2020年普通高等学校招生全国统一考试文科数学(全国III卷)(含答案)
- 格式:docx
- 大小:5.08 MB
- 文档页数:14
2020年普通高等学校招生全国统一考试文科数学(III 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(集合)已知集合{}1235711=,,,,,A ,{}315|=<<B x x ,则A ∩B 中元素的个数为 A .2B .3C .4D .5【解析】∵{5,7,11}=A B ,∴A ∩B 中元素的个数为3. 【答案】B2.(复数)若)(11+=-z i i ,则z = A .1–iB .1+iC .–iD .i【解析】∵)(11+=-z i i ,∴1212--===-+i iz i i ,∴=z i . 【答案】D3.(概率统计)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .10【解析】原数据的方差20.01=s ,由方差的性质可知,新数据的方差为21001000.011=⨯=s .【答案】C4.(函数)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()1--=+t I K t e ,其中K 为最大确诊病例数.当*()0.95=I t K时,标志着已初步遏制疫情,则*t 约为(ln19≈3) A .60B .63C .66D .69【解析】**0.23(53)()0.951--==+t K I t K e,化简得*0.23(53)19-=te ,两边取对数得,*0.23(53)In19-=t ,解得*In1935353660.230.23=+=+≈t . 【答案】C5.(三角函数)已知πsin sin 13θθ++=(),则πsin =6θ+() A .12B .33C .23D .22【解析】∵π13sin sin cos 322θθθ+=+(), ∴π3331sin sin sin 3cos 1322θθθθθθ⎫++==+=+=⎪⎪⎭(), 31πcos sin 26θθθ+=+(), π316θ+=(),故π3sin 63θ+==().【答案】B6.(解析几何)在平面内,A ,B 是两个定点,C 是动点,若1⋅=AC BC ,则点C 的轨迹为 A .圆B .椭圆C .抛物线D .直线【解析】以AB 所在直线为x 轴,中垂线为y 轴,建立平面直角坐标系,设(,0)-A a ,(,0)B a ,(,)C x y ,则(,)=+AC x a y ,(,)=-BC x a y ,2221⋅=-+=AC BC x a y ,即2221+=+x y a ,故点C 的轨迹为圆.【答案】A7.(解析几何)设O 为坐标原点,直线x =2与抛物线C :()220=>y px p 交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)【解析】解法一:如图A7所示,由题意可知,(2,2)D p ,(2,2)-E p ,(2,2)=OD p ,(2,2)=-OE p ,⊥OD ⊥OE ,⊥⊥OD OE , 即22220⨯-=p p ,解得1=p ,⊥C 的焦点坐标为1(,0)2. 解法二:4=DE p 44==+OD OE p⊥OD ⊥OE ,⊥222+=OD OE DE ,即2(44)16+=p p ,解得1=p ,⊥C 的焦点坐标为1(,0)2.图A7【答案】B8.(解析几何)点(0)1-,到直线()1=+y k x 距离的最大值为 A .1B .2C .3D .2【解析】解法一:点(0)1-,到直线()1=+y k x 的距离211+=+k d k ,则有222222(1)122=12111+++==+≤+++k k k kd k k k ,故2≤d . 解法二:已知点()01-,A ,直线()1=+yk x 过定点()10-,B ,由几何性质可知,当直线()1=+y k x 垂直直线AB 时,点()01-,A 到直线()1=+y k x 距离最大,最大值为线段AB 的长度,即max 2=d 【答案】B9.(立体几何)如图为某几何体的三视图,则该几何体的表面积是A .642+B .442+C .623+D .423+【解析】由三视图可知,该几何体为一个四面体,如图A8所示. 其表面积(2332226234=⨯+⨯=+S图A9【答案】C10.(函数)设3log 2a =,5log 3b =,23c =,则 A .a <c <bB .a <b <cC .b <c <aD .c <a <b【解析】∵233332log 3=log 93==c ,33log 2log 8==a a <c .∵233552log 5log 253===c 355log 3log 27==b c <b .故a <c <b.【答案】A11.(三角函数)在ABC ∆中,2cos 3C =,4=AC ,3=BC ,则tan B = A 5B .25C .45D .85【解析】解法一:由余弦定理得,2222cos 9=+-⋅⋅=AB AC BC AC BC C ,即3=AB ,∴22299161cos 22339+-+-===⋅⨯⨯AB BC AC B AB BC , ∵(0,π)∈B ,∴245sin 1cos =-=B B ,sin tan 45cos ==BB B. 解法二:3=AB ,所以△ABC 是以B 为顶角的等腰三角形.过B 作BD ⊥AC ,易得tan 25=B 22tan2tan 451tan 2==-BB B . 【答案】C12.(三角函数)已知函数1()sin sin f x x x=+,则 A .f (x )的最小值为2B .f (x )的图像关于y 轴对称C .f (x )的图像关于直线π=x 对称D .f (x )的图像关于直线π2=x 对称 【解析】A :1sin 1(sin 0)-≤≤≠x x ,当1sin 0-≤<x ,()0<f x ,故A 错误.B :1()sin ()sin -=--=-f x x f x x,f (x )为奇函数,故B 错误. C :1(2π)sin ()()sin -=--=-≠f x x f x f x x,故C 错误.D :11(π)sin(π)sin ()sin(π)sin -=-+=+=-f x x x f x x x,故D 正确.【答案】D二、填空题:本题共4小题,每小题5分,共20分。
2020年高考新课标Ⅲ卷文数试题参考解析注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A ){48},(B ){026},, (C ){02610},,, (D ){0246810},,,,, 【答案】C 【解析】试题分析:依据补集的定义,从集合}10,8,6,4,2,0{=A 中去掉集合}8,4{=B ,剩下的四个元素为10,6,2,0,故}10,6,2,0{=B C A ,故应选答案C 。
(2)若43i z =+,则||zz = (A )1 (B )1-(C )43+i 55 (D )43i 55- 【答案】D 【解析】试题分析:因i z 34+=,则其共轭复数为i z 34-=,其模为534|34|||22=+=+=i z ,故i z z 5354||-=,应选答案D 。
(3)已知向量BA →=(12,BC →=12),则∠ABC =(A )30° (B )45° (C )60° (D )120°【答案】A(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个【答案】D【解析】试题分析:从题设中提供的信息及图中标注的数据可以看出:深色的图案是一年十二个月中各月份的平均最低气温,稍微浅一点颜色的图案是一年十二个月中中各月份的平均最高气温,故结合所提供的四个选项,0只有7、8两个月份,故应选答案可以确定D是不正确的,因为从图中可以看出:平均最高气温高于20CD。
