DAB ≌△FAC ,∴CF =BD ,∠ACF =∠ABD.∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形,∴∠ABC =45°,∴∠ACF =45°,∴∠BCF =∠ACB +∠ACF =90°.即CF ⊥BD.(第27题)(2)当∠ACB =45°时,CF ⊥BD(如图).理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB =45°,∠AGC =90°-∠ACB ,∴∠AGC =90°-45°=45°,∴∠ACB =∠AGC =45°,∴△AGC 是等腰直角三角形,∴AC =AG.∵∠DAG =∠FAC(同角的余角相等),AD =AF ,∴△GAD ≌△CAF ,∴∠ACF =∠AGC =45°,∴∠BCF =∠ACB +∠ACF =45°+45°=90°,即CF ⊥BC.第14章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列各组线段能构成直角三角形的一组是( )A .30,40,50B .7,12,13C .5,9,12D .3,4,62.用反证法证明“如果在△ABC 中,∠C =90°,那么∠A ,∠B 中至少有一个角不大于45°”时,应先假设( )A .∠A>45°,∠B>45°B .∠A ≥45°,∠B ≥45°C .∠A<45°,∠B <45°D .∠A ≤45°,∠B ≤45°(第3题)3.如图,图中有一个正方形,此正方形的面积是( ) A .16 B .8 C .4 D .24.满足下列条件的△ABC 不是直角三角形的是( ) A .∠A =∠B -∠C B .∠A ∶∠B ∶∠C =1∶1∶2 C .b 2=a 2-c 2 D .a ∶b ∶c =1∶1∶25.若△ABC 的三边长分别为a ,b ,c ,且满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( ) A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形(第6题)6.如图,在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处朝张大爷的房子方向折断倒下,量得倒下部分的长是10米,大树倒下时会砸到张大爷的房子吗( )A .一定不会B .可能会C .一定会D .以上答案都不对7.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线AC 上的D′点处.若AB =3,AD =4,则ED 的长为( )A .32B .3C .1D .43(第7题) (第8题) (第9题) (第10题)8.如图,在△ABC 中,AD 是BC 边的中线,AC =17,BC =16,AD =15,则△ABC 的面积为( ) A .128 B .136 C .120 D .2409.如图,长方体的高为9 m ,底面是边长为6 m 的正方形,一只蚂蚁从顶点A 开始,爬向顶点B.那么它爬行的最短路程为( )A .10 mB .12 mC .15 mD .20 m10.如图,是一种饮料的包装盒,长、宽、高分别为4 cm 、3 cm 、12 cm ,现有一长为16 cm 的吸管插入到盒的底部,则吸管露在盒外的部分h(cm )的取值范围为( )A .3<h<4B .3≤h ≤4C .2≤h ≤4D .h =4二、填空题(每题3分,共30分)11.若用反证法证明“有两个内角不相等的三角形不是等边三角形”,可先假设这个三角形是________.12.在△ABC中,AC2-AB2=BC2,则∠B的度数为________.13.如图,∠OAB=∠OBC=90°,OA=2,AB=BC=1,则OC2=________.(第13题) (第14题) (第19题) (第20题) 14.如图,直角三角形三边上的半圆形面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是________.15.木工师傅要做一个长方形桌面,做好后量得长为80 cm,宽为60 c m,对角线长为100 cm,则这个桌面________(填“合格”或“不合格”).16.若直角三角形的两边长分别为a、b,且满足(a-3)2+|b-4|=0,则该直角三角形的斜边长为________.17.等腰三角形ABC的腰AB为10 cm,底边BC为16 cm,则面积为________cm2.18.(2015·黄冈)在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.19.《中华人民共和国道路管理条例》规定:小汽车在城市街道上的行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街道上直道行驶时,某一时刻刚好行驶到路对面车速检测仪观测点A正前方50 m 的C处,过了6 s后,行驶到B处的小汽车与车速检测仪间的距离变为130 m,请你判断:这辆小汽车________(填“是”或“否”)超速了.20.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2;…,依照此方法继续作下去,得OP2 015=________.三、解答题(21,22题每题8分,23,24题每题10分,25,26题每题12分,共60分)21.用反证法证明一个三角形中不能有两个角是直角.22.园丁住宅小区有一块草坪如图,已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.(第22题)23.如图,将断落的电话线拉直,使其一端在电线杆顶端A处,另一端落在地面C处,这时测得BC =6米,再把电话线沿电线杆拉扯,使AD=AB,并量出电话线剩余部分(即CD)的长为2米,你能由此算出电线杆AB的高吗?(第23题)24.如图,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B 点以每秒1 cm的速度移动;点Q从点B开始沿BC边向点C以每秒2 cm的速度移动,如果P,Q同时出发,问过3 s时,△BPQ的面积为多少?(第24题)25.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有一学校,点A到公路MN的距离为80 m,现有一拖拉机在公路MN上以18 km/h的速度沿PN方向行驶,拖拉机行驶时周围100 m以内都会受到噪音的影响,试问该校受影响的时间为多长?(第25题)26.图甲是任意一个直角三角形ABC,它的两条直角边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为(a+b)的正方形内.(1)图乙、图丙中①②③都是正方形.由图可知:①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为_______,图丙中③的面积为________;(3)图乙中①②的面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?(第26题)答案一、1.A 2.A 3.B 4.D 5.D 6.A7.A8.C9.C10.B二、11.等边三角形12.90°13.614.S1+S2=S315.合格16.4或517.4818.126 cm2或66 cm219.是20. 2 016点拨:由勾股定理得:OP4=22+1=5,∵OP1=2,OP2=3,OP3=4,OP4=5,以此类推可得OP n=n+1,∴OP2 015= 2 016.本题考查了勾股定理的运用,解题的关键是由已知数据找到规律.三、21.证明:假设三角形ABC的三个内角∠A、∠B、∠C中有两个直角,不妨设∠A=∠B=90°,则∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,所以∠A=∠B=90°不成立,所以一个三角形中不能有两个角是直角.22.解:连接AC.在Rt△ABC中,由勾股定理得AC2=AB2+BC2,所以AC2=42+32=25,即AC=5米.在△ACD中,因为AC2+C D2=52+122=169=AD2.所以△ACD是直角三角形,且∠ACD=90°.所以S草坪=S△ABC+S△ACD=12×3×4+12×5×12=36(平方米).答:这块草坪的面积是36平方米.23.解:设AB=x米,则AC=AD+CD=AB+CD=(x+2)米.在Rt△ABC中,AC2=AB2+BC2,即(x+2)2=x2+62,解得x=8.即电线杆AB的高为8米.24.解:设AB=3x cm,则BC=4x cm,AC=5x cm,因为△ABC的周长为36 cm,所以AB+BC+AC=36 cm,即3x+4x+5x=36,解得x=3,所以AB=9 cm,BC=12 cm,AC=15 cm.因为AB2+BC2=AC2,所以△ABC是直角三角形,且∠B=90°.过3 s 时,BP =9-3×1=6(cm ),BQ =2×3=6(cm ), 所以S △BPQ =12BP·BQ =12×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.(第25题)25.解:如图,设拖拉机行驶到C 处刚好开始受到噪音的影响,行驶到D 处时,结束了噪音的影响,连接AC ,AD ,则有CA =DA =100 m .在Rt △ABC 中,CB 2=1002-802=602. ∴CB =60 m .同理BD =60 m ,∴CD =120 m . ∵18 km /h =5 m /s ,∴该校受影响的时间为120÷5=24(s ).26.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2 (3)a 2+b 2(4)相等.理由:由图乙和图丙可知大正方形的边长为a +b ,则面积为(a +b)2,图乙中把大正方形的面积分为了四部分,分别是:边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形,根据面积相等得(a +b)2=a 2+b 2+2ab ,由图丙可得(a +b)2=c 2+4×12ab.所以a 2+b 2=c 2.所以图乙中①②的面积之和与图丙中③的面积相等.于是得到直角三角形三边长的关系为a 2+b 2=c 2.第15章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.要反映某市某一周每天的最高气温的变化趋势,宜采用( ) A .条形统计图 B .扇形统计图 C .折线统计图 D .以上都可以2.学校为了解七年级学生参加课外兴趣小组活动的情况,随机调查了40名学生,将结果绘制成了如图所示的条形统计图,则参加绘画兴趣小组的频率是( )A .0.1B .0.15C .0.25D .0.3(第2题) (第3题) (第4题)3.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为( ) A .39.0 ℃ B .38.5 ℃ C .38.2 ℃ D .37.8 ℃4.(中考·邵阳)如图是某班学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.棋类组B.演唱组C.书法组D.美术组5.(中考·丽水)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()B型A.16人B.14人C.4人D.6人6.在一次抛硬币游戏中共抛掷50次,其中正面朝上出现了22次,则出现反面朝上的频数、频率分别是()A.22,44% B.22,56% C.28,44% D.28,56%(第7题)7.某校图书馆整理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的统计图,已知甲类书有30本,则丙类书的本数是()A.90 B.144 C.200 D.808.如图是某地2014年和2015年粮食作物产量的条形统计图,请你根据此图判断下列说法合理的是()A.2015年三类农作物的产量比2014年都有增加B.小麦产量和杂粮产量增加的幅度大约是一样的C.2014年杂粮产量约是玉米产量的六分之一D.2014年和2015年的小麦产量变化幅度最小(第8题) (第9题)9.(中考·武汉)为了了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选一种喜好的书籍,如果没有喜好的书籍,则作“其他”类统计.图①和图②是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是()A.由这两幅统计图可知喜好“科普常识”的学生有90人B.若该年级共有1 200名学生,则由这两幅统计图可估计喜好“科普常识”的学生约有360人C.由这两幅统计图不能确定喜好“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.某班四个学习小组的学生分布情况如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图(如图③).根据统计图中的信息,这四个小组平均每人读书的本数是()(第10题)A.4 B.5 C.6 D.7二、填空题(每题3分,共24分)11.Lost time is ne v er found again(岁月既往,一去不回).在这句谚语的所有英文字母中,字母“i”出现的频率是________.12.如图是根据某市2011年至2015年财政收入绘制的折线统计图,观察统计图可得:同上一年相比该市财政收入增长速度最快的年份是________年,比它的前一年增加________亿元.(第12题) (第14题) (第15题) 13.地球上山地面积、水域面积和陆地面积大体上可以用“三山六水一分田”来描述,则用扇形统计图来表示时,它们所占的百分比分别是________、________、________.14.调查机构对某地区1 000名20~30岁年龄段观众周五综艺节目的收视选择进行了调查,相关统计图如图,请根据图中信息,调查的 1 000名20~30岁年龄段观众选择观看《最强大脑》的人数约为________人.15.(中考·金华)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形的圆心角的度数是________.16.小张根据某媒体的报道中一幅条形统计图(如图所示),在随笔中写道:“……今年,我市中学生在艺术节上,参加合唱比赛的人数比去年激增……”小张说得对不对?为什么?请你用一句话对小张的说法作一个评价:________________________________________________________________________.(第16题) (第17题) (第18题)17.(2015·防城港)某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一幅不完整的扇形统计图(如图),其中“其他”部分所对应的圆心角是36°,则“步行”部分所占的百分比是________.18.某市某校九年级(1)班学生参加毕业体考的成绩统计如图所示,请根据统计图中提供的信息完成下面各题.(1)该班共有________名学生;(2)若女生体考成绩在37分及其以上,男生体考成绩在38分及其以上被定为体尖生,则该班共有________名体尖生.三、解答题(19~21题每题12分,22,23题每题15分,共66分)19.某股票上周五的收盘价为3元,本周的收盘价分别是:周一3.2元;周二3.25元;周三3.35元;周四3.18元;周五3.3元,根据以上信息完成下列各题:(1)填下面的统计表:(2)画出你认为最能反映该股票变化情况的统计图.20.“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应的扇形的圆心角的大小.(第20题)21.(改编·金华)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图解答下列问题.(1)第三次成绩的优秀率是多少?(2)将条形及折线统计图补充完整.(第21题)22.(中考·黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积都相同),绘制了如图所示的两幅不完整的人数统计图:(1)本次被调查的学生有________名;(2)补全条形统计图,并计算出喜好菠萝味牛奶的学生人数在扇形统计图中所占扇形的圆心角的度数;(3)该校共有1 200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都能喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?(第22题)23.“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,环境检测中心今年在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测.某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:类别。
