最新全国卷3文科数学试题及参考答案
- 格式:doc
- 大小:1.18 MB
- 文档页数:17
绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为 A .2 B .3 C .4 D .52.若)(1i 1i z +=-,则z = A .1–iB .1+iC .–iD .i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .104.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为(ln19≈3)A .60B .63C .66D .695.已知πsin sin=3θθ++()1,则πsin =6θ+()A .12BC .23D6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为 A .圆B .椭圆C .抛物线D .直线7.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为 A .(14,0) B .(12,0) C .(1,0) D .(2,0)8.点(0,﹣1)到直线()1y k x =+距离的最大值为 A .1BCD .29.右图为某几何体的三视图,则该几何体的表面积是A .B .C .D .10.设a =log 32,b =log 53,c =23,则 A .a <c <bB .a <b <cC .b <c <aD .c <a <b11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B = AB .C .D .12.已知函数f (x )=sin x +1sin x,则 A .f (x )的最小值为2B .f (x )的图像关于y 轴对称C .f (x )的图像关于直线x =π对称D .f (x )的图像关于直线2x π=对称 二、填空题:本题共4小题,每小题5分,共20分。
高考文科数学全国3卷附答案.._ - 绝密★启用前〔4〕某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中 A 点表示十月的平均最高气温约为 0点_2021年普通高等学校招生全国统一考试15 C ,B _-_表示四月的平均最低气温约为_ -文科数学全国III卷5C 。
下面表达不正确的选项是__12页〕 A.各月的平均最低气温都在:-〔全卷共0 C 以上号- (适用地区:广西、云南、四川)学 - 本卷须知:B.七月的平均温差比一月的平均温差大__-1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两局部。
___-2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
C.三月和十一月的平均最高气温根本相同___ -3.答复选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
__D.平均气温高于的月份有5个_ 如需改动,用橡皮擦干净后,再选涂其它答案标号,答复非选择题时,将答案写在 20C_线__封答题卡上,写在本试卷上无效。
__ 密_ 4.考试结束后,将本试卷和答案卡一并交回。
__-_第I 卷 〔5〕小敏翻开计算机时,忘记了开机密码的前两位, 只记得第一位是 M,I,N 中的: -名 -一个字母,第二位是1,2,3,4,5 中的一个数字,那么小敏输入一次密码能够成功姓 一、选择题:此题共12小题,每题5分。
在每个小题给出的四个选项中,- 只有一项为哪一项符合题目要求的。
开机的概率是〔〕-〔1〕设集合A {0,2,4,6,8,10},B {4,8} ,那么C A B 〔 〕8111班 -A.B.C.D._15_15830_-__ A.{4,8} B.{0,2,6} C.{0,2,6,10} D.{0,2,4,6,8,10}1_-〔6〕假设tan_,那么cos2〔 〕年 -3__z__ 线〔2〕假设z4 3i ,那么 〔 〕高考文科数学全国3卷附答案__封z4114_A.B.C.D._ 密5555_ -__4 343 _-B .1D ._C.ii421_55 55_-〔7〕3 ,3,3 ,那么〔〕_a 2b 3c 25__ -___ -1 33 1_〔3〕向量 ,BC那么 ABC 〔〕A.bacB.a b cC.bcaD.cab_BA(,) ( ,),_ -2 22 2__-_:A.30B . 45C.60D.120a 4,b6,那么输出的n校-〔8〕执行右图的程序框图,如果输入的〔〕学-;...A.3 BC=8,AA 1=3,那么V 的最大值是B.4 A.4πB.9C.6πD. 32C.5 23D.6x 2 y 21(ab0)的左焦点,A ,B 分(12) O 为坐标原点,F 是椭圆C :22a b别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF交于点M ,与y 轴交于点E.假设直线BM 经过OE 的中点,那么C 的离心率为 A.1B.1C. 2D. 33 234第二卷边上的高等于1那么(9)在中,B= ,BC BC, sinA 〔〕ABC43A.3 B.10C. 5D.3101010510如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,那么该多面体的外表积为1836554185 90 81(11)在封闭的直三棱柱 ABC-A 1B 1C 1内有一个体积为 V 的球,假设AB BC ,AB=6,本卷包括必考题和选考题两局部。