姓名,年级:时间:绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上.写在本试卷上无效。
3。
考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1已知集合A ={1,2,3,5,7,11},B ={x|3〈x<15},则A ∩B 中元素的个数为 A.2 B.3 C.4 D 。
5 2.若(1)1z i i +=-,则z =A.1-i B 。
1+i C 。
-i D.i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为A 。
0.01 B.0。
l C 。
1 D.104.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:()0.23(53)1t K I t e --=+,其中K 为最大确诊病例数。
当I(t *)=0。
95K 时,标志着已初步遏制疫情,则t *约为(ln19≈3)A 。
60 B.63 C 。
66 D.69 5。
已知sinθ+sin (θ+3π)=1,则sin (θ+6π)= A.12B 。
3 C 。
23 D.26.在平面内,A ,B 是两个定点,C 是动点,若AC BC ⋅=1,则C 的轨迹为 A.圆 B 。
椭圆 C 。
抛物线 D.直线7.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p 〉0)交于D ,E 两点,若OD ⊥OE,则C 的焦点坐标为A 。
(14,0) B.(12,0) C.(1,0) D 。
绝密★启用前试题类型:新课标in 2018年普通高等学校招生全国统一考试文科数学参考答案注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦下净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {xlx-l>0}, B = {0, 1, 2},则AC|B = ( )A. {0}B. {1}C. {1, 2}D. {0, 1, 2}【答案】c【解析】A:x>l , W{1, 2}【考点】交集2- (1 + /)(2-/)=()A. -3-iB. -3 + /C. 3-iD. 3 + j【答案】D【解析】(l + 0(2-f) = 2+r-i2=3 + <【考点】复数的运算3•中国古建筑借助樺卯将木构件连接起来,构件的凸出部分叫做樺头,凹进部分叫做卯眼,图中的木构件右边的小长方体是樺头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )俯视方向【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B答案能看见小长方体的上面和左面,C答案至少能看见小长方体的左面和前面,D答案本身就不对”外围轮廊不可能有缺失【考点】三视图4.若sina = |»则cosZz = ( )A. |B. 1C. -1D.9 9 9 9【答案】B7【解析】cos 2a = 1 -2sin‘ a =-【考点】余弦的二倍角公式5•某群体中的成员只用现金支付的概率为0.45,既用现金也用非现金支付的槪率为0.15,则不用现金支付的概率为( )A. 0・3 B・ 04 C・ 06 D. 0・7【答案】B【解析】1一0・45-0・15 = 0・4【考点】互斥事件的概率6•函数f (x)= tan\的最小正周期为()l + tan~x【答案】C【考点】切化弦、二倍角、三角函数周期7.下列函数中,其图像与函数v = lnx的图像关于直线x = l对称的是A. y = ln(l-A-)B. y = ln(2-x)C. y = ln(l+ x)D. y = ln(2 + x)【答案】B【解析】采用特殊值法,在取一点A(3, ln3),则A点关于直线x = l的对称点为川(7 ln3)应该在所求函数上,排除A , C , D【考点】函数关于直线对称8.直线x + y + 2 = 0分别与x轴、V轴交于点A, B两点,点在圆(A-2)2+/=2±,则WP而积的取值范围是( )A. [2, 6]B. [4, 8]C. [x/2, 3血]D.3血]【答案】A【解析】人(一2, 0), B(0, -2) , :.\AB\ = 2y/2 ,可设P(2 +血cos*. >/2sin^),贝!JB.壬C. ”D. 2龙T = ^- = 7T(走义域并没有影响到周期)S'lBP = 2 1^1' dP-AB =匝dp_AR e[2, 6]【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数)9・y = F + 2的图像大致为()【答案】D【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势.单调性(导数)的顺序来考虑)2 210.已知双曲线的c :二一・ = l (d>0, b>0)的离心率为返,则点(4, 0)到C 的渐近线的距离为A ・B ・2C ・上返D ・2>/22【答案】D【解析】e = ~ = + —r = >/2=> a = h••渐近线为— y = 0【解析】 /(1) = 2 ■排除 A 、B; y = Mx 3+2x = 2x(l-2x 2),故函数在 0,【考点】双曲线的离心率、渐近线之间的互相转化11A4BC 的内角4 S C 的对边分别为亿/人c.若AABC 的而积为川+[_广,则4 C =() A.【答案】C【解析】S MBC =穆 d"sin C ="一 十[一—,而 cosC= “_;:力一"一【考点】三角形面积公式、余弦定理12.设A, B 、C, D 是同一个半径为4的球的球而上四点,AA3C 为等边三角形且英而积为 9x/3,则三棱锥D-ABC 的体积最大值为( ) A. 12>/3 B. 18^3 C. 24书D. 54炉【答案】B【解析】如图,0为球心,F 为等边A43C 的重心, 易知OF 丄底面ABC ,当。
2020年普通⾼等学校招⽣全国统⼀考试数学试题⽂(全国卷3,含答案)2020年普通⾼等学校招⽣全国统⼀考试数学试题⽂(全国卷3)注意事项:1.答题前,考⽣务必将⾃⼰的姓名、准考证号码填写在答题卡上.2.回答选择题时,选出每⼩题答案后,⽤铅笔把答题卡上对应题⽬的答案标号涂⿊.如需改动,⽤橡⽪擦⼲净后,在涂选其它答案标号.回答⾮选择题时,将答案写在答题卡上,写在本试卷上⽆效。
3.考试结束后,将本试卷和答题卡⼀并交回。