人教版八年级数学上册全册单元测试卷(含答案)第十一章三角形是初中数学中的重要概念之一,本章主要介绍三角形的定义、分类、性质以及相关定理。
首先,三角形是由三条线段组成的图形,其中每条线段都是三角形的一条边,而三条边的交点称为三角形的顶点。
根据三角形的边长和角度大小,我们可以将三角形分为不同的类型,如等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等。
其次,全等三角形是指在形状和大小上完全相同的两个三角形,它们的对应边和对应角都相等。
全等三角形有很多应用,比如在证明几何定理时经常会用到。
第十二章轴对称是初中数学中的一个重要概念,它是指一个图形关于某条直线对称后完全重合的情况。
轴对称可以分为水平轴对称和垂直轴对称两种情况,对称轴是指图形中被对称的那条直线。
轴对称有很多应用,比如在绘制图形、证明几何定理和解决实际问题时都会用到。
第十三章整式的乘法与因式分解是初中数学中的一个重要知识点,它涉及到多项式的基本运算和分解。
整式是由常数、变量和它们的乘积以及它们的各项次幂所构成的代数式,而整式的乘法和因式分解则是对多项式进行拆分和组合的过程,能够帮助我们更好地理解和应用代数式。
第十四章分式是初中数学中的一个重要概念,它是指由两个整式相除所得到的代数式。
分式可以分为真分式、带分式和整式三种情况,其中真分式是指分子次数小于分母次数的分式,带分式是指分子次数大于等于分母次数的分式,而整式则是指分母为常数的分式。
分式在数学中有着广泛的应用,比如在解方程、证明定理和计算实际问题时都会用到。
第十五章三角形单元测试是初中数学中的一种测试形式,它主要考察学生对于三角形相关知识和技能的掌握情况。
本测试共有10道选择题,每道题目有4个选项,只有一个选项是正确的。
测试时间为90分钟,满分为100分。
通过三角形单元测试,学生可以了解自己在三角形方面的薄弱环节,并及时进行补充和提高。
二、填空题11.x的取值范围是 1<x<312.可以构成 4 个三角形13.∠A+∠B+∠C+∠D+∠E+∠F等于 540°14.如果一个正多边形的内角和是900°,则这个正多边形是正 10 边形15.n=816.需要安排 3 种不同的车票17.得到的图形是正三角形,它的内角和(按一层计算)是 360°18.∠BOC的度数是 80°三、解答题19.因为BD平分∠ABC,所以∠CBD=∠ABD=40°又因为DA⊥AB,所以∠ADB=90°-∠ABD=50°所以∠C=∠CBD+∠ADB=40°+50°=90°20.(1) 画出△XXX的外角∠BCD后,再画出∠BCD的平分线CE,如图:image.png](/upload/image_hosting/edn2j1v0.png)2) 由于∠A=∠B,所以∠ACB=∠ABC,而∠BCD是△ABC的外角,所以∠BCD=∠ACB+∠ABC又因为CE是∠BCD的平分线,所以∠ECD=∠DCB,所以∠ECD+∠XXX∠BCD即∠ECD+∠XXX∠ACB+∠ABC又因为∠ACB=∠ABC,所以∠ECD=∠DCB所以CE∥AB21.(1) 如图:image.png](/upload/image_hosting/1a0z4h2p.png)ABC+∠ACB=30°+90°=120°XXX∠XXX∠ABC+∠XXX-∠XXX-∠XCB=120°-90°-30°=0°2) ∠ABX+∠ACX的大小不变,因为它们与三角板XYZ 的位置无关,只与△ABC的角度有关,而△XXX的角度没有变化。
全新北师大版八年级数学上册各单元测试卷(全册共61页附答案)目录第一章达标测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的( ) A.2倍B.3倍C.4倍D.5倍2.下列各组线段能构成直角三角形的一组是( )A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,63.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是( ) A.169 B.119 C.13 D.1444.如图,阴影部分是一个长方形,则长方形的面积是( )A.3 cm2B.4 cm2C.5 cm2D.6 cm2(第4题) (第7题) (第10题)5.满足下列条件的△ABC,不是直角三角形的为( )A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2D.a∶b∶c=2∶3∶46.已知一轮船以18 n mile/h的速度从港口A出发向西南方向航行,另一轮船以24 n mile/h 的速度同时从港口A出发向东南方向航行,离开港口1.5 h后,两轮船相距( ) A.30 n mile B.35 n mile C.40 n mile D.45 n mile7.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于( )A.1013B.1513C.6013D.75138.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是( ) A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形9.已知直角三角形的斜边长为5 cm,周长为12 cm,则这个三角形的面积是( ) A.12 cm2B.6 cm2C.8 cm2D.10 cm210.如图,分别以直角三角形的三条边为边向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是( )A.S1+S2>S3B.S1+S2=S3C.S1+S2<S3D.无法确定二、填空题(每题3分,共24分)11.如图,在等腰三角形ABC中,AB=AC,AD是底边上的高,若AB=5 cm,BC=6 cm,则AD=__________.(第11题) (第12题) (第13题)12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 300 m,结果他在水中实际游了500 m,则该河流的宽度为________.13.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与点A 重合,得折痕DE,则△ABE的周长等于________.14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||c-b=0,则△ABC的形状为_________________________________________.15.如图是一个长方体,则AB=________,阴影部分的面积为________.(第15题) (第16题)16.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,且AH∶AE=3∶4.那么AH等于________.17.红方侦察员小马的正前方400 m处有一条东西走向的公路,突然发现一辆蓝方汽车在公路上行驶,他拿出红外线测距仪测得汽车与他相距400 m,10 s后又测得汽车与他相距500 m,则蓝方汽车的速度是________m/s.18.在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看成圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈(如图为灯管的部分示意图),则彩色丝带的总长度为__________.(第18题)三、解答题(19~22题每题9分,其余每题10分,共66分)19.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m,如图,即AD=BC=12 m,此时建筑物中距地面12.8 m高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8 m,问此消防车的云梯至少应伸长多少米?20.如图,在4³4的正方形网格中,每个小正方形的边长都是1.线段AB,AE分别是图中两个1³3的长方形的对角线,请你说明:AB⊥AE.21.如图,四边形ABCD是边长为a的正方形,点E在CD上,DE=b,AE=c,延长CB至点F,使BF=b,连接AF,试利用此图说明勾股定理.22.如图,一根12 m的电线杆AB用铁丝AC,AD固定,现已知用去的铁丝AC=15 m,AD=13 m,又测得地面上B,C两点之间的距离是9 m,B,D两点之间的距离是5 m,则电线杆和地面是否垂直,为什么?23.如图,∠AOB=90°,OA=9 cm,OB=3 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?24.如图,在长方形ABCD中,DC=5 cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F,若△ABF的面积为30 cm2,求△ADE的面积.25.有一个如图所示的长方体透明玻璃水缸,其长AD=8 cm,高AB=6 cm,水深为AE=4 cm,在水面线EF上紧贴内壁G处有一粒食物,且EG=6 cm,一只小虫想从水缸外的A处沿水缸壁爬进水缸内的G处吃掉食物.(1)小虫应该沿怎样的路线爬才能使爬的路线最短呢?请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).答案一、1.B 2.A 3.A 4.C 5.D 6.D 7.C 8.D 9.B 10.B二、11.4 cm 12.400 m 13.7 cm 14.等腰直角三角形 15.13;30 16.6 17.3018.150 cm 点拨:因为灯管可近似看成圆柱,而圆柱的侧面展开图是一个长方形,所以假设把灯管的侧面展开后,得到一个由30个完全相同的小长方形组成的大长方形,且每个小长方形的长等于灯管的底面周长,小长方形的高等于灯管长度的130,则丝带的长度等于小长方形对角线长的30倍. 三、19.解:因为CD =AB =3.8 m ,所以PD =PC -CD =9 m. 在Rt △ADP 中,AP 2=AD 2+PD 2, 得AP =15 m.所以此消防车的云梯至少应伸长15 m.20.解:如图,连接BE .(第20题)因为AE 2=12+32=10,AB 2=12+32=10,BE 2=22+42=20,所以AE 2+AB 2=BE 2.所以△ABE 是直角三角形,且∠BAE =90°,即AB ⊥AE .21.解:在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB =a ,∠D =∠ABF ,DE =BF =b ,所以△ADE ≌△ABF .所以AE =AF =c ,∠DAE =∠BAF ,S △ADE =S △ABF .所以∠EAF =∠EAB +∠BAF =∠EAB +∠DAE =∠DAB =90°,S 正方形ABCD =S 四边形AECF .连接EF ,易知S 四边形AECF =S △AEF +S △ECF =12[c 2+(a -b )(a +b )]=12(a 2+c 2-b 2),S 正方形ABCD=a 2,所以12(a 2+c 2-b 2)=a 2.所以a 2+b 2=c 2. 22.解:垂直.理由如下:因为AB =12 m ,AC =15 m ,BC =9 m , 所以AC 2=BC 2+AB 2. 所以∠CBA =90°. 又因为AD =13 m ,AB =12 m ,BD =5 m ,所以AD 2=BD 2+AB 2. 所以∠ABD =90°, 因此电线杆和地面垂直.点拨:要判定电线杆和地面垂直,只需说明AB ⊥BD 且AB ⊥BC 即可,利用勾股定理的逆定理即可判定△ABD 和△ABC 为直角三角形,从而得出电线杆和地面垂直. 23.解:根据题意,BC =AC =OA -OC =9-OC .因为∠AOB =90°,所以在Rt △BOC 中,根据勾股定理,得OB 2+OC 2=BC 2, 所以32+OC 2=(9-OC )2, 解得OC =4 cm. 所以BC =5 cm.24.解:由折叠可知AD =AF ,DE =EF .由S △ABF =12BF ²AB =30 cm 2,AB =DC =5 cm ,得BF =12 cm.在Rt △ABF 中,由勾股定理,得AF =13 cm ,所以BC =AD =AF =13 cm. 设DE =x cm ,则EC =(5-x )cm ,EF =x cm ,FC =13-12=1(cm).在Rt △ECF 中,由勾股定理,得EC 2+FC 2=EF 2,即(5-x )2+12=x 2,解得x =135.所以S △ADE =12AD ²DE =12³13³135=16.9 (cm 2).25.解:(1)如图,作点A 关于BC 的对称点A ′,连接A ′G 与BC 交于点Q ,则AQ +QG 为最短路线.(第25题)(2)因为AE =4 cm ,AA ′=12 cm ,所以A ′E =8 cm.在Rt △A ′EG 中,EG =6 cm ,A ′E =8 cm ,A ′G 2=A ′E 2+EG 2=102, 所以A ′G =10 cm ,所以AQ +QG =A ′Q +QG =A ′G =10 cm. 所以最短路线长为10 cm.第二章达标测试卷一、选择题(每题3分,共30分) 1.8的平方根是( )A .4B .±4C .2 2D .±2 2的立方根是( )A .-1B .0C .1D .±13.有下列各数:0.456,3π2,(-π)0,3.14,0.801 08,0.101 001 000 1…(相邻两个1之间0的个数逐次加1),4,12.其中是无理数的有( ) A .1个B .2个C .3个D .4个4.有下列各式:①2;②13;③8x >0).其中,最简二次根式有( )A .1个B .2个C .3个D .4个5.下列语句不正确的是( )A .数轴上的点表示的数,如果不是有理数,那么一定是无理数B .大小介于两个有理数之间的无理数有无数个C .-1的立方是-1,立方根也是-1D .两个实数,较大者的平方也较大 6.下列计算正确的是( )A.12=2 3B.32=32==x7.设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .88.如图,在数轴上表示-5和19的两点之间表示整数的点有( )A .7个B .8个C .9个D .6个(第8题)(第10题)9(y +3)2=0,则x -y 的值为( )A .-1B .1C .-7D .710.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( )A .14B .16C .8+52D .14+2二、填空题(每题3分,共24分)11 ________ 5 (填“>”或“<”).12.利用计算器计算12³3-5时,正确的按键顺序是________________,显示器上显示的数是________.13.如图,数轴上表示数3的是点________.。