2020年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,2,3,5,7,11A =,{}|315B x x =<<,则A B 中元素的个数为A. 2B. 3C. 4D. 52. 若(1)1z i i +=-,则z = A. 1i - B. 1i + C.i - D.i3.设一组样本数据12,,...,n x x x 的方差为0.01,则数据12n 10,10,...,10x x x 的方差为 A .0.01 B .0.1 C .1 D .104. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t KI t e--=+,其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(In19≈3) A.60 B.63 C.66 D.695.已知sin sin()13πθθ++=,则sin()6πθ+= A.12C.23D.26.在平面内,,A B 是两个定点,C 是动点,若1AC BC ⋅=,则点C 的轨迹为 A. 圆 B. 椭圆 C. 抛物线 D. 直线7.设O 为坐标原点,直线2x =与抛物线2:2(0)C y px p =>交于,D E 两点,若OD OE ⊥,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)8.点(0,1)-到直线(1)y k x =+距离的最大值为 A .1 B .2 C .3 D .29.右图为某几何体的三视图,则该几何体的表面积是A. 6+42B. 4+42C. 6+23D. 4+2310.设3log 2a =,5log 3b =,23c =,则 A .a c b << B.a b c << C. b c a << D. c a b <<11. 在ABC ∆中,2cos 3C =,4,3AC BC ==,则tan B =12. 已知函数1()sin sin f x x x=+,则 A. ()f x 的最小值为2B. ()f x 的图像关于y 轴对称C. ()f x 的图像关于直线x π=对称D. ()f x 的图像关于直线2x π=对称二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2020年普通高等学校招生全国统一考试全国卷三文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1235711,,,,,A =,{}315|B x x =<<,则A ∩B 中元素的个数为 A .2 B .3C .4D .5答案:B解析:由交集的定义可知A ∩B ={5711},,,故选B 2.若)(1i 1i z +=-,则z =A .1–iB .1+iC .–iD .i答案:C解析:因为)(1i 1i z +=-,所以21i (1i)2i i 1i (1i)(1i)2z ---====-++-,故选C 3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为A .0.01B .0.1C .1D .10答案:C解析:数据10x 1,10x 2,…,10x n 的方差等于数据x 1,x 2,…,x n 的方差210,即0.011001⨯=,故选C4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()=1e t KI t --+,其中K 为最大确诊病例数.当*()0.95I t K =时,标志着已初步遏制疫情,则t *约为(ln193)≈A .60B .63C .66D .69答案:C解析:由0.23(53)()=1e t KI t --+可得ln 1()530.23K I t t ⎛⎫- ⎪⎝⎭=+-,所以若*()0.95I t K =时,*ln 1ln190.955353660.230.23K K t ⎛⎫- ⎪⎝⎭=+=+≈-,故选C. 5.已知πsin sin=3θθ++()1,则πsin =6θ+() A .12 BC .23 D答案:B解析:因为πsin sin =3θθ++()1,所以13sin sin sin 1226πθθθθθθ⎛⎫+=+=+= ⎪⎝⎭,所以πsin 6(+θ,故选B 6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为A .圆B .椭圆C .抛物线D .直线答案:A解析:取线段AB 的中点O ,则AC OC OA =-,BC OC OB OC OA =-=+,因为=1AC BC ⋅,所以221OC OA -=,所以22||||1OC OA =+,即|||OC OA =C的轨迹为以线段AB 中点为A。