⼀、选择题(本题共12⼩题,每⼩题5分,共60分.在每⼩题给的四个选项中,只有⼀项符合题⽬要求的.)1.已知集合{}|10A x x=-≥,{}012B=,,,则A B=I()A.{}0B.{}1C.{}12,D.{}012,,2.()()12i i+-=()A.3i--B.3i-+C.3i-D.3i卯眼,图中⽊构件右边的⼩长⽅体是棒头.若如图摆放的⽊构件与某⼀带卯眼的⽊构件咬合成长⽅体,则咬合时带卯眼的⽊构件的俯视图可以是()4.若1sin3α=,则cos2α=()A.89B.79C.79-D.89-5.若某群体中的成员只⽤现⾦⽀付的概率为0.45,既⽤现⾦⽀付也⽤⾮现⾦⽀付的概率为0.15,则不⽤现⾦⽀付的概率为()A.0.3 B.0.4 C.0.6 D.0.76.函数()2tan1tanxf xx=+的最⼩正周期为()2πC.πD.2π7.下列函数中,其图像与函数lny x=的图像关于直线1x=对称的是()A.()ln1y x=-B.()ln2y x=-C.()ln1y x=+D.()ln2y x=+8.直线20x y++=分别与x轴,y轴交于A,B两点,点P在圆()22 22x y-+=上,则ABP⾯积的取值范围是()A.[]26,B.[],D.2232,9.函数422y x x=-++的图像⼤致为()10.已知双曲线22221x yCa b-=:(00a b>>,)的离⼼率为2,则点()40,到C的渐近线的距离为()A.2B.2C.322D.2211.ABC ?的内⾓A ,B ,C 的对边分别为a ,b ,c .若ABC ?的⾯积为222 4a b c +-,则C =()A .2πB .3π12.设A ,B ,C ,D 是同⼀个半径为4的球的球⾯上四点,ABC ?为等边三⾓形且其⾯积为93,则三棱锥D ABC -体积的最⼤值为()A .123B .183C .243D .543⼆、填空题(本题共4⼩题,每⼩题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.某公司有⼤量客户,且不同年龄段客户对其服务的评价有较⼤差异.为了解客户的评价,该公司准备进⾏抽样调查,可供选择的抽样⽅法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样⽅法是________.15.若变量x y ,满⾜约束条件23024020.x y x y x ++??-+??-?≥,≥,≤则13z x y =+的最⼤值是________.16.已知函数()()2ln11f x x x =--+,()4f a =,则()f a -=________.三、解答题(共70分,解答应写出⽂字说明、证明过程或演算步骤,第17~31题为必考题,每个试题考⽣都必须作答,第22、23题为选考题,考⽣根据要求作答.)(⼀)必考题:共60分。
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅲ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1235711A =,,,,,,{}|315B x x =<<,则A B 中元素的个数为 ( )A .2B .3C .4D .52.若()1i 1i z +=-,则z = A .1i -B .1i +C .i -D .i3.设一组样本数据1x ,2x ,…,n x 的方差为0.01,则数据110x ,210x ,…,10n x 的方差为( )A .0.01B .0.1C .1D .104.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t K I t e --=+,其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln193≈)( ) A .60B .63C .66D .69 5.已知πsin sin 13θθ⎛⎫++= ⎪⎝⎭,则πsin 6θ⎛⎫+=⎪⎝⎭( )A .12BC .23D.2 6.在平面内,A ,B 是两个定点,C 是动点.若1AC BC ⋅=,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线7.设O 为坐标原点,直线2x =与抛物线()2:20C y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭, C .()10,D .()20,8.点()01-,到直线()1y k x =+距离的最大值为( )A .1BCD .2 9.下图为某几何体的三视图,则该几何体的表面积是( )A. B.C.D.10.设3log 2a =,5log 3b =,23c =,则( )A .a c b <<B .a b c <<C .b c a <<D .c a b << 11.在ABC △中,2cos 3C =,4AC =,3BC =,则tan B =( )AB. C.D.12.已知函数()1sin sin f x x x=+,则( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线πx =对称D .()f x 的图像关于直线π2x =对称毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0201x y x y x +⎧⎪-⎨⎪⎩≥,≥,≤,则32z x y =+的最大值为________.14.设双曲线2222:1x y C a b-=()00a b >,>的一条渐近线为y =,则C 的离心率为________. 15.设函数()xe f x x a =+,若()14ef '=,则a =________. 16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的切球表面积为________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)设等比数列{}n a 满足124a a +=,318a a -=. (1)求{}n a 的通项公式;(2)记n S 为数列{}3log n a 的前n 项和.若13m m m S S S +++=,求m .18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天空气质量不好附:()()()()2n ad bc a b c d a c K b d -=++++,.19.(12分)如图,在长方体1111ABCD A B C D -中,在E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =,证明:数学试卷 第5页(共20页) 数学试卷 第6页(共20页)(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.20.(12分)已知函数()32f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.21.(12分)已知椭圆()222:10525x y C m m+=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,求APQ △的面积.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为()222123x t tt t y t t ⎧=--⎪≠⎨=-+⎪⎩为参数且,C 与坐标轴交于A ,B 两点. (1)求AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.23.[选修4—5:不等式选讲](10分) 设a ,b ,c ∈R ,0a b c ++=,1abc =. (1)证明:0ab bc ca ++<;(2)用{}max a b c ,,表示a ,b ,c 中的最大值,证明:{}max a b c ,,毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2020年普通高等学校招生全国统一考试·全国Ⅲ卷文科数学答案解析一、选择题 1.【答案】B【解析】采用列举法列举出AB 中元素的即可.由题意,{}5711AB =,,,故AB 中元素的个数为3. 故选:B【考点】集合的交集运算 2.【答案】D【解析】先利用除法运算求得z ,再利用共轭复数的概念得到z 即可.因为()()()21i 1i 2ii 1i 1i 1i 2z ---====-++-,所以i z =.故选:D . 【考点】复数的除法运算,共轭复数的概念 3.