人教版八年级数学上册单元测试题全套(含答案)(含期中期末试题,共8套)第十一章三角形得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列图形为正多边形的是(D)2.下列各组数中,能构成一个三角形的边长的是(D)A.1,3,5 B.2,2,6C.6,8,14 D.a+2,a+3,a+5(a>0)3.如图,图中∠1的大小等于(D)A.40°B.50°C.60°D.70°第3题图第5题图第6题图第8题图第10题图4.若一个正多边形的内角和为720°,则这个正多边形的每一个内角是(D)A.60°B.90°C.108°D.120°5.如图,BD平分∠ABC,CD⊥BD,垂足为D,∠C=55°,则∠ABC的度数是(D) A.35°B.55°C.60°D.70°6.如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为(C)A.25°B.40°C.50°D.80°7.等腰三角形的一边长等于4,另一边长等于10,则它的周长是(B)A.18 B.24 C.18或24 D.148.如图,在△ABC中,∠CAB=52°,∠ABC=74°,AD⊥BC于点D,BE⊥AC 于点E,AD与BE交于点F,则∠AFB的度数是(A)A.126°B.120°C.116°D.110°9.上午9时,一艘船从A处出发以每小时20海里的速度向正北方向航行,11时到达B处.若在A处测得灯塔C在北偏西34°方向上,且∠ACB=32∠BAC,则在B处测得灯塔C应在(C)A.北偏西68°方向上B.南偏西85°方向上C.北偏西85°方向上D.南偏西68°方向上10.已知△ABC的面积为1,延长AB至点D,使BD=AB,延长BC至点E,使CE =2BC,延长CA至点F使AF=3AC,则三角形DEF的面积为(D)A.9 B.15 C.17 D.18点拨:连接AE和CD,∵BD=AB,∴S△ABC=S△BCD=1,S△ACD=1+1=2,∵AF=3AC,∴FC=4AC,∴S△FCD=4S△ACD=4×2=8,同理可以求得:S△ACE=2S△ABC=2,则S △FCE=4S△ACE=4×2=8;S△DCE=2S△BCD=2×1=2;∴S△DEF=S△FCD+S△FCE+S△DCE=8+8+2=18.二、填空题(每小题3分,共24分)11.空调安装在墙上时,一般都会像如图所示的方法固定在墙上,这种方法应用的数学知识是三角形的稳定性.第11题图第12题图第14题图12.如图,∠D=30°,∠O=50°,∠C=35°,则∠AEC等于__65°__.13.如果将长度为3a,4a,14的三条线段首尾顺次相接可以得到一个三角形,则a的取值范围是__2<a<14__.14.(枣庄中考)用一条宽度相等的足够长的纸条打一个结(如图①所示),然后轻轻拉紧、压平就可以得到如图②所示的正五边形ABCDE,那么图中的∠BAC=36度.15.如图,在四边形ABCD中,AD⊥AB于点A,∠C=110°,它的一个外角∠ADE =60°,则∠B的大小是__40°__.第15题图第16题图第17题图第18题图16.(江西中考)如图,在△ABC 中,点D 是BC 上的点,∠BAD =∠ABC =40°,将△ABD 沿着AD 翻折得到△AED ,则∠CDE =20°.17.如图,在△ABC 中,∠A =70°,∠B =50°,点D ,E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处,若△EFC 为直角三角形,则∠BDF 的度数为__110°或50°__.18.如图,在△ABC 中,∠ABC 的平分线与△ABC 的外角∠ACN 的平分线交于点E ,EC 的延长线交△ABC 的另一外角∠MBC 的平分线于点D ,若∠D 比∠E 大10°,则∠A 的度数是__80°__.三、解答题(共66分)19.(6分)如图,在△ABC 中,AD ,AE 分别是边BC 上的中线和高,AE =3 cm ,S △ABC =12 cm 2.求BC 和DC 的长.解:∵AE ⊥BC ,S △ABC =12 cm 2,AE =3 cm ,∴S △ABC =12 BC·AE ,即12=12 ×3BC ,∴BC =8 cm.又∵AD 为BC 边上的中线,∴DC =12 BC =4 cm20.(7分)如图,在△ABC 中,BE ⊥AC ,BC =5 cm ,AC =8 cm ,BE =3 cm.(1)求△ABC 的面积;(2)画出△ABC 中的BC 边上的高AD ,并求出AD 的值.解:(1)∵ BE ⊥AC ,∴ S △ABC =12 ×AC ×BE =12 ×8×3=12(cm 2) (2)如图所示,线段AD 就是所求作的高,∵S △ABC =12 ×BC ×AD =12(cm 2),∴12 ×5×AD =12,∴AD =245 (cm)21.(8分)根据条件求多边形的边数:(1)一个多边形每个内角都相等,且都等于135°,则这个多边形的边数为__8__;(2)一个多边形的内角和与某一个外角的度数总和为1 350°,求这个多边形的边数. 解:(2)设这个多边形的边数为n ,这个外角的度数为x °,则0<x <180.依题意,有(n -2)·180+x =1 350.∴n =1 350-x 180 +2=9+90-x 180. ∵n 为正整数,∴90-x 必为180的倍数.又∵0<x <180,∴90-x =0,即x =90.∴n =9.故这个多边形的边数为922.(9分)如图,在△ABC 中(AB >BC ),AC =2BC ,BC 边上的中线AD 把△ABC 的周长分成60和40两部分,求AC 和AB 的长.解:∵AD 是BC 边上的中线,AC =2BC ,∴BD =CD ,设BD =CD =x ,AB =y ,则AC =4x.分为两种情况:①AC +CD =60,AB +BD =40,则4x +x =60,x +y =40,解得x =12,y =28,即AC =4x =48,AB =28;②AC +CD =40,AB +BD =60,则4x +x =40,x +y =60,解得x =8,y =52,即AC =4x =32,AB =52,BC =2x =16,此时不符合三角形三边关系定理.综上所述,AC =48,AB =2823.(10分)如图,在△ABC 中,∠A =∠ABC ,直线EF 分别交△ABC 的边AB ,AC 和CB 的延长线于点D ,E ,F .(1)求证:∠F +∠FEC =2∠A ;(2)过点B 作BM ∥AC 交FD 于点M ,试探究∠MBC 与∠F +∠FEC 的数量关系,并证明你的结论.解:(1)证明:∵∠A +∠ABC +∠C =180°,∠A =∠ABC ,∴∠C =180°-2∠A.∵∠F +∠FEC +∠C =180°,∴∠F +∠FEC =2∠A(2)∠MBC =∠F +∠FEC.证明:∵BM ∥AC ,∴∠FMB =∠FEC.又∵∠MBC =∠F +∠FMB ,∴∠MBC =∠F +∠FEC24.(12分)取一副三角尺按如图①拼接,固定三角尺ADC,将三角尺ABC绕点A按顺时针方向旋转得到△ABC′,如图②所示,设∠CAC′=α(0°<α≤45°).(1)当α=15°时,求证:AB∥CD;(2)连接BD,当0°<α≤45°时,∠DBC′+∠CAC′+∠BDC的度数是否变化?若变化,求出变化范围;若不变,求出其度数.解:(1)证明:∵∠CAC′=15°,∠BAC′=45°,∴∠BAC=∠BAC′-∠CAC′=45°-15°=30°.又∵∠ACD=30°,∴∠BAC=∠ACD.∴AB∥CD(2)∠DBC′+∠CAC′+∠BDC的度数不变.连接CC′,则∠DBC′+∠BDC=∠DCC′+∠BC′C,∵∠CAC′+∠AC′C+∠ACC′=180°,∴∠CAC′+∠AC′B+∠BC′C+∠ACD+∠DCC′=180°.∵∠AC′B=45°,∠ACD=30°,∴∠DBC′+∠CAC′+∠BDC=∠DCC′+∠CAC′+∠BC′C=180°-45°-30°=105°25.(14分)已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(点A,B,C不与点O重合),连接AC交射线OE于点D,设∠OAC=x°.(1)如图①,若AB∥ON,则:①∠ABO的度数是__20°__;②当∠BAD=∠ABD时,x=__120__;当∠BAD=∠BDA时,x=__60__;(2)如图②,若AB⊥OM,是否存在这样的x值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.解:(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,∵∠ABE=110°,且三角形的内角和为180°,∴只有∠BAD=∠BDA=35°,∴x=125.综上可知,当x=20,35,50或125时,△ADB中有两个相等的角第十二章全等三角形得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列四个图形是全等图形的是(C)A.①和③B.②和③C.②和④D.③和④2.如图,已知△ABE≌△ACD,下列等式不正确的是(D)A.AB=AC B.∠BAE=∠CAD C.BE=CD D.AD=BE第2题图第3题图第4题图第5题图3.如图,AC是△ABC和△ADC的公共边,下列条件不能判定△ABC≌△ADC的是(A) A.AB=AD,∠2=∠1 B.AB=AD,∠3=∠4C.∠2=∠1,∠3=∠4 D.∠2=∠1,∠B=∠D4.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=18,DE=3,AB=8,则AC的长是(B)A.3 B.4 C.6 D.55.如图,∠A=∠D=90°,AC=DB,AC,DB相交于点O,∠ACB=30°,则∠BCD 的度数为(C)A.40°B.50°C.60°D.75°6.如图,已知△ABC,用尺规作图如下:①以点B为圆心,AB的长为半径画弧,交BC于点P;②以点P为圆心,AP的长为半径画弧,交已画弧于点D;③连接BD,CD,则△ABC≌△DBC的依据是(D)A.SSS B.ASA C.AAS D.SAS第6题图第7题图第8题图第9题图7.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为(C)A.2 B.3 C.4 D.58.如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为(C)A.44°B.66°C.96°D.92°9.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S =S△PCD,则满足此条件的点P(D)△PABA.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中:①BD=CE;②∠ACE+∠DBC =45°;③BD⊥CE;④∠BAE+∠DAC=180°.正确的个数是(D)A.1个B.2个C.3个D.4个第10题图第11题图第12题图第13题图二、填空题(每小题3分,共24分)11.如图,△ABC≌△BAD,若AB=6,AC=4,BC=5,则△BAD的周长为__15__.12.(襄阳中考)如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB的是②(只填序号).13.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中共有__3__对全等三角形.14.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=__135°__.第14题图第15题图第16题图第18题图15.如图,∠AOB =90°,OA =OB ,直线l 经过点O ,分别过A ,B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D .若AC =10,BD =6,则CD =4.16.如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D .已知BD ∶CD =3∶2,点D 到AB 的距离是6,则BC 的长是__15__.17.在△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 的长为m ,则m 的取值范围是__1<m <4__.18.如图,点B 的坐标为(4,4),作BA ⊥x 轴,BC ⊥y 轴,垂足分别为A ,C ,点D 为线段OA 的中点,点P 从点A 出发,在线段AB ,BC 上沿A →B →C 运动,当OP =CD 时,点P 的坐标为__(2,4)或(4,2)__.三、解答题(共66分)19.(6分)如图,△ABC ≌△ADE ,其中点B 与点D ,点C 与点E 对应.(1)写出对应边和对应角;(2)∠BAD 与∠CAE 相等吗?说明理由.解:(1)对应边:AB 与AD ,BC 与DE ,AC 与AE ;对应角:∠BAC 与∠DAE ,∠B 与∠D ,∠C 与∠E(2)∠BAD =∠CAE .理由如下:∵∠BAC =∠DAE ,∴∠BAC -∠CAD =∠DAE -∠CAD ,即∠BAD =∠CAE20.(7分)(陕西中考)如图,点A ,E ,F ,B 在直线l 上,AE =BF ,AC ∥BD ,且AC =BD ,求证:CF =DE .证明:∵AE =BF ,∴AE +EF =BF +EF ,即AF =BE ,∵AC ∥BD ,∴∠CAF =∠DBE ,在△ACF 和△BDE 中,⎩⎪⎨⎪⎧AC =BD ,∠CAF =∠DBE ,AF =BE ,∴△ACF ≌△BDE (SAS),∴CF =DE21.(8分)王强同学用10块高度都是2 cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和点B 分别与木墙的顶端重合,求两堵木墙之间的距离.解:由题意得AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∴∠BCE =∠DAC .在△ADC 和△CEB中,⎩⎪⎨⎪⎧∠ADC =∠CEB ,∠DAC =∠BCE ,AC =BC ,∴△ADC ≌△CEB (AAS),∴EC =AD =6 cm ,DC =BE =14 cm ,∴DE =DC +CE =20(cm),答:两堵木墙之间的距离为20 cm22.(9分)在数学实践课上,老师在黑板上画出如图的图形(其中点B ,F ,C ,E 在同一条直线上).并写出四个条件:①AB =DE ,②∠1=∠2,③BF =EC ,④∠B =∠E .交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.(1)请你写出所有的真命题;(2)选一个给予证明.你选择的题设:__①③④__;结论:__②(答案不唯一)__.(均填写序号)解:(1)情况一:题设:①②④;结论:③;情况二:题设①③④;结论:②;情况三:题设②③④;结论:① (2)选择的题设:①③④,结论:②(答案不唯一).理由:∵BF =EC ,∴BF +CF =EC +CF ,即BC =EF .在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS),∴∠1=∠223.(10分)如图,在△ABC 中,BE ,CF 分别是AC ,AB 两边上的高,在BE 上截取BD =AC ,在CF 的延长线上截取CG =AB ,连接AD ,AG .(1)图中有一组三角形全等,试将其找出来并证明;(2)连接DG ,猜想△ADG 的形状,并说明理由.解:(1)△ABD ≌△GCA ,证明:∵BE ,CF 分别是AC ,AB 两边上的高,∴∠AFC =∠BFC =∠BEC =∠BEA =90°,∴∠BAC +∠ACF =90°,∠BAC +∠ABE =90°,∠CGA +∠GAF =90°,∴∠ABE =∠ACF .在△ABD 和△GCA 中,⎩⎪⎨⎪⎧BD =AC ,∠ABE =∠ACF ,AB =CG ,∴△ABD ≌△GCA (SAS)(2)△ADG 是等腰直角三角形,理由如下:∵△ABD ≌△GCA ,∴AD =AG ,∠BAD =∠CGA .又∵∠CGA +∠GAF =90°,∴∠BAD +∠GAF =90°,即∠GAD =90°,∴△ADG 是等腰直角三角形24.(12分)如图,在△ABC 中,AD 平分∠BAC ,∠C =90°,DE ⊥AB 于点E ,点F 在AC 上,BD =DF .(1)求证:CF =EB ;(2)若AB =12,AF =8,求CF 的长.解:(1)证明:∵AD 平分∠BAC ,∠C =90°,DE ⊥AB 于点E ,∴DE =DC .在Rt △CDF 与Rt △EDB 中,∵⎩⎪⎨⎪⎧DF =DB ,DC =DE , ∴Rt △CDF ≌Rt △EDB (HL),∴CF =EB (2)设CF =x ,则AE =12-x ,AC =AF +CF =8+x .在Rt △ACD 与Rt △AED 中,∵⎩⎪⎨⎪⎧AD =AD ,CD =DE ,∴Rt △ACD ≌Rt △AED (HL),∴AC =AE ,即8+x =12-x ,解得x =2,即CF =225.(14分)如图①,AM ∥BN ,AE 平分∠BAM ,BE 平分∠ABN .(1)求∠AEB 的度数;(2)如图②,过点E 的直线交射线AM 于点C ,交射线BN 于点D .求证:AC +BD =AB ;(3)如图③,过点E 的直线交射线AM 的反向延长线于点C ,交射线BN 于点D ,AB =5,AC =3,S △ABE -S △ACE =2,求△BDE 的面积.解:(1)∵AM ∥BN ,∴∠BAM +∠ABN =180°.∵AE 平分∠BAM ,BE 平分∠ABN ,∴∠BAE =12 ∠BAM ,∠ABE =12 ∠ABN.∴∠BAE +∠ABE =12 (∠BAM +∠ABN)=90°.∴∠AEB =90°(2)证明:如图甲,在线段AB 上截取AF =AC ,连接EF .在△ACE 与△AFE 中,⎩⎨⎧AC =AF ,∠CAE =∠FAE ,AE =AE , ∴△ACE ≌△AFE(SAS).∴∠AEC =∠AEF .∵∠AEB =90°,∴∠AEF +∠BEF =∠AEC +∠BED =90°,∴∠FEB =∠DEB.在△BFE 与△BDE 中,⎩⎨⎧∠FBE =∠DBE ,BE =BE ,∠FEB =∠DEB ,∴△BFE ≌△BDE(ASA),∴BF =BD.∵AF +BF =AB ,∴AC +BD =AB(3)如图乙,延长AE 交射线BN 于点F .∵∠AEB =90°,∴BE ⊥AF .∵BE 平分∠ABN ,∴∠ABE =∠FBE.又∵∠AEB =∠FEB =90°,BE =BE ,∴△ABE ≌△FBE(ASA),∴BF=AB =5,AE =EF .∵AM ∥BN.∴∠C =∠EDF .在△ACE 与△FDE 中,⎩⎨⎧∠C =∠EDF ,∠AEC =∠FED ,AE =EF ,∴△ACE ≌△FDE(AAS),∴DF =AC =3.设S △BEF =S △ABE =5x ,S △DEF =S △ACE =3x.∵S △ABE -S △ACE =2,∴5x -3x =2,∴x =1.∴△BDE 的面积为8第十三章 轴对称得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.(北京中考)下列倡导节约的图案中,是轴对称图形的是(C )2.下列图形对称轴条数最多的是(A )A .正方形B .等边三角形C .等腰三角形D .线段3.若点P (a ,1)关于y 轴的对称点为Q (2,b ),则a +b 的值是(A )A .-1B .0C .1D .24.如图,AC =BC ,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,则图中共有等腰三角形的个数为(D )A .2B .3C .4D .5第4题图 第5题图 第6题图5.如图,在△ABC 中,D 点在BC 上,将D 点分别以AB ,AC 为对称轴,画出对称点E ,F ,并连接AE ,AF .根据图中标示的角度,则∠EAF 的度数为(D )A .113°B .124°C .129°D .134°6.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为(D )A .90°B .95°C .100°D .105°7.如图,在△ABC 中,BD 平分∠ABC ,ED ∥BC ,已知AB =3,AD =1,则△AED 的周长为(C )A .2B .3C .4D .5第7题图 第8题图 第9题图8.如图,直线l 1,l 2相交于点A ,点B 是直线外一点,在直线l 1,l 2上找一点C ,使△ABC 为一个等腰三角形,则满足条件的点C 有(D )A .2个B .4个C .6个D .8个9.如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,P 是AD 边上的动点,E 是AC 边上一点.若AE =2,当EP +CP 的值最小时,∠ECP 的度数为(C )A .15°B .22.5°C .30°D .45°10.已知点P (-2,3),作点P 关于x 轴的对称点P 1,再作点P 1关于y 轴的对称点P 2,接着作P 2关于x 轴的对称点P 3,继续作点P 3关于y 轴的对称点P 4,按此方法一直作下去,则P 2 021的坐标为(B )A .(2,-3)B .(-2,-3)C .(-2,3)D .(2,3)二、填空题(每小题3分,共24分)11.如图,AB ∥CE ,BF 交CE 于点D ,DE =DF ,∠F =20°,则∠B 的度数为__40°__.第11题图 第12题图 第13题图第14题图12.如图,将一个有45°角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,则三角板的直角边的长为6cm.13.如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为(-2,1).14.如图是一个风筝的图案,它是轴对称图形,EF是对称轴.若∠A=90°,∠AED =130°,∠C=45°,则∠BFC的度数为__140°__.15.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19 cm,△ABD 的周长为13 cm,则AE的长为__3__cm.第15题图第16题图第18题图16.如图,已知在等边三角形ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′,EB′分别交边AC于点F,G.若∠ADF=80°,则∠EGC的度数为80°.17.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD 为直角三角形,则∠ADC的度数为__130°或90°__.18.如图,C为线段AE上一动点(不与A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的结论有__①②③⑤__.三、解答题(共66分)19.(6分)如图所示.(1)写出A,B,C三点的坐标;(2)若△ABC各顶点的横坐标不变,纵坐标都乘-1,请你在同一坐标系中描出对应的点A′,B′,C′,并依次连接这三个点,所得的△A′B′C′与原来的△ABC有怎样的位置关系?解:(1)A,B,C三点的坐标分别是(3,4),(1,2),(5,1)(2)画图略,△A′B′C′与原来的△ABC的位置关系是关于x轴对称20.(6分)如图,在△ABC中,∠B=∠C,AD是底边BC上的高,DE∥AB交AC于点E.试说明△ADE是等腰三角形.解:∵在△ABC中,∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.∵AD⊥BC,∴∠BAD=∠DAC.∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=∠DAC,∴AE=ED,∴△ADE是等腰三角形21.(8分)如图,一艘轮船以每小时40海里的速度沿正北方向航行,在A处测得灯塔C 在北偏西30°方向上,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向上.请问当轮船到达灯塔C的正东方向D处时,又航行了多少海里?解:∵CD⊥DB,∠CBD=60°,∴∠DCB=30°,∴DB=12BC,∴BC=2DB.又∵∠BCA=60°-30°=30°,∴BC=BA,∴BC=2×40=80(海里),∴DB=40海里.答:当轮船到达灯塔C的正东方向D处时,又航行了40海里22.(9分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线AF交CD于点E,交BC于点F,CM⊥AF于点M,CM的延长线交AB于点N.(1)求证:EM=FM;(2)求证:AC=AN.证明:(1)∵∠ACB=90°,CD⊥AB,∴∠ADC=90°,∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°.又∵∠BAC的平分线AF交CD于点E,∴∠DAE=∠CAE,∴∠AED=∠CFE.又∵∠AED=∠CEF,∴∠CEF=∠CFE.∴△CEF为等腰三角形.又∵CM⊥AF,∴EM=FM(2)∵CN⊥AF,∴∠AMC=∠AMN=90°,在△AMC和△AMN中,⎩⎨⎧∠AMC =∠AMN ,AM =AM ,∠CAM =∠NAM ,∴△AMC ≌△AMN(ASA),∴AC =AN23.(10分)如图,在△ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若△CMN 的周长为15 cm ,求AB 的长;(2)若∠MFN =70°,求∠MCN 的度数.解:(1)∵DM ,EN 分别垂直平分AC 和BC ,∴AM =CM ,BN =CN.∴△CMN 的周长=CM +MN +CN =AM +MN +BN =AB.∵△CMN 的周长为15 cm ,∴AB =15 cm (2)∵∠MFN =70°,∴∠MNF +∠NMF =180°-70°=110°.∵∠AMD =∠NMF ,∠BNE =∠MNF ,∴∠BNE +∠AMD =∠MNF +∠NMF =110°,∴∠A +∠B =90°-∠AMD +90°-∠BNE =180°-110°=70°.∵AM =CM ,BN =CN ,∴∠A =∠ACM ,∠B =∠BCN ,∴∠MCN =180°-2(∠A +∠B)=180°-2×70°=40°24.(12分)(安顺中考)(1)如图①,在四边形ABCD 中,AB ∥CD ,点E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC 得到AB =FC ,从而把AB ,AD ,DC 转化在一个三角形中即可判断. 因此,AB ,AD ,DC 之间的等量关系是AD =AB +DC ;(2)问题探究:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.解:(1)AD =AB +DC .理由如下:∵AB ∥CD ,∴∠F =∠BAE .∵∠DAE =∠BAE ,∴∠DAF =∠F ,∴AD =DF ,∵CE =BE ,且∠F =∠BAE ,∠AEB =∠CEF ,∴△CEF ≌△BEA (AAS),∴AB =CF ,∴AD =DC +CF =AB +DC(2)AB =AF +CF .理由如下:如图,延长AE 交DF 的延长线于点G ,∵AB ∥DC ,∴∠BAE =∠G ,又∵BE =CE ,∠AEB =∠GEC ,∴△AEB ≌△GEC (AAS),∴AB =GC .∵AE 是∠BAF 的平分线,∴∠BAG =∠FAG ,∵∠BAG =∠G ,∴∠FAG =∠G ,∴FA =FG .∵CG =CF +FG ,∴AB =AF +CF25.(15分)如图所示,已知△ABC 中,AB =AC =BC =10厘米,M ,N 分别从点A ,B 同时出发,沿三角形的边顺时针运动,已知点M 的速度是1厘米/秒,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M ,N 同时停止运动.(1)M ,N 同时运动几秒后,M ,N 两点重合?(2)M ,N 同时运动几秒后,可得等边三角形AMN?(3)M ,N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ,如果存在,请求出此时M ,N 运动的时间?解:(1)设点M ,N 运动x 秒后,M ,N 两点重合,x +10=2x ,解得x =10,∴M ,N 同时运动10秒后,M ,N 两点重合(2)设点M ,N 运动t 秒后,可得到等边三角形AMN ,如图①,AM =t ×1=t ,AN =AB -BN =10-2t.∵△AMN 是等边三角形,∴t =10-2t ,解得t =103 .∴点M ,N 运动103 秒后,可得到等边三角形AMN(3)当点M ,N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知,10秒时M ,N 两点重合,恰好在C 处.如图②,假设△AMN 是等腰三角形,∴AN =AM ,∴∠AMN =∠ANM.∴∠AMC =∠ANB.∵AB =BC =AC ,∴△ACB 是等边三角形,∴∠C =∠B.在△ACM 和△ABN 中,∵⎩⎨⎧∠C =∠B ,∠AMC =∠ANB ,AC =AB ,∴△ACM ≌△ABN(AAS).∴CM =BN ,设当点M ,N 在BC 边上运动时,M ,N 运动的时间y 秒时,△AMN 是等腰三角形,∴CM =y -10,NB =30-2y ,CM =NB ,y -10=30-2y ,解得y =403 .故假设成立.∴当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰△AMN ,此时M ,N 运动的时间为403秒期中检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.(毕节中考)在下列长度的三条线段中,不能组成三角形的是(C )A .2 cm ,3 cm ,4 cmB .3 cm ,6 cm ,6 cmC .2 cm ,2 cm ,6 cmD .5 cm ,6 cm ,7 cm2.如图,在△ABC 中,AB =AC ,∠B =50°,P 是边AB 上的一个动点(不与顶点A 重合),则∠BPC 的值可能是(B )A .135°B .85°C .50°D .40° 第2题图 第3题图 第5题图第6题图3.如图,OP 是∠AOB 的平分线,点C ,D 分别在角的两边OA ,OB 上,添加下列条件,不能判定△POC ≌△POD 的是(D )A .PC ⊥OA ,PD ⊥OB B .OC =OD C .∠OPC =∠OPD D .PC =PD4.(贵港中考)若点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,则m +n 的值是(D )A .-5B .-3C .3D .15.将五边形纸片ABCDE 按如图方式折叠,折痕为AF ,点E ,D 分别落在E ′,D ′点.已知∠AFC =76°,则∠CFD ′等于(C )A .15°B .25°C .28°D .31°6.如图,在△ABC 中,AB =AC ,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD 和CE 交于点O ,AO 的延长线交BC 于点F ,则图中全等的直角三角形有(D )A .4对B .5对C .6对D .7对7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,已知EH =EB =3,AE =4,则CH 的长是(A )A .1B .2C .3D .4第7题图 第8题图 第10题图8.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ACF =48°,则∠ABC 的度数为(A )A .48°B .36°C .30°D .24°9.在△ABC 中,高AD 和BE 所在的直线交于点H ,且BH =AC ,则∠ABC 等于(C )A .45°B .120°C .45°或135°D .45°或120°10.如图,在等腰直角△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC ,AD 于E ,F 两点, M 为EF 的中点,延长AM 交BC 于点N ,连接DM ,NE .下列结论:①AE =AF ;②AM ⊥EF ;③△AEF 是等边三角形,④DF =DN ,⑤AD ∥NE .其中正确的结论有(D )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.(资阳中考)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =__36°__.第11题图 第12题图 第14题图12.如图,BC ⊥ED ,垂足为M ,∠A =35°,∠D =25°,则∠ABC =__30°__.13.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作K .若K =12,则该等腰三角形的顶角度数为__36°__. 14.(镇江中考)如图,直线a ∥b ,△ABC 的顶点C 在直线b 上,边AB 与直线b 相交于点D .