【答案】C【解析】根据新数据与原数据关系确定方差关系,即得结果.因为数据i ax b +,()12i n =,,…,的方差是数据i x ,()12i n =,,…,的方差的2a 倍,所以所求数据方差为2100.011⨯=,故选:C . 【考点】方差 4.【答案】C【解析】将t t *=代入函数()()0.23531t K I t e--=+结合()0.95I t K *=求得t *即可得解.()()0.23531t K I t e --=+,所以()()0.23530.951t KI tK e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *+≈≈. 故选:C .【考点】对数的运算,指数与对数的互化 5.【答案】B【解析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.由题意可 得:1sin sin 12θθθ+=,则:3sin 12θθ=1cos 2θθ+,从而有:sin coscos sin663ππθθ+=,即πsin 6θ⎛⎫+= ⎪⎝⎭.故选:B .【考点】两角和与差的正余弦公式及其应用 6.【答案】A【解析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()0A a -,,()0B a ,,设()C x y ,,可得:()AC x a y →=+,,()BC x a y →=-,,从而:()()2AC BC x a x a y →→⋅=+-+,结合题意可得:()()21x a x a y +-+=,整理可得:2221x y a +=+,即点C 的轨迹是以AB .故选:A .【考点】平面向量及其数量积的坐标运算,轨迹方程的求解 7.【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.因为直线2x =与抛物线()220y px p =>交于E ,D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以数学试卷 第9页(共20页) 数学试卷 第10页(共20页)()22D ,,代入抛物线方程44p =,求得1p =,所以其焦点坐标为102⎛⎫⎪⎝⎭,,故选:B . 【考点】圆锥曲线,直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标 8.【答案】B【解析】首先根据直线方程判断出直线过定点()10P -,,设()01A -,,当直线()1y k x =+与AP 垂直时,点A 到直线()1y k x =+距离最大,即可求得结果.由()1y k x =+可知直线过定点()10P -,,设()01A -,,当直线()1y k x =+与AP 垂直时,点A 到直线()1y k x =+距离最大,即为AP =.故选:B . 【考点】解析几何初步的问题,直线过定点,利用几何性质 9.【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S ===⨯⨯=△△△,根据勾股定理可得:AB AD DB ===∴ADB △是边长为(2°11sin 6022ADB S AB AD =⋅⋅==△,∴该几何体的表面积是:632⨯++故选:C .【考点】根据三视图求立体图形的表面积,根据三视图画出立体图形 10.【答案】A【解析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可.因为333112log 2log 9333a c ===<,355112log 3log 25333b c ===>,所以a c b <<.故选:A .【考点】对数式大小的比较 11.【答案】C【解析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan B .设AB c =,BC a =,CA b =,22222cos 91623493c a b ab C =+-=+-⨯⨯⨯=,3c ∴=,2221cos9a c bB +-==,sinB ∴=tan B ∴=.故选:C . 【考点】余弦定理,同角三角函数关系 12.【答案】D【解析】根据基本不等式使用条件可判断A ;根据奇偶性可判断B ;根据对称性判断C ,D .sin x 可以为负,所以A 错;sin 0x ≠,()x k k π∴≠∈Z ,()()1sin sin f x x f x x-=--=-,()f x ∴关于原点对称;()()12sin sin f x x f x x π-=--≠,()()1sin sin f x x f x xπ-=+=,故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对.故选:D .【考点】函数定义域与最值,奇偶性,对称性 二、填空题 13.【答案】7【解析】作出可行域,利用截距的几何意义解决.不等式组所表示的可行域如图.因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y=-,当322x zy =-+经过A点时截距最大,此时数学试卷 第11页(共20页) 数学试卷 第12页(共20页)z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,()12A ,,所以max 31227z =⨯+⨯=.故答案为:7.【考点】简单线性规划的应用,线性目标函数的最大值【解析】根据已知可得a=结合双曲线中a ,b ,c 的关系,即可求解.由双曲线方程22221x y a b -=可得 其焦点在x 轴上,因为其一条渐近线为y=,所以ba=c e a ===故【考点】双曲线性质 15.【答案】1【解析】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值.由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aeea =+,整理可得:2210a a -+=,解得:1a =.故答案为:1.【解析】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2BC =,3AB AC ==,且点M 为BC边上的中点,设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC r,则: ()11113322222ABC AOB BOC AOCS S S S AB r BC r AC r r =++=⨯⨯+⨯⨯+⨯⨯=⨯++⨯=△△△△,解得:r =,其体积:343Vr π==.. 三、解答题17.【答案】(1)13n n a -= (2)6m =数学试卷 第13页(共20页) 数学试卷 第14页(共20页)【解析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式.设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=-=⎧⎨⎩,解得113a q =⎧⎨=⎩,所以13n n a -=.(2)由(1)求出{}3log n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.令313log log 31n n n b a n -===-,所以()()01122n n n n n S +--==,根据13m m m S S S +++=,可得()()()()1123222m m m m m m -++++=,整理得2560m m --=,因为0m >,所以6m =.