若△BCD 是等边三角形,∠A =20°,则∠1=40°.15.(永州中考)已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过点D 作直线DE ⊥OA ,垂足为E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =4.第15题图 第16题图 第17题图 第18题图16.如图,在△ABC 中,点D 为BC 边的中点,点E 为AC 上一点,将∠C 沿DE 翻折,使点C 落在AB 上的点F 处,若∠AEF =50°,则∠A 的度数为__65°__.17.如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,若AB =18,AC =12,△ABC的面积等于36,则DE =__125 __. 18.如图,在△ABC 中,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,下面四个结论:①∠AFE =∠AEF ;②AD 垂直平分EF ;③S △BFD S △CED=BF CE;④EF 一定平行于BC .其中正确的有①②③(填序号). 三、解答题(共66分)19.(6分)(宜昌中考)如图,在Rt △ABC 中,∠ACB =90°,∠A =40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.解:(1)∵∠ACB =90°,∠A =40°,∴∠ABC =90°-∠A =50°,∴∠CBD =130°.∵BE 是∠CBD 的平分线,∴∠CBE =12∠CBD =65° (2)∵∠ACB =90°,∠CBE =65°,∴∠CEB =90°-65°=25°.∵DF ∥BE ,∴∠F =∠CEB =25°20.(6分)在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(-3,-1).(1)将△ABC 沿y 轴正方向平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1的坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.解:(1)点B 1的坐标为(-2,-1),图略(2)点C 2的坐标为(1,1),图略21.(8分)(温州中考)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长.解:(1)证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F , ∵AD 是BC 边上的中线,∴BD =CD ,∴△BDE ≌△CDF (AAS) (2)∵△BDE ≌△CDF ,∴BE =CF =2,∴AB =AE +BE =1+2=3, ∵AD ⊥BC ,BD =CD ,∴AC =AB =322.(10分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD =AC ,AF 平分∠CAB 交CE 于点F ,DF 的延长线交AC 于点G .求证:(1)DF ∥BC ;(2)FG =FE .证明:(1)∵AF 平分∠CAB , ∴∠CAF =∠DAF .在△ACF 和△ADF 中,∵⎩⎨⎧AC =AD ,∠CAF =∠DAF ,AF =AF ,∴△ACF ≌△ADF(SAS).∴∠ACF =∠ADF .∵∠ACB =90°,CE ⊥AB ,∴∠ACE +∠CAE =90°,∠CAE +∠B =90°. ∴∠ACF =∠B ,∴∠ADF =∠B.∴DF ∥BC (2)∵DF ∥BC ,BC ⊥AC ,∴FG ⊥AC.∵FE ⊥AB ,又AF 平分∠CAB ,∴FG =FE23.(10分)如图,在四边形ABCD 中,AD ∥BC ,点E 是AB 的中点,连接DE 并延长,交CB 的延长线于点F ,点G 在边BC 上,且∠GDF =∠ADF .(1)求证:△ADE ≌△BFE ;(2)连接EG ,判断EG 与DF 的位置关系并说明理由.解:(1)证明:∵AD ∥BC ,∴∠ADE =∠BFE.∵点E 为AB 的中点,∴AE =BE.在△ADE和△BFE 中,⎩⎨⎧∠ADE =∠BFE ,∠AED =∠BEF ,AE =BE ,∴△ADE ≌△BFE(AAS)(2)EG 与DF 的位置关系是EG 垂直平分DF .理由:∵∠GDF =∠ADE ,∠ADE =∠BFE ,∴∠GDF =∠BFE.∴FG =DG .∴△FGD 为等腰三角形.由(1)中△ADE ≌△BFE 得DE =FE ,即GE 为DF 上的中线,∴GE 垂直平分DF24.(12分)如图,点O 是等边△ABC 内一点,∠AOB =100°,∠BOC =α.以OC 为一边作等边三角形OCD ,连接AD .(1)当α=150°时,试判断△AOD 的形状,并说明理由; (2)探究:当α为多少度时,△AOD 是等腰三角形?解:(1)∵△OCD 是等边三角形,∴OC =CD .∵△ABC 是等边三角形,∴BC =AC .∵∠ACB =∠OCD =60°,∴∠BCO =∠ACD ,在△BOC 与△ADC 中,∵⎩⎪⎨⎪⎧OC =CD ,∠BCO =∠ACD ,BC =AC ,∴△BOC ≌△ADC ,∴∠BOC =∠ADC ,而∠BOC =α=150°,∠ODC =60°,∴∠ADO =150°-60°=90°,∴△ADO 是直角三角形(2)∠AOD =360°-∠AOB -∠α-∠COD =360°-100°-∠α-60°=200°-∠α,∠ADO =∠ADC -∠CDO =∠α-60°,∠OAD =180°-∠ADO -∠AOD =180°-(∠α-60°)-(200°-∠α)=40°. 若∠ADO =∠AOD ,即∠α-60°=200°-∠α,解得∠α=130°; 若∠ADO =∠OAD ,则∠α-60°=40°,解得∠α=100°; 若∠OAD =∠AOD ,即40°=200°-∠α,解得∠α=160°. 即当α为130°或100°或160°时,△AOD 是等腰三角形25.(14分)已知在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED =EC .(1)【特殊情况,探索结论】 如图①,当点E 为AB 的中点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __=__DB (填“>”“<”或“=”);(2)【特例启发,解答题目】如图②,当点E 为AB 边上任意一点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __=__DB (填“>”“<”或“=”),并给出证明;(3)【拓展结论,设计新题】 在等边三角形ABC 中,点E 在直线AB 上,点D 在线段CB 的延长线上,且ED =EC ,若△ABC 的边长为1,AE =2,求CD 的长.解:(2)AE =DB .证明:过点E 作EF ∥BC ,交AC 于点F ,∵△ABC 为等边三角形,∴△AEF 为等边三角形,∴AE =EF ,BE =CF . ∵ED =EC ,∴∠D =∠ECD .∵∠DEB =60°-∠D ,∠ECF =60°-∠ECD ,∴∠DEB =∠ECF ,在△DBE 和△EFC 中,⎩⎪⎨⎪⎧DE =CE ,∠DEB =∠ECF ,BE =FC , ∴△DBE ≌△EFC (SAS),∴DB =EF ,∴AE =DB(3)如图所示,点E 在AB 延长线上时,过点E 作EF ∥BC ,交AC 的延长线于点F ,同(2)仍可证得△DBE ≌△EFC ,∴DB =EF =2,BC =1,则CD =BC +DB =3第十四章 整式的乘法与因式分解得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.(盐城中考)计算(-x 2y )2的结果是(A )A .x 4y 2B .-x 4y 2C .x 2y 2D .-x 2y 2 2.(葫芦岛中考)下列运算正确的是(D ) A .x 2·x 2=x 6 B .x 4+x 4=2x 8C .-2(x 3)2=4x 6D .xy 4÷(-xy )=-y 3 3.(泰安中考)计算(-2)0+9÷(-3)的结果是(B ) A .-1 B .-2 C .-3 D .-44.多项式mx 2-m 与多项式x 2-2x +1的公因式是(A ) A .x -1 B .x +1 C .x 2-1 D .(x -1)25.如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼形成新的图形,嘉嘉(图①)和琪琪(图②)分别给出了各自的割拼方法,其中能够验证平方差公式的是(C )A.嘉嘉 B .琪琪 C .都能 D .都不能6.若a >0且a x =2,a y =3,则a x -2y 的值为(D ) A .13 B .-13 C .23 D .297.已知(x -2 019)2+(x -2 021)2=34,则(x -2 020)2的值是(D ) A .4 B .8 C .12 D .168.已知2a -b =3,那么12a 2-8ab +b 2-12a +3的值为(B ) A .9 B .12 C .15 D .189.分解因式x 2+ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果是(x -2)(x +1),那么x 2+ax +b 分解因式的正确结果为(B )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)10.图①是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②所示方式拼成一个正方形,则中间空的部分的面积是(C )A.abB .(a +b )2C .(a -b )2D .a 2-b 2二、填空题(每小题3分,共24分) 11.计算(-2x 3y 2)3·4xy 2=-32x 10y 8.12.一个长方形的面积是xy 2-x 2y ,且长为xy ,则这个长方形的宽为y -x . 13.(东营中考)因式分解:x (x -3)-x +3=(x -1)(x -3).14.多项式x 2+mx +5分解因式是(x +5)(x +n ),则m =6,n =1.15.如图, 在正方形ABCD 和EFGC 中,左、右两个正方形的边长分别为a ,b ,用代数式表示阴影部分三角形AEG 的面积为12b 2.第15题图第17题图 第18题图16.观察下列等式:12-02=1,22-12=3,32-22=5,42-32=7,……用含n(n≥1且n为正整数)的等式表示这种规律为__n2-(n-1)2=2n-1__.17.如图,长方形ABCD的周长为8,分别以长方形的一条长和一条宽向外作两个正方形,且这两个正方形的面积和为10,则长方形ABCD的面积是3.18.如图所示是一块正方形铁皮,边长为a,如果一边截去6,另一边截去5,则下面式子中正确地表示所剩长方形(阴影部分)铁皮的面积的有①③④.(填序号)①(a-5)(a-6);②a2-5a+6(a-5);③a2-6a-5(a-6);④a2-11a+30.三、解答题(共66分)19.(8分)计算:(1)(-3a2bc)2·(-2ab2)3;解:原式=9a4b2c2·(-8a3b6)=-72a7b8c2(2)(无锡中考)(a-b)2-a(a-2b).解:原式=a2-2ab+b2-a2+2ab=b220.(12分)分解因式:(1)2x2y-8xy+8y;(2)(2x+y)2-(x+2y)2;解:原式=2y(x-2)2解:原式=3(x+y)(x-y)(3)(y2-1)2+6(1-y2)+9.解:原式=(y+2)2(y-2)221.(8分)化简求值:(1)(宜昌中考)x(x+1)+(2+x)(2-x),其中x=6-4;解:原式=x2+x+4-x2=x+4,当x= 6 -4时,原式= 6 -4+4= 6(2)(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m(m+1)=2.解:原式=4m2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2=2m2+2m-2=2(m 2+m -1), ∵m(m +1)=2, ∴m 2+m =2,则原式=2×(2-1)=222.(8分)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=12a +8b -52,且△ABC 是等腰三角形,求c 的值.解:∵a 2+b 2=12a +8b -52,∴a 2+b 2-12a -8b +52=0, ∴(a 2-12a +36)+(b 2-8b +16)=0,∴(a -6)2+(b -4)2=0,∴a =6,b =4.∵△ABC 是等腰三角形,∴c =4或c =6,且符合三角形的三边关系23.(8分)如图是某环保工程所需要的一种圆柱形空心混凝土管道,它的内径长为d ,外径长为D ,长为l .设它的实体部分体积为V 立方米.(1)用含D ,d 的式子表示V ;(2)当它的内径d =45 cm ,外径D =75 cm ,长l =3 m 时,利用分解因式的知识求浇制一节这样的管道大约需要多少立方米的混凝土?(其中π取3)解:(1)V =l ·[π·⎝⎛⎭⎫D 2 2-π·⎝⎛⎭⎫d 2 2]=πl 4 ()D 2-d 2 (2)当d =45 cm ,D =75 cm ,l =3 m 时, V =πl 4 ()D 2-d 2 =πl4(D +d )·(D -d ) =3×34×(75+45)×(75-45)×10-4 =0.81(立方米)答:浇制一节这样的管道大约需要0.81立方米的混凝土24.(10分)如图①,是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于__m -n __;(2)请用两种不同的方法求图②中阴影部分的面积: ①__(m -n)2__,②__(m +n)2-4mn __;(3)观察图②,请你写出代数式(m +n )2,(m -n )2,mn 之间的等量关系.根据(3)题中的等量关系,解决下列问题:若a +b =7,ab =5,求(a -b )2的值.解:(3)(m -n)2=(m +n)2-4mn ,∵a +b =7,ab =5,∴(a -b)2=(a +b)2-4ab =72-4×5=2925.(12分)(枣庄中考)我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=pq.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34.(1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数.求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F (t )的最大值.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数), ∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=nn=1(2)设交换t 的个位上的数与十位上的数所得到的新数为t ′,则t ′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36,∴y =x +4.∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的有15,26,37,48,59 (3)F (15)=35 ,F (26)=213 ,F (37)=137 ,F (48)=68 =34 ,F (59)=159 ,∵34 >35 >213 >137 >159, ∴所有“吉祥数”中,F (t )的最大值为34第十五章 分式得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.若分式x 2-4x 的值为0,则x 的值是(A )A .2或-2B .2C .-2D .0。
最新人教版八年级数学上册单元测试题全套(含答案)(含期中期末试题,共7套)第十一章检测卷(满分:120分时间90分钟)题 号一二三总 分得 分一、选择题(每题3分,共30分)1.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个 B.2个 C.3个 D.4个2.下列判断:①有两个内角分别为50°和20°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中不可以有三个锐角;④有一个外角是锐角的三角形一定是钝角三角形,其中正确的有( )A.1个 B.2个 C .3个 D .4个3.图中能表示△ABC的BC边上的高的是( )A B C D4.如图,在△ABC中,∠A=40°,点D为AB延长线上一点,且∠CBD=120°,则∠C的度数为( ) A.40° B.60° C.80° D.100°高途课堂整理 高途课堂整理(第4题图) (第7题图) (第9题图) (第10题图)5.等腰三角形的周长为13 cm ,其中一边长为3 cm ,则该等腰三角形的底边长为( )A .7 cmB .3 cmC .9 cmD .5 cm6.八边形的内角和为( )A .180°B .360°C .1 080°D .1 440°7.如图,直线l 1∥l 2,若∠1=140°,∠2=70°,则∠3的度数是( )A .60°B .65°C .70°D .80°8.若一个多边形的内角和小于其外角和,则这个多边形的边数是( )A .3B .4C .5D .69.如图,在△ABC 中,∠CAB =52°,∠ABC =74°,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 交于点F ,则∠AFB 的度数是( )A .126°B .120°C .116°D .110°10.如图,过正五边形ABCDE 的顶点A 作直线l ∥BE ,则∠1的度数为( )A .30°B .36°C .38°D .45°二、填空题(每题3分,共30分)11.若一个三角形的三个内角的度数之比为4:3:2,则这个三角形的最大内角为________°.12.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有_______性.(第12题图) (第14题图) (第15题图)13.已知△ABC 的两条边长分别为3和5,且第三边的长c 为整数,则c 的取值可以为________.14.如图,在Rt △ABC 中,∠ABC =90°,AB =12 cm ,BC =5 cm ,AC =13 cm ,若BD 是AC 边上的高,则BD 的长为________cm.15.如图,点D 在△ABC 的边BC 的延长线上,CE 平分∠ACD ,∠A =80°,∠B =40°,则高途课堂整理 高途课堂整理∠ACE 的大小是______°.16.如果一个多边形的内角和为其外角和的4倍,那么从这个多边形的一个顶点出发共有________条对角线.(第17题图) (第18题图) (第20题图)17.如图是一副三角尺拼成的图案,则∠CEB =________°.18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.19.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为________.20.如图,D ,E ,F 分别是△ABC 的边AB ,BC ,AC 上的中点,连接AE ,BF ,CD 交于点G ,AG:GE =2:1,△ABC 的面积为6,设△BDG 的面积为S 1,△CGF 的面积为S 2,则S 1+S 2=________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.如图,CD 是△ABC 的角平分线,DE ∥BC ,∠AED =70°,求∠EDC 的度数. (第21题图)22.如图.(1)在△ABC 中,BC 边上的高是________;高途课堂整理高途课堂整理(2)在△AEC 中,AE 边上的高是________;(3)若AB =CD =2 cm ,AE =3 cm ,求△AEC 的面积及CE的长.(第22题图)23.如图,将六边形纸片ABCDEF 沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=440°,求∠BGD的度数.(第23题图)24.在等腰三角形ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为18和15两部分,求这个等腰三角形的底边长.25.如图,在△ABC 中,∠1=100°,∠C =80°,∠2=∠3,BE 平分∠ABC.求∠4的度数.12高途课堂整理 高途课堂整理(第25题图)26.已知等腰三角形的三边长分别为a ,2a -1,5a -3,求这个等腰三角形的周长.27.已知∠MON =40°,OE 平分∠MON ,点A ,B ,C 分别是射线OM ,OE ,ON 上的动点(A ,B ,C 不与点O 重合),连接AC 交射线OE 于点D.设∠OAC =x°.(1)如图(1),若AB ∥ON ,则①∠ABO 的度数是________;②当∠BAD =∠ABD 时,x =________;当∠BAD =∠BDA 时,x =________.(2)如图(2),若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由. (第27题图)高途课堂整理 高途课堂整理参考答案一、1.B 2.C 3.D4.C 分析:∵∠CBD 是△ABC 的外角,∴∠CBD =∠C +∠A.又∵∠A =40°,∠CBD =120°,∴∠C =∠CBD -∠A =120°-40°=80°.5.B6.C 分析:八边形的内角和为(8-2)×180°=1 080°.7.C8.A 分析:设这个多边形的边数为n ,依题意有(n -2)×180°<360°,即n <4.所以n =3.9.A 分析:在△ABC 中,∠CAB =52°,∠ABC =74°,∴∠ACB =180°-∠CAB -∠ABC =180°-52°-74°=54°.在四边形EFDC 中,∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =90°,∠BEC =90°,∴∠DFE =360°-∠DCE -∠FDC -∠FEC =360°-54°-90°-90°=126°.∴∠AFB =∠DFE =126°.10.B 分析:∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°÷5=108°.∴∠AEB =(180°-108°)÷2=36°.∵l ∥BE ,∴∠1=∠AEB =36°.故选B.二、11. 80 12. 稳定13. 3,4,5,6,714. 分析:由题意可知AB·BC =BD·AC ,所以BD ===(cm).6013AB·BC AC 12×513601315.60 分析:∵∠ACD 是△ABC 的外角,∴∠ACD =∠A +∠B =80°+40°=120°.又∵CE 平分∠ACD ,∴∠ACE =∠ACD =×120°=60°.121216.7 17. 10518.360° 分析:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.高途课堂整理 高途课堂整理(第18题答图)19.120°20.2 分析:∵E 为BC 的中点,∴S △ABE =S △ACE =S △ABC =3.∵AG ∶GE =2∶1,△BGA 与△BEG 为等高三角12形,∴S △BGA ∶S △BEG =2∶1,∴S △BGA =2.又∵D 为AB 的中点,∴S △BGD =S △BGA =1.同理得S △CGF =1.∴S 1+12S 2=2.三、21.解:∵DE ∥BC ,∴∠ACB =∠AED =70°.∵CD 平分∠ACB ,∴∠BCD =∠ACB =35°.又∵DE ∥BC ,12∴∠EDC =∠BCD =35°.22.解:(1)AB ;(2)CD ;(3)∵AE =3 cm , CD =2 cm ,∴S △AEC =AE·CD =×3×2=3(cm 2).∵S △AEC =121212CE·AB =3 cm 2,AB =2 cm ,∴CE =3 cm.23.解:∵六边形ABCDEF 的内角和为180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=440°,∴∠GBC +∠C +∠CDG =720°-440°=280°,∴∠BGD =360°-(∠GBC +∠C +∠CDG)=80°.24.解:设这个等腰三角形的腰长为a ,底边长为b.∵D 为AC 的中点,∴AD =DC =AC = a.1212根据题意得或{32a =18,12a +b =15,){32a =15,12a +b =18.)解得或{a=12,b =9,){a =10,b =13.)又∵三边长为12,12,9和10,10,13均可以构成三角形.∴这个等腰三角形的底边长为9或13.高途课堂整理 高途课堂整理25.解:∵∠1=∠3+∠C ,∠1=100°,∠C =80°,∴∠3=20°.∵∠2=∠3,∴∠2=10°,∴∠12BAC =∠2+∠3=10°+20°=30°,∴∠ABC =180°-∠C -∠BAC =180°-80°-30°=70°.∵BE 平分∠ABC ,∴∠ABE =35°.∵∠4=∠2+∠ABE ,∴∠4=45°.26.解:当底边长为a 时,2a -1=5a -3,即a =,则三边长为,,,不满足三角形的三边关系,不能23231313构成三角形;当底边长为2a -1时,a =5a -3,即a =,则三边长为,,,满足三角形的三边关系.能构成三角形,34123434此时三角形的周长为++=2;123434当底边长为5a -3时,2a -1=a ,即a =1,则三边长为2,1,1,不满足三角形的三边关系,不能构成三角形.所以这个等腰三角形的周长为2.27.解:(1)①20° ②120;60(2)①当点D 在线段OB 上时,若∠BAD =∠ABD ,则x =20.若∠BAD =∠BDA ,则x =35.若∠ADB =∠ABD ,则x =50.②当点D 在射线BE 上时,因为∠ABE =110°,且三角形的内角和为180°,所以只有∠BAD =∠BDA ,此时x =125,综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x =20,35,50或125.第十二章检测卷(120分,90分钟)题 号一二三总 分得 分一、选择题(每题3分,共30分)1.下列判断不正确的是( )A .形状相同的图形是全等图形B .能够完全重合的两个三角形全等C .全等图形的形状和大小都相同D .全等三角形的对应角相等高途课堂整理高途课堂整理2.如图,△ABC≌△CDA,∠BAC=85°,∠B=65°,则∠CAD度数为( )A.85°B.65°C.40°D.30°(第2题图) (第3题图) (第4题图) (第5题图)3.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS4.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为E.若AB=10 cm,AC=6 cm,则BE的长度为( )A.10 cm B.6 cm C.4 cm D.2 cm5.如图所示,AB=CD,∠ABD=∠CDB,则图中全等三角形共有( )A.5对 B.4对 C.3对 D.2对6.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,则下列选项正确的是( )A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤57.在△ABC中,∠B=∠C,与△ABC全等的△DEF中有一个角是100°,那么在△ABC中与这100°角对应相等的角是( )A.∠A B.∠B C.∠C D.∠B或∠C8.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则不正确的是( )A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE高途课堂整理 高途课堂整理(第8题图) (第9题图) (第10题图)9.如图,直线a ,b ,c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处10.已知:如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,连接CD ,C ,D ,E 三点在同一条直线上,连接BD ,BE.以下四个结论:①BD =CE ;②∠ACE +∠DBC =45°;③BD ⊥CE ;④∠BAE +∠DAC =180°.其中结论正确的个数是( )A .1B .2C .3D .4二、填空题(每题3分,共30分)11.如图,∠1=∠2,要使△ABE ≌△ACE ,还需添加一个条件是:________.(填上你认为适当的一个条件即可)12.如图,点O 在△ABC 内,且到三边的距离相等.若∠A =60°,则∠BOC =________°.13.在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是________. (第11题图) (第12题图) (第15题图) (第16题图)14.已知等腰△ABC 的周长为18 cm ,BC =8 cm ,若△ABC ≌△A ′B ′C ′,则△A ′B ′C ′的腰长等于________.15.如图,BE ⊥AC ,垂足为D ,且AD =CD ,BD =ED.若∠ABC =54°,则∠E =________°.16.如图,△ABC ≌△DCB ,AC 与BD 相交于点E ,若∠A =∠D =80°,∠ABC =60°,则∠BEC 等于________.17.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中共有________对全等三角形.高途课堂整理 高途课堂整理18.如图,已知P(3,3),点B ,A 分别在x 轴正半轴和y 轴正半轴上,∠APB =90°,则OA +OB =________. (第17题图) (第18题图) (第19题图) (第20题图)19.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是________.20.如图,已知点P 到BE ,BD ,AC 的距离恰好相等,则点P 的位置:①在∠DBC 的平分线上;②在∠DAC 的平分线上;③在∠ECA 的平分线上;④恰是∠DBC ,∠DAC ,∠ECA 的平分线的交点,上述结论中,正确的有________.(填序号)三、解答题(21,22题每题7分,23,24题每题8分,25~27题每题10分,共60分)21.如图,按下列要求作图:(1)作出△ABC 的角平分线CD ;(2)作出△ABC 的中线BE ;(3)作出△ABC 的高AF.(不写作法) (第21题图)高途课堂整理高途课堂整理22.如图,已知△EFG ≌△NMH ,∠F 与∠M 是对应角.(1)写出所有相等的线段与相等的角;(2)若EF =2.1 cm ,FH =1.1 cm ,HM =3.3 cm ,求MN 和HG的长度.(第22题图)23.如图,AD ⊥AE ,AB ⊥AC ,AD =AE ,AB =AC.求证:△ABD ≌△ACE. (第23题图)24.如图,AC ∥BE ,点D 在BC 上,AB =DE ,∠ABE =∠CDE.求证:DC =BE -AC.高途课堂整理高途课堂整理(第24题图)25.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 交AB 于点E ,点F 在AC 上,BD =DF.求证:(1)CF =EB ;(2)AB =AF +2EB.(第25题图)26.如图,A ,B 两建筑物位于河的两岸,要测得它们之间的距离,可以从点B 出发在河岸上画一条射线BF ,在BF 上截取BC =CD ,过D 作DE ∥AB ,使E ,C ,A 在同一直线上,则DE 的长就是点A ,B 之间的距离,请你说明道理. (第26题图)高途课堂整理 高途课堂整理27.如图(1),在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF ,连接CF.