【考点】比数列通项公式基本量的计算,等差数列求和公式的应用18.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09 (2)350锻炼的人次与该市 当天的空气质量有关.【解析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率.由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=. (2)利用每组的中点值乘以频数,相加后除以100可得结果.由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=.(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结()21003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市 当天的空气质量有关.【考点】利用频数分布表计算频率和平均数,独立性检验的应用19.【答案】(1)因为长方体1111ABCD A B C D -,所以1BB ABCD ⊥平面,1AC BB ∴⊥,因为长方体1111ABCD A B C D -,AB BC =,所以四边形ABCD 为正方形,AC BD ∴⊥.因为1BB BD B =,111BB BD BB D D ⊂、平面,因此11AC BB D D ⊥平面,因为11EF BB D D ⊂平面,所以AC EF ⊥.(2)在1CC 上取点M 使得12CM MC =,连DM ,MF ,因为12D E ED =,11DD CC ∥,11DD CC =,所以1ED MC =,1ED MC ∥,所以四边形1DMC E 为平行四边形,1DM EC ∴∥.因为MF DA ∥,MF DA =,所以四边形MFAD 为平行四边形,DM AF ∴∥,1EC AF ∴∥,因此1C 在平面AEF 内. 【解析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证数学试卷 第15页(共20页) 数学试卷 第16页(共20页)11AC BB D D ⊥平面,即得结果.因为长方体1111ABCD A B C D -,所以1BB ABCD ⊥平面,1AC BB ∴⊥,因为长方体1111ABCD A B C D -,AB BC =,所以四边形ABCD 为正方形,AC BD ∴⊥.因为1BB BD B =,111BB BD BB D D ⊂、平面,因此11AC BB D D ⊥平面,因为11EF BB D D ⊂平面,所以AC EF ⊥.(2)只需证明1EC AF ∥即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.在1CC 上取点M 使得12CM MC =,连DM ,MF ,因为12D E ED =,11DD CC ∥,11DD CC =,所以1ED MC =,1ED MC ∥,所以四边形1DMC E 为平行四边形,1DM EC ∴∥.因为MF DA ∥,MF DA =,所以四边形MFAD 为平行四边形,DM AF ∴∥,1EC AF ∴∥,因此1C 在平面AEF 内.【考点】线面垂直判定定理,线线平行判定20.【答案】(1)由题,()23f x x k '=-,当0k ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递 增;当0k >时,令()0f x '=,得x =,令()0f x '<,得x ,令()0f x '>,得x -<x 所以()f x在⎛上单调递减,在⎛-∞ ,,⎫+∞⎪⎪上单调递增. 【解析】(1)()23f x x k '=-,对k 分0k ≤和0k >两种情况讨论即可.由题,()23f x x k '=-,当0k ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增;当0k >时,令()0f x '=,得x =,令()0f x'<, 得x ,令()0f x '>,得x -<x ()f x在⎛ ⎝上单调递减,在⎛-∞⎝,⎫+∞⎪⎪⎭上单调递增. (2)()f x 有三个零点,由(1)知0k >,且00ff ⎧⎛⎪ ⎪⎝⎨⎪⎪⎩><,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可.由(1)知,()f x 有三个零点,则0k >,且00f f ⎧⎛⎪ ⎪⎝⎨⎪⎪⎩><,即22203203k k ⎧+⎪⎪⎨⎪-⎪⎩,解 得4027k <<,当4027k <<且20fk =>,所以()f x 在上有唯一一个零 点,同理1k --<()()23110f k k k --=--+<,所以()f x 在1k ⎛--⎝,上有唯一一个零点,又()f x 在⎛ ⎝上有唯一一个零点,所以()f x 有三个零点,综上可知k 的取值范数学试卷 第17页(共20页) 数学试卷 第18页(共20页)围为4027⎛⎫ ⎪⎝⎭,.【解析】(1)因为()2:10525x yC m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案.()222:10525x y C m+=<<,5a ∴=,b m =,根据离心率c e a ====解得54m =或54m =-(舍),C ∴的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=. (2)点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N .根据题意画出图形,如图BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=,又90PBM QBN ∠+∠=,90BQN QBN ∠+∠=,PBM BQN ∴∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=, ()50B ∴,,651PM BN ∴==-=,设P 点为()P P x y ,,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,P ∴点为()31,或()31-,, ①当P 点为()31,时,故532MB =-=,PMB BNQ ≅△△,2MB NQ ∴==,可得:Q 点为()62,,画 出图象,如图()50A -,,()62Q ,,可求得直线AQ 的直线方程为:211100xy -+=,根据点到直线距离公式可得P 到 直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ =APQ ∴△面积为:15252⨯=;②当P 点为()31-,时,故5+38MB ==,PMB BNQ ≅△△,8MB NQ ∴==,可得:Q 点为()68,, 画出图象,如图()50A -,,()68Q ,,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P数学试卷 第19页(共20页) 数学试卷 第20页(共20页)到直线AQ 的距离为:d ===根据两点间距离公式可得:AQ ==APQ ∴△面积为:1522=,综上所述,APQ △面积为:52.【考点】椭圆标准方程,三角形面积,椭圆的离心率定义,数形结合求三角形面积【解析】(1)由参数方程得出A ,B 的坐标,最后由两点间距离公式,即可得出AB 的值.令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即()012A ,.令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即()40B -,.AB ∴=(2)由A ,B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.由(1)可知()120304AB k -==--, 则直线AB 的方程为()34y x =+,即3120x y -+=.由cos x ρθ=,sin y ρθ=可得,直线AB 的极坐标方程 为3cos sin 120ρθρθ-+=.【考点】利用参数方程求点的坐标,直角坐标方程化极坐标方程 23.【答案】(1)()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <.a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【解析】(1)由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明.()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++.a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由题意得出0a >,0b c ,<,由()222322b c b c bca aa bcbc+++=⋅==,结合基本不等式,即可得出证明.不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bca a a bcbcbc++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【考点】不等式的基本性质,基本不等式的应用。
绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为( ) A .1B .2C .3D .4【答案】B2.复平面内表示复数z=i(–2+i)的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】由题意:12z i =-- .本题选择B 选项.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2020年1月至2020年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客逐月增加 B .年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由折线图,7月份后月接待游客量减少,A错误;本题选择A选项.4.已知4 sin cos3αα-=,则sin2α=()A.79- B.29-C.29D.79【答案】A5.设x,y满足约束条件3260x yxy+-≤⎧⎪≥⎨⎪≥⎩,则z=x-y的取值范围是()A.[–3,0]B.[–3,2] C.[0,2] D.[0,3]【答案】B【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()0,3A处取得最小值033z=-=- . 在点()2,0B处取得最大值202z=-= .本题选择B选项.6.函数f(x)=15sin(x+3π)+cos(x−6π)的最大值为()A.65B.1 C.35D.15【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ , 则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , 函数的最大值为65. 本题选择A 选项. 7.函数y =1+x +2sin xx 的部分图像大致为( )A BD .C D 【答案】D8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2【答案】D9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4C .π2D .π4【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以3r BC ==,那么圆柱的体积是223314V r h πππ==⨯⨯=⎝⎭,故选B. 10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C【解析】根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立,D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A .6B .3 C .23D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离22d a a b==+,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,63c e a ==,故选A.12.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =( )A .12-B .13C .12D .1【答案】C二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试(全国III 卷文科)数学试题注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上。
本试卷满分150分。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,,则A ∩B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 52.若,则z =( )A. 1–iB. 1+iC. –iD. i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A. 0.01B. 0.1C. 1D. 104.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:,其中K 为最大确诊病例数.当I ()=0.95K 时,标志着已初步遏制疫情,则约为( )(ln19≈3)A. 60B. 63C. 66D. 695.已知,则( )A.C.D.6.在平面内,A,B 是两个定点,C 是动点,若,则点C 的轨迹为( )A. 圆B. 椭圆C. 抛物线D. 直线7.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. (,0) B. (,0) C. (1,0) D. (2,0){}1235711A =,,,,,{}315|B x x =<<()11+=-z i i 0.23(53)()=1et I K t --+*t *t πsin sin =31θθ⎛⎫++ ⎪⎝⎭πsin =6θ⎛⎫+ ⎪⎝⎭12232=1AC BC ⋅14128.点(0,﹣1)到直线距离的最大值为( )A. 1B.C.D. 29.下图为某几何体的三视图,则该几何体的表面积是( )A. 6+4B. 4+4C. 6+2D. 4+210.设a =log 32,b =log 53,c =,则( ) A. a<c<b B. a<b<c C. b<c<a D. c<a<b 11.在△ABC 中,cos C =,AC =4,BC =3,则tan B =( ) A.B. 2C. 4D. 812.已知函数f (x )=sin x +,则( ) A. f(x)的最小值为2B. f(x)的图像关于y 轴对称C. f(x)的图像关于直线对称D. f(x)的图像关于直线对称二、填空题(本题共4小题,每小题5分,共20分.)13.