(1)如果AB =AC ,∠BAC =90°,①当点D 在线段BC 上时(与点B 不重合),如图(2),线段CF ,BD 所在直线的位置关系为______,线段CF ,BD 的数量关系为________;②当点D 在线段BC 的延长线上时,如图(3),①中的结论是否仍然成立,并说明理由;(2)如果AB ≠AC ,∠BAC 是锐角,点D 在线段BC 上,当∠ACB 满足什么条件时,CF ⊥BC(点C 、F 不重合),并说明理由.(第27题图)参考答案一、1.A 2.D 3.D 4.C 5.C 6.B高途课堂整理高途课堂整理7.A 8.D 9.D 分析:如图,在△ABC 内部,找一点到三边距离相等,根据到角的两边距离相等的点在角的平分线上,可知,此点在各内角的平分线上,作∠ABC ,∠BCA 的平分线,交于点O 1,由角平分线的性质可知,O 1到AB ,BC ,AC 的距离相等.同理,作∠ACD ,∠CAE 的平分线,交于点O 2,则O 2到AC ,BC ,AB 的距离相等,同样作法得到点O 3,O 4.故可供选择的地址有四处.故选D.(第9题答图)10.D二、11.∠B =∠C(答案不唯一)12.120 13. 4∶3 14. 8 cm 或5 cm 15.27 16. 100°17.3 分析:因为△OPE ≌△OPF ,△OPA ≌△OPB ,△AEP ≌△BFP ,所以共有3对全等三角形.18.6 分析:过点P 作PC ⊥OB 于C ,PD ⊥OA 于D ,则PD =PC =DO =OC =3,可证△APD ≌△BPC ,∴DA =CB ,∴OA +OB =OA +OC +CB =OA +OC +DA =OC +OD =6.19.50 分析:由题意易知,△AFE ≌△BGA ,△BGC ≌△CHD.∴FA =BG =3,AG =EF =6,CG =HD =4,CH =BG =3.∴S =S 梯形EFHD -S △EFA -S △AGB -S △BGC -S △CHD =(4+6)×(3+6+4+3)-×3×6×2-×3×4×2=80-18-12=50.12121220.①②③④三、21.解:(1)角平分线CD 如图①.(2)中线BE 如图②.(3)高AF 如图③.高途课堂整理 高途课堂整理(第21题答图)22.解:(1)EF =MN ,EG =HN ,FG =MH ,FH =GM ,∠F =∠M ,∠E =∠N ,∠EGF =∠MHN ,∠FHN =∠EGM.(2)∵△EFG ≌△NMH ,∴MN =EF =2.1 cm ,GF =HM =3.3 cm ,∵FH =1.1 cm ,∴HG =GF -FH =3.3-1.1=2.2 (cm).23.证明:∵AD ⊥AE ,AB ⊥AC ,∴∠CAB =∠DAE =90°.∴∠CAB +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE.在△ABD 和△ACE 中,{AB =AC ,∠BAD =∠CAE ,AD =AE ,)∴△ABD ≌△ACE.24.证明:∵AC ∥BE ,∴∠DBE =∠C.∵∠CDE =∠DBE +∠E ,∠ABE =∠ABC +∠DBE ,∠ABE =∠CDE ,∴∠E =∠ABC.在△ABC 与△DEB 中,∴△ABC ≌{∠C =∠DBE ,∠ABC =∠E ,AB =DE ,)△DEB(AAS).∴BC =BE ,AC =BD.∴DC =BC -BD =BE -AC.25.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC.又∵BD =DF ,∴Rt △CDF ≌Rt △EDB(HL).∴CF =EB.高途课堂整理 高途课堂整理(2)由(1)可知DE =DC ,又∵AD =AD ,∴Rt △ADC ≌Rt △ADE.∴AC =AE.∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB.点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离=点D 到AC 的距离,即CD =DE.再根据Rt △CDF ≌Rt △EDB ,得CF =EB.(2)利用角平分线的性质证明Rt △ADC ≌Rt △ADE ,∴AC =AE ,再将线段AB 进行转化.26.解:∵DE ∥AB ,∴∠A =∠E.∵E ,C ,A 在同一直线上,B ,C ,D 在同一直线上,∴∠ACB =∠ECD.在△ABC 与△EDC 中,{∠A =∠E ,∠ACB =∠ECD ,BC =CD ,)∴△ABC ≌△EDC(AAS).∴AB =DE.27.解:(1)①CF ⊥BD ;CF =BD②当点D 在线段BC 的延长线上时,①中的结论仍然成立.理由:由正方形ADEF 得AD =AF ,∠DAF =90°.∵∠BAC =90°,∴∠DAF =∠BAC.∴∠DAB =∠FAC.又∵AB =AC ,∴△DAB ≌△FAC.∴CF =BD ,∠ACF =∠ABD.∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形.∴∠ABC =∠ACB =45°.∴∠ACF =45°.∴∠BCF =∠ACB +∠ACF =90°.即CF ⊥BD.高途课堂整理 高途课堂整理(第27题答图)(2)当∠ACB =45°时,CF ⊥BC(如图).理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°.∵∠ACB =45°,∠AGC =90°-∠ACB ,∴∠AGC =90°-45°=45°,∴∠ACB =∠AGC =45°,∴△AGC 是等腰直角三角形,∴AC =AG.又∵∠DAG =∠FAC(同角的余角相等),AD =AF ,∴△GAD ≌△CAF ,∴∠ACF =∠AGC =45°,∴∠BCF =∠ACB +∠ACF =45°+45°=90°,即CF ⊥BC.第十三章检测卷(120分,90分钟)题 号一二三总 分得 分一、选择题(每题3分,共30分)1.下列图标是轴对称图形的是( )(第1题图)A .(1)(4) B .(2)(4) C .(2)(3) D .(1)(2)2.下列图形的对称轴最多的是( )A .正方形B .等边三角形C .等腰三角形D .线段3.和点P(-3,2)关于y 轴对称的点是( )A .(3,2)B .(-3,2)C .(3,-2)D .(-3,-2)4.如图,直线m 是多边形ABCDE 的对称轴,其中∠A =120°,∠B =110°,那么∠BCD 的度数为( )高途课堂整理高途课堂整理(第4题图)A .50°B .60°C .70°D .80°5.在平面直角坐标系xOy 中,已知点A(2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 有( )A .1个B .2个C .3个D .4个6.已知∠AOB =30°,点P 在∠AOB 的内部,点P 1与点P 关于OB 对称,点P 2与点P 关于OA 对称,则以点P 1,O ,P 2为顶点的三角形是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形(第7题图) (第8题图) (第10题图)7.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD 于点F ,连接CF.若∠A =60°,∠ABD =24°,则∠ACF 的度数为( )A .48°B .36°C .30°D .24°8.如图,先将正方形纸片对折然后展开,折痕为MN ,再把点B 折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下得到△ADH ,则下列选项正确的是( )A .AH =DH ≠ADB .AH =DH =ADC .AH =AD ≠DH D .AH ≠DH ≠AD9.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为( )A .30°或60°B .75°C .30°D .75°或15°10.如图,△ABC 是等腰三角形(AB =AC ≠BC),在△ABC 所在平面内有一点P ,且使得△ABP ,△ACP ,△BCP 均为等腰三角形,则符合条件的点P 共有( )高途课堂整理 高途课堂整理A .1个B .4个C .5个D .6个二、填空题(每题3分,共30分)11.已知点A(a ,-2)和B(3,2),当满足条件________时,点A 和点B 关于x 轴对称.12.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,若AB =6,CD =4,则△ABC 的周长是________.13.已知等腰三角形的一个内角是80°,则它的底角是________.14.如图,在△ABC 中,若BC =6 cm ,AC =4 cm ,AB 边的垂直平分线交AB 于点E ,交BC 于点D ,则△ADC 的周长是________.(第12题图) (第14题图) (第15题图) (第16题图)15.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB ,交BC 于点D ,若CD =1,则BD =________.16.如图,在△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,DE ∥BC ,则图中等腰三角形有________个.17.如图,点E 是正方形ABCD 的边DC 上一点,在AC 上找一点P ,使PD +PE 的值最小,则这个最小值就是线段________的长度.18.如图,直线l 是四边形ABCD 的对称轴,若AB =CD ,有下面的结论:①AB ∥CD ;②AC ⊥BD ;③AO =OC ;④AB ⊥BC ,其中正确的有________(填序号即可). (第17题图) (第18题图) (第19题图) (第20题图)19.如图,两块相同的三角尺完全重合在一起,∠A =30°,AC =10,把上面一块绕直角顶点B 逆时针旋转到△A ′BC ′的位置,点C ′在AC 上,A ′C ′与AB 相交于点D ,则C ′D =________.20.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图:以A 为圆心,1为半径向右画弧交高途课堂整理 高途课堂整理OC 于点A 1,得第1条线段AA 1;再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…;这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n =________.三、解答题(21,22,23题每题6分,24题8分,25题10分,26,27题每题12分,共60分)21.如图,已知在△ABC 中,D 为BC 上的一点,DA 平分∠EDC ,且∠E =∠B ,DE =DC ,求证:AB =AC.(第21题图)22.如图,校园内有两条路OA ,OB ,在交叉口附近有两块宣传牌C ,D ,学校准备在这里安装一盏路灯,要求灯柱的位置P 离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮忙画出灯柱的位置P ,并说明理由. (第22题图)23.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC 关于x 轴对称的△A 1B 1C 1;(2)写出点A 1,B 1,C 1的坐标;(3)△A 1B 1C 1的面积S △A1B1C1=________.高途课堂整理高途课堂整理(第23题图)24.如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC.(1)求∠ECD 的度数;(2)若CE =5,求BC 的长.(第24题图)高途课堂整理高途课堂整理25.如图,过等边△ABC 的顶点A ,B ,C 依次作AB ,BC ,CA 的垂线MG ,MN ,NG ,三条垂线围成△MNG.求证:△MNG是等边三角形.(第25题图)26.如图,在△ABC 中,∠ACB =90°,以AC 为边在△ABC 外作等边三角形ACD ,过点D 作AC 的垂线,垂足为F ,延长DF 交AB 于点E ,连接CE.(1)求证:AE =CE =BE ;(2)若AB =15 cm ,P 是直线DE 上的一点.则当P 在何处时,PB +PC 最小?并求出此时PB +PC 的值.(第26题图)27.已知:在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)直线BF 垂直于CE 交CE 于点F ,交CD 于点G(如图①),求证:AE =CG ;(2)直线AH 垂直于CE ,垂足为H ,交CD 的延长线于点M(如图②),找出图中与BE 相等的线段,并说明理高途课堂整理高途课堂整理由.(第27题图)参考答案一、1.D 2.A 3.A 4.D5.D 分析:本题利用分类讨论思想.当OA 为等腰三角形的腰时,以O 为圆心,OA 长为半径的圆弧与y 轴有两个交点,以A 为圆心,OA 长为半径的圆弧与y 轴除点O 外还有一个交点;当OA 为等腰三角形的底时,作线段OA 的垂直平分线,与y 轴有一个交点.∴符合条件的点一共有4个.故选D.6.D7.A8.B9.D 10.D二、11.a =3 12.20 13.50°或80° 14. 10 cm 15. 2 16. 5 17.BE 18.①②③19. 分析:∵∠A =30°,AC =10,∠ABC =90°,∴∠C =60°,BC ′=BC =AC =5.∴△BCC ′是等边5212三角形,∴CC ′=5,∴AC ′=5.∵∠A ′C ′B =∠C ′BC =60°,∴C ′D ∥BC.∴∠ABC =∠ADC ′=90°,∴C ′D =AC ′=.125220. 9 分析:由题意可知:AO =A 1A ,A 1A =A 2A 1,…,则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A ,….∵∠BOC =9°,∴∠A 1AB =18°,∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,…,∴9°(n +1)≤90°,解得n ≤9.故答案为9.三、21.证明:∵DA 平分∠EDC ,∴∠ADE =∠ADC.又∵DE =DC ,AD =AD ,∴△AED ≌△ACD(SAS).∴∠E =∠C.又∵∠E =∠B ,∴∠B =∠C.∴AB =AC.22.解:如图,连接CD ,灯柱的位置P 在∠AOB 的平分线OE 和线段CD 的垂直平分线的交点处.高途课堂整理 高途课堂整理理由如下:∵点P 在∠AOB 的平分线上,∴点P 到∠AOB 的两边OA ,OB 的距离一样远.∵点P 在线段CD 的垂直平分线上,∴点P 到点C 和点D 的距离相等.∴点P符合题意.(第22题答图)23.解:(1)如图.(第23题答图)(2)A 1(0,-4),B 1(-2,-2),C 1(3,0).(3)724.解:(1)∵DE 垂直平分AC ,∴AE =CE ,∴∠ECD =∠A =36°.(2)∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =72°.∵∠BEC =∠A +∠ACE =72°,∴∠B =∠BEC ,∴BC =CE =5.25.证明:∵△ABC 是等边三角形,∴∠BAC =∠ABC =∠BCA =60°.又∵AB ⊥MG ,∴∠BAG =90°.高途课堂整理 高途课堂整理∴∠CAG =30°.∵AC ⊥NG ,∴∠ACG =90°.∴∠G =60°.同理,∠M =60°,∠N =60°.∴△MNG 是等边三角形.26.(1)证明:∵△ACD 为等边三角形,DE 垂直于AC ,∴DE 垂直平分AC ,∴AE =CE.∴∠AEF =∠FEC.∵∠ACB =∠AFE =90°,∴DE ∥BC.∴∠AEF =∠EBC ,∠FEC =∠ECB.∴∠ECB =∠EBC.∴CE =BE.∴AE =CE =BE.(2)解:连接PA ,PC.∵DE 垂直平分AC ,点P 在DE 上,∴PC =PA.∵两点之间线段最短,∴当P 与E 重合时PA +PB 最小,为15 cm ,即PB +PC 最小为15 cm.27.(1)证明:∵点D 是AB 的中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,∠CAD =∠CBD =45°,∴∠CAE =∠BCG.