若x ,y 满足约束条件 ,则z =3x +2y 的最大值为_________.14.设双曲线C : (a >0,b >0)的一条渐近线为y =x ,则C 的离心率为_________.15.设函数.若,则a =_________.16.已知圆锥底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分.17.设等比数列{a n }满足,. (1)求{a n }的通项公式;()1y k x =+232233232355551sin xx π=2x π=0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,22221x y a b -=2e ()xf x x a =+(1)4e f '=124a a +=318a a -=(2)记为数列{log 3a n }的前n 项和.若,求m .18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:,n S 13m m m S S S +++=2()()()()()n ad bc K a b c d a c b d -=++++P (K 2≥k ) 0.050 0.010 0.001 k 3.8416.63510.82819.如图,在长方体中,点,分别在棱,上,且,.证明: (1)当时,; (2)点在平面内.20.已知函数. (1)讨论的单调性;(2)若有三个零点,求的取值范围.1111ABCD A B C D -E F 1DD 1BB 12DE ED =12BF FB =AB BC =EF AC ⊥1C AEF 32()f x x kx k =-+()f x ()f x k21.已知椭圆的离心率为,,分别为的左、右顶点.(1)求的方程;(2)若点在上,点在直线上,且,,求的面积.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.)[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求||:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.222:1(05)25x y C m m +=<<4A B C C P C Q 6x =||||BP BQ =BP BQ ⊥APQ 2222x t t y t t ⎧=--⎨=-+⎩,AB[选修4-5:不等式选讲]23.设a,b,c R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c2020年普通高等学校招生全国统一考试(全国III 卷文科)数学试题参考答案1-5.BDCCB 6-10ABBCA 11-12.CD 13.715.116.17.(1)设等比数列的公比为,根据题意,有,解得,所以;(2)令, 所以, 根据,可得, 整理得,因为,所以18.(1)由频数分布表可知,该市一天空气质量等级为的概率为,等级为的概率为,等级为的概率为,等级为的概率为; (2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为(3)列联表如下:3{}n a q 1121148a a q a q a +=⎧⎨-=⎩113a q =⎧⎨=⎩13-=n n a 313log log 31n n n b a n -===-(01)(1)22n n n n n S +--==13m m m S S S +++=(1)(1)(2)(3)222m m m m m m -++++=2560m m --=0m >6m =的1216250.43100++=2510120.27100++=36780.21100++=47200.09100++=100203003550045350100⨯+⨯+⨯=22⨯空气质量好,因此,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 19.(1)因为长方体,所以平面, 因为长方体,所以四边形为正方形 因为平面,因此平面,因为平面,所以;(2)在上取点使得,连, 因为,所以所以四边形为平行四边形,因为所以四边形为平行四边形, 因此在平面内20. (1)由题,,当时,恒成立,所以在上单调递增; 当时,令,得,令,得, 令,得或,所以在上单调递减,在 ,上单调递增. (2)由(1)知,有三个零点,则,且228()21003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯95%1111ABCD A B C D -1BB ⊥ABCD ∴1AC BB ⊥1111,ABCD A B C D AB BC -=ABCD AC BD ∴⊥11,BB BD B BB BD =⊂、11BB D D AC ⊥11BB D D EF ⊂11BB D D AC EF ⊥1CC M 12CM MC =,DM MF 111112,//,=D E ED DD CC DD CC =11,//,ED MC ED MC =1DMC E 1//DM EC ∴//,=,MF DA MF DA MFAD 1//,//DM AF EC AF ∴∴1C AEF '2()3f x x k =-0k ≤'()0f x ≥()f x (,)-∞+∞0k >'()0f x =3k x =±'()0f x <33kkx -<<'()0f x >3kx <-3k x >()f x (,)33k k-(,)3k -∞-(,)3k+∞()f x 0k >()03()03kf kf ⎧->⎪⎪⎨⎪<⎪⎩即,解得, 当时,,且, 所以在上有唯一一个零点,同理,, 所以在上有唯一一个零点,又在上有唯一一个零点,所以有三个零点, 综上可知的取值范围为. 21.(1),,根据离心率, 解得或(舍), 的方程为:,即; (2)点在上,点在直线上,且,,过点作轴垂线,交点为,设与轴交点为根据题意画出图形,如图2220332033kk kk k k ⎧+>⎪⎪⎨⎪-<⎪⎩4027k <<4027k <<3kk >2()0f k k =>()f x (,)3kk 13kk --<-32(1)(1)0f k k k --=--+<()f x (1,)3kk ---()f x (,)33k k-()f x k 4(0,)27222:1(05)25x y C m m +=<<∴5a =b m =22154115c b m e a a ⎛⎫⎛⎫==-=-= ⎪ ⎪⎝⎭⎝⎭54m =54m =-∴C 22214255x y ⎛⎫ ⎪⎝⎭+=221612525x y +=P C Q 6x =||||BP BQ =BP BQ ⊥P x M 6x =x N,,,又,,,根据三角形全等条件“”, 可得:,, ,,设点为,可得点纵坐标为,将其代入,可得:,解得:或,点为或,①当点为时, 故,, ,可得:点为, 画出图象,如图,,可求得直线的直线方程为:, 根据点到直线距离公式可得到直线的距离为:, 根据两点间距离公式可得:,||||BP BQ =BP BQ ⊥90PMB QNB ∠=∠=︒90PBM QBN ∠+∠=︒90BQN QBN ∠+∠=︒∴PBM BQN ∠=∠AAS PMB BNQ ≅△△221612525x y +=∴(5,0)B ∴651PM BN ==-=P (,)P P x y P 1P y =221612525x y +=21612525P x +=3P x =3P x =-∴P (3,1)(3,1)-P (3,1)532MB =-=PMB BNQ ≅△△∴||||2MB NQ ==Q (6,2)(5,0)A -(6,2)Q AQ 211100x y -+=P AQ 22231111055125211d ⨯-⨯+===+()()22652055AQ =++-=面积为:;②当点为时,故,,,可得:点为,画出图象,如图,可求得直线的直线方程为:,根据点到直线距离公式可得到直线的距离为:,根据两点间距离公式可得:,面积为:,综上所述,面积为:.22.(1)令,则,解得或(舍),则,即. 令,则,解得或(舍),则,即.;(2)由(1)可知,则直线的方程为,即.由可得,直线的极坐标方程为.23.(1),.均不为,则,;(2)不妨设,∴APQ15555252⨯⨯=P(3,1)-5+38MB==PMB BNQ≅△△∴||||8MB NQ==Q(6,8)(5,0)A-,(6,8)Q AQ811400x y-+=P AQ()2283111405185185811d⨯--⨯+===+()()226580185AQ=++-=∴APQ1518522185⨯⨯=APQ520x=220t t+-=2t=-1t=26412y=++=(0,12)A 0y=2320t t-+=2t=1t=2244x=--=-(4,0)B-22(04)(120)410AB∴=++-=12030(4)ABk-==--AB3(4)y x=+3120x y-+=cos,sinx yρθρθ==AB3cos sin120ρθρθ-+=2222()2220a b c a b c ab ac bc++=+++++=()22212ab bc ca a b c∴++=-++,,a b c02220a b c++>()22212ab bc ca a b c∴++=-++<max{,,}a b c a=由可知,,,. 当且仅当时,取等号,,即.0,1a b c abc ++==0,0,0a b c ><<1,a b c a bc =--=()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=b c =a ∴≥3max{,,}4a b c。
2020年普通高等学校招生全国统一考试
文科数学
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}
1,2,3,5,7,11A =,
{}
|315B x x =<<,则A B 中元素的个数为
A. 2
B. 3
C. 4
D. 5
2. 若(1)1z i i +=-,则z = A. 1i - B. 1i + C.i - D.i
3.设一组样本数据12,,...,n x x x 的方差为0.01,则数据12n 10,10,...,10x x x 的方差为 A .0.01 B .0.1 C .1 D .10
4. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:
()()
0.23531t K
I t e
--=
+,其中K 为最大确诊病例数.当()0.95I t K *
=时,标志着已初步遏制
疫情,则t *
约为(In19≈3) A.60 B.63 C.66 D.69
5.已知sin sin()13π
θθ++=,则sin()6
π
θ+= A.
1
2
C.
23
6.在平面内,,A B 是两个定点,C 是动点,若1AC BC ⋅=,则点C 的轨迹为 A. 圆 B. 椭圆 C. 抛物线 D. 直线
7.设O 为坐标原点,直线2x =与抛物线2
:2(0)C y px p =>交于,D E 两点,若OD OE ⊥,则C 的焦点坐标为
A .1
(,0)4 B .1(,0)2
C .(1,0)
D .(2,0)
8.点(0,1)-到直线(1)y k x =+距离的最大值为
A .1
B .2
C .3
D .2
9.右图为某几何体的三视图,则该几何体的表面积是
A. 6+42
B. 4+42
C. 6+23
D. 4+23
10.设3log 2a =,5log 3b =,2
3
c =,则 A .a c b << B.a b c << C. b c a << D. c a b <<
11. 在ABC ∆中,2
cos 3
C =,4,3AC BC ==,则tan B = A. 5 B.25 C.45
12. 已知函数1
()sin sin f x x x
=+,则 A. ()f x 的最小值为2 B. ()f x 的图像关于y 轴对称 C. ()f x 的图像关于直线x π=对称 D. ()f x 的图像关于直线2
x π
=对称
二、填空题:本题共4小题,每小题5分,共20分。
13.若x ,y 满足约束条件x 02x 01y y x +≥⎧⎪
-≥⎨⎪≤⎩
,则z=3x+2y 的最大值为_____.
14.设双曲线22
22:1x y C a b
-=()0,0a b >>
的一条渐近线为y =,则C 的离心率为
______.
15. 设函数()x e f x x a =+,若()14
e
f '=,则a=____.
16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的切球表面积为
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:供60分。
17.(12分) 设等比数列
{}n a 满足12a +a =4,31a -a =8
(1) 求{}n a 的通项公式;
(2) 记n s 为数列{}3n log a 的前n 项和.若m m+1m+3s +s =s ,求m.
18.(12分)
某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
(1) 分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值
为代表);
(3) 若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等
级为3或4,则称这天“空气质量不好”。
根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
附:,
,
19.(12分)
如图,在长方体1111ABCD A B C D -中,在E ,F 分别在棱1DD ,1BB 上,且12DE ED =,
12BF FB =,证明:
(1) 当AB BC =时,EF AC ⊥; (2) 点1C 在平面AEF 内.
20.(12分)
已知函数()32f x x kx k =-+. (1) 讨论()f x 的单调性;
(2) 若()f x 有三个零点,求k 的取值范围. 21.(12分)
已知椭圆222:
1(05)25x y C m m +=<<的离心率为,4A B 分别为C 的左、右顶点. (1) 求C 的方程:
(2) 若点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,求APQ
∆的面积.
(二)选考题:共10分,请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为2
2
2(123x t t
t t C y t t
⎧=--⎪≠⎨=-+⎪⎩为参数且),与坐标轴交于A B ,两点. (1) 求AB :
(2) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.
23. [选修4-5: 不等式选讲](10分) 设,,,0, 1.a b c R a b c abc ∈++== (1) 证明:0ab bc ca ++<;
(2) 用{}max ,,,,a b c a b c 表示中的最大值,证明:{
}max ,,a b c ≥
答案仅供参考。