又BF ⊥CE ,∴∠CBG +∠BCF =90°,又∵∠ACE +∠BCF =90°,∴∠ACE =∠CBG ,∴△AEC ≌△CGB ,∴AE =CG.(2)解:BE =CM.理由:∵CH ⊥HM ,CD ⊥ED ,∴∠CMA +∠MCH =90°,∠BEC +∠MCH =90°,∴∠CMA =∠BEC.又∵CA =BC ,∠ACM =∠CBE =45°,∴△BCE ≌△CAM ,∴BE =CM.期中检测卷时间:120分钟 满分:120分题号一二三总分得分一、选择题(每小题3分,共30分)1.等腰三角形的两边长分别为4cm 和8cm ,则它的周长为( )高途课堂整理 高途课堂整理A .16cmB .17cmC .20cmD .16cm 或20cm2.下列图形中不是轴对称图形的是()3.如图,在正方形ABCD 中,连接BD ,点O 是BD 的中点,若M ,N 是边AD 上的两点,连接MO ,NO ,并分别延长交边BC 于两点M ′,N ′,则图中的全等三角形共有( )(第3题图)A .2对B .3对C .4对D .5对4.正n 边形的每个内角的大小都为108°,则n 的值为( )A .5B .6C .7D .85.在△ABC 中,∠ABC 与∠ACB 的平分线相交于I ,且∠BIC =130°,则∠A 的度数是( )A .40°B .50°C .65°D .80°6.如图,AD 是△ABC 的角平分线,且AB ∶AC =3∶2,则△ABD 与△ACD 的面积之比为( )A .3∶2B .9∶4C .2∶3D .4∶9 (第6题图 ) (第7题图)7.如图,在Rt △ABC 中,∠C =90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E.若BC =3,则DE 的长为( )A .1B .2C .3D .48.如图,在△ABC 中,AB =AC ,∠A =120°,BC =6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 高途课堂整理 高途课堂整理的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cm(第8题图) (第9题图) (第10题图)9.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于( )A .90°B .120°C .150°D .180°10.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF.给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AC =3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个二、填空题(每小题3分,共24分)11.点A(3,-2)关于x 轴对称的点的坐标是________.12.已知三角形两边长分别是3cm ,5cm ,设第三边的长为x cm ,则x 的取值范围是________.13.如图是某零件的平面图,其中∠B =∠C =30°,∠A =40°,则∠ADC 的度数为________.(第13题图) (第14题图) (第15题图)14. 如图,△ABC ≌△DFE ,CE =6,FC =2,则BC =________.15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为________.16.如图,已知正方形ABCD 中,CM =CD ,MN ⊥AC ,连接CN ,则∠MNC =________.高途课堂整理 高途课堂整理(第16题图)(第17题图)(第18题图)17.如图是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,设较长直角边的中点为M,绕点M转动△ABC,使其直角顶点C恰好落在三角板A1B1C1的斜边A1B1上,当∠A=30°,AC=10时,两直角顶点C,C1的距离是________.18.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB =6,AC=3,则BE=________.三、解答题(共66分)19.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.(第19题图)20.(8分)解答下面2个小题:(1)已知等腰三角形的底角是顶角的2倍,求这个三角形各个内角的度数;(2)已知等腰三角形的周长是12,一边长为5,求它的另外两边长.高途课堂整理 高途课堂整理21.(8分)图①、图②是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,A 、B 、C 三点均在小正方形的顶点上.(第21题图)(1)在图①中画出凸四边形ABCD ,点D 在小正方形的顶点上,且使四边形ABCD 是只有一条对称轴的轴对称图形;(2)在图②中画出凸四边形ABCE ,点E 在小正方形的顶点上,且使四边形ABCE 是有四条对称轴的轴对称图形.22.(10分)如图,在△ABC 中,∠A =40°,∠B =72°,CD 是AB 边上的高,CE 是∠ACB 的平分线,DF ⊥CE 于F ,求∠CDF 的度数. (第22题图)高途课堂整理 高途课堂整理23.(10分)已知等腰三角形一腰上的中线将三角形的周长分为9 cm 和15 cm 两部分,求这个等腰三角形的底边长和腰长.24.(10分)如图,在△ABC 中,已知点D 在线段AB 的反向延长线上,过AC 的中点F 作线段GE 交∠DAC 的平分线于E ,交BC 于G ,且AE ∥BC.(1)求证:△ABC 是等腰三角形.(2)若AE =8,AB =10,GC =2BG ,求△ABC 的周长. (第24题图)25.(12分)如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CF ,垂足为F.(1)若AC =10,求四边形ABCD 的面积.高途课堂整理 高途课堂整理(2)求证:CE=2AF.(第25题图)高途课堂整理 高途课堂整理参考答案1.C 2.C 3.C 4.A 5.D 6.A 7.A 8.C9.D 解析:∵图中有三个等边三角形,∴∠1=180°-60°-∠ABC =120°-∠ABC ,∠2=180°-60°-∠ACB =120°-∠ACB ,∠3=180°-60°-∠BAC =120°-∠BAC.∵∠ABC +∠ACB +∠BAC =180°,∴∠1+∠2+∠3=360°-180°=180°.故选D.(第9题答图)10.A 解析:∵BF ∥AC ,∴∠C =∠CBF.∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∴AB =AC.∵AD 是△ABC 的角平分线,∴BD =CD ,AD ⊥BC ,故②③正确;在△CDE 与△BDF 中,∴{∠C =∠CBF ,CD =BD ,∠EDC =∠FDB ,)△CDE ≌△BDF(ASA),∴DE =DF ,CE =BF ,故①正确;∵AE =2BF ,∴AC =3BF ,故④正确.故选A.11.(3,2) 12. 2<x <8 13. 100°14.8 15. 108° 16. 67.5°17.5 解析:如图,连接CC 1.∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC =A 1C 1,∴CM =A 1M =C 1M =AC =5,∴∠A 1CM =∠A 1=30°,∴∠CMC 1=60°,∴△CMC 1为等边三角12形,∴CC 1=CM =5.高途课堂整理 高途课堂整理(第17题答图)18.1.5 解析:如图,连接CD ,BD.∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE ,∠F =∠DEA =∠DEB =90°.又∵AD =AD ,∴Rt △ADF ≌Rt △ADE(HL),∴AE =AF.∵DG 是BC 的垂直平分线,∴CD =BD.在Rt △CDF 和Rt △BDE 中,∴Rt △CDF ≌Rt △BDE(HL),∴BE =CF ,∴AB =AE +BE =AF +BE =AC {CD=BD ,DF =DE ,)+CF +BE =AC +2BE.∵AB =6,AC =3,∴BE = 1.5.(第18题答图)19.证明:∵AB ∥CD ,∴∠B =∠C.(2分)在△ABE 和△DCF 中,∴△ABE ≌△DCF(AAS),(6分)∴AB =CD.(8分){∠A =∠D ,∠B =∠C ,AE =DF ,)20.解:(1)设等腰三角形的顶角为x °,则底角为2x°.由题意得x +2x +2x =180,解得x =36,∴这个三角形三个内角的度数分别为36°、72°、72°.(4分)(2)∵等腰三角形的一边长为5,周长为12,∴当5为底边长时,其他两边长都为3.5,5,3.5,3.5可以构成三角形;(6分)当5为腰长时,其他两边长为5和2,5,5,2可以构成三角形.(7分)∴另外两边长是3.5,3.5或5,2.(8分)21.解:(1)图①中两个图形画出一个即可.(4分)(2)如图②所示.(8分)(第21题答图)22.解:∵∠A =40°,∠B =72°,∴∠ACB =180°-40°-72°=68°.(2分)∵CE 是∠ACB 的平分高途课堂整理 高途课堂整理线,∴∠BCE =∠ACB =×68°=34°.(4分)∵CD ⊥AB ,∴∠CDB =90°,∴∠BCD =180°-90°-72°1212=18°,∴∠DCE =∠BCE -∠BCD =34°-18°=16°.(8分)∵DF ⊥CE ,∴∠DFC =90°,∴∠CDF =180°-90°-16°=74°.(10分)23.解:如图,△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线,则有AB +AD =9(cm )或AB +AD =15(cm ).(2分)设△ABC 的腰长为x cm ,分下面两种情况:(1)x +x =9,∴x =6.∵三角形的周长为9+1215=24(cm),∴三边长分别为6 cm ,6 cm ,12 cm.6+6=12,不符合三角形的三边关系,舍去.(6分)(第23题答图)(2)x +x =15,∴x =10.∵三角形的周长为24 cm ,∴三边长分别为10 cm ,10 cm ,4 cm ,符合三边关12系.(9分)综上所述,这个等腰三角形的底边长为4 cm ,腰长为10 cm.(10分)24.(1)证明:∵AE ∥BC ,∴∠B =∠DAE ,∠C =∠CAE.(2分)∵AE 平分∠DAC ,∴∠DAE =∠CAE.(3分)∴∠B =∠C.∴△ABC 是等腰三角形.(4分)(2)解:∵点F 是AC 的中点,∴AF =CF.(5分)在△AEF 和△CGF 中,∴△AEF ≌△{∠FAE =∠C ,AF =FC ,∠AFE =∠CFG ,)CGF(ASA).∴AE =GC =8.∵GC =2BG ,∴BG =4,∴BC =12.(9分)∴△ABC 的周长为AB +AC +BC =10+10+12=32.(10分)25.(1)解:∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =∠EAD +∠CAD ,∴∠BAC =∠EAD.(2分)在△ABC和△ADE 中,∴△ABC ≌△ADE(SAS).∴S △ABC =S △ADE ,∴S 四边形ABCD =S △ABC +S △ACD =S △{AB =AD ,∠BAC =∠DAE ,AC =AE ,)ADE +S △ACD =S △ACE =×102=50.(6分)12(2)证明:∵△ACE 是等腰直角三角形,∴∠ACE =∠AEC =45°.由△ABC ≌△ADE 得∠ACB =∠AEC =45°,∴∠ACB =∠ACE ,∴AC 平分∠ECF.(8分)过点A 作AG ⊥CG ,垂足为点G ,∵AC 平分∠ECF ,AF ⊥CB ,∴AF =AG.又∵AC =AE ,∴∠CAG =∠EAG =45°,∴∠CAG =∠EAG =∠ACE =∠AEC ,∴CG =AG =GE ,(11分)∴CE =2AG =2AF.(12分)高途课堂整理 高途课堂整理(第25题答图)第十四章检测卷(120分,90分钟)题 号一二三总 分得 分一、选择题(每题3分,共30分)1.计算(-a 3)2的结果是( )A .a 5B .-a 5C .a 6D .-a 62.下列运算正确的是( )A .x 2+x 2=x 4B .(a -b)2=a 2-b 2C .(-a 2)3=-a 6D .3a 2·2a 3=6a 63.下列从左边到右边的变形,是因式分解的是( )A .(3-x)(3+x)=9-x 2B .(y +1)(y -3)=-(3-y)(y +1)C .4yz -2y 2z +z =2y(2z -yz)+zD .-8x 2+8x -2=-2(2x -1)24.多项式a(x 2-2x +1)与多项式(x -1)(x +1)的公因式是( )A .x -1B .x +1C .x 2+1D .x 25.下列计算正确的是( )A .-6x 2y 3÷2xy 3=3xB .(-xy 2)2÷(-x 2y)=-y 3C .(-2x 2y 2)3÷(-xy)3=-2x 3y 3D .-(-a 3b 2)÷(-a 2b 2)=a 46.计算××(-1)2 019的结果是( )(23)2 017 (32)2 018 高途课堂整理 高途课堂整理A. B. C .- D .-233223327.若a m =2,a n =3,a p =5,则a 2m +n -p 的值是( )A .2.4B .2C .1D .08.若9x 2+kxy +16y 2是完全平方式,则k 的值为( )A .12B .24C .±12D .±249.把多项式-3x 2n -6x n 分解因式,结果为( )A .-3x n (x n +2)B .-3(x 2n +2x n )C .-3x n (x 2+2)D .3(-x 2n -2x n )10.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪开后拼成一个长方形,上述操作能验证的等式是( ) (第10题图)A .(a +b)(a -b)=a 2-b 2B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .a 2+ab =a(a +b)二、填空题(每题3分,共30分)11.(1)计算:(2a)3·(-3a 2)=____________;(2)若a m =2,a n =3,则a m +n =__________,a m -n =__________.12.已知x +y =5,x -y =1,则式子x 2-y 2的值是________.13.若(a 2-1)0=1,则a 的取值范围是________.14.计算:2 017×2 019-2 0182=__________.15.若|a +2|+a 2-4ab +4b 2=0,则a =________,b =________.高途课堂整理 高途课堂整理16.若一个正方形的面积为a 2+a +,则此正方形的周长为________.1417.分解因式:m 3n -4mn =__________.18.计算:(1+a)(1-2a)+a(a -2)=________.19.将4个数a ,b , c ,d 排成2行、2列,两边各加一条竖直线记成,定义=ad -bc ,上述|a b c d ||a b c d |记号就叫做2阶行列式.若=8,则x =________.|x +1 1-x 1-x x +1|20.根据(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1,…的规律,可以得出22018+22 017+22 016+…+23+22+2+1的末位数字是________.三、解答题(21,22,24,25题每题6分,23,26题每题8分,27,28题每题10分,共60分)21.计算.(1)5a 2b÷·(2ab 2)2; (2)(a -2b -3c)(a -2b +3c).(-13ab )22.先化简,再求值:(1)已知x =-2,求(x +5)(x -1)+(x -2)2的值.(2)已知x(x -1)-(x 2-y)=-3,求x 2+y 2-2xy 的值.23.把下列各式分解因式:(1)6ab 3-24a 3b ; (2)x 4-8x 2+16;高途课堂整理 高途课堂整理。