2024届高三一轮复习联考(三)全国卷文科数学试题注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回,考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}212,1A xx B x x =<<=∣∣,则A B ⋃=()A.[)1,2-B.(),2∞-C.[)1,3- D.[]1,2-2.命题2:,220p x R x x ∀∈+-<的否定p ⌝为()A.2000,220x R x x ∃∈+->B.2,220x R x x ∀∈+-C.2,220x R x x ∀∈+->D.2000,220x R x x ∃∈+-3.3.已知复数2(1i)z =+(i 为虚数单位),则复数z 的虚部为()A.2B.2- C.2iD.2i-4.若函数()222,0,log ,0,x x x f x x x ⎧-=⎨>⎩则()2f f ⎡⎤-=⎣⎦()A.2- B.2 C.3- D.35.已知1sin 62πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭()A.14-B.14C.12-D.126.函数()21x xe ef x x --=+在[]3,3-上的大致图象为()A.B.C. D.7.函数2sin cos21y x x=-+的最小值是()A.3-B.1-C.32- D.12-8.已知数列{}n a的前n项和22nS n n m=-++,且对任意*1,0n nn N a a+∈-<,则实数m 的取值范为是()A.()2,∞-+ B.(),2∞--C.()2,∞+ D.(),2∞-9.已知等比数列()*a满足4221,m nq a a a≠=,(其中,*m n N∈),则91m n+的最小值为()A.6 B.16 C.32 D.210.已知函数()cos3f x xπ⎛⎫=+⎪⎝⎭,若()f x在[]0,a上的值域为11,2⎡⎤-⎢⎥⎣⎦,则实数a的取值范为()A.40,3π⎛⎤⎥⎝⎦B.24,33ππ⎡⎤⎢⎥⎣⎦C.2,3π∞⎡⎫+⎪⎢⎣⎭ D.25,33ππ⎡⎤⎢⎥⎣⎦11.设4sin1,3sin2,2sin3a b c===,则()A.a b c<< B.c b a<<C.c a b<< D.a c b<<12.已矨,,A B C均在球O的球面上运动,且满足3AOBπ∠=,若三棱锥O ABC-体积的最大值为6,则球O的体积为()A.12πB.48πC.D.二、填空题:本题共4小题,每小题5分,共20分.13.已知()(1,,a k b==,若a b⊥,则k=__________.14.已知{}n a是各项不全为零的等差数列,前n项和是n S,且2024S S=,若()2626nS S m=≠,则正整数m=__________.15.设,m n为不重合的直线,,,αβγ为不重合的平面,下列是αβ∥成立的充分条件的有()(只填序号).①,m a m β⊂∥②,,m n n m αβ⊂⊥⊥③,αγβγ⊥⊥④,m m αβ⊥⊥16.已知函数()14sin ,01,2,1,x x x f x x x π-<⎧=⎨+>⎩若关于x 的方程()()()2[]210f x m f x m --+-=恰有5个不同的实数解,则实数m 的取值集合为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(12分)已知数列{}n a 满足12122,log log 1n n a a a +==+,(1)求数列{}n a 的通项公式;(2)求(){}32nn a -的前n 项和nS.18.(12分)已知ABC 中,三个内角,,A B C 的对边分别为,,,,cos cos 2cos 4a b c C a A c C b B π=+=.(1)求tan A ;(2)若c =,求ABC 的面积.19.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,O 是BC 的中点,PB PC ==,22PD BC AB ===.(1)求证:平而PBC ⊥平面ABCD ;(2)求点A 到平面PCD 的距离.20.(12分)已知数列()n a 满足()21112122222326n n n n n a a a a n -+-++++=-⋅+ .(1)求{}n a 的通项公式;(2)若2n an n b a =+,求数列n b 的前n 项和T .21.(12分)已知函数()ln x af x ex x -=-+.(1)当1a =时,求曲线()f x 在点()()1,1f 处的切线方程,(2)当0a 时,证明,()2f x x >+.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系,xOy 中,直线l的参数方程为2,21,2x a y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为22413sin ρθ=+.(1)求直线l 和曲线C 的直角坐标方程;(2)若曲线C 经过伸缩变换,2,x x y y ⎧=⎪⎨⎪='⎩'得到曲线C ',若直线l 与曲线C '有公共点,试求a 的取值范围.23.[选修4-5:不等式选讲](10分)已知函数()22(0)f x x x t t =++->,若函数()f x 的最小值为5.(1)求t 的值;(2)若,,a b c 均为正实数,且2a b c t ++=,求1412a b c++的最小值.2024届高三一轮复习联考(三)全国卷文科数学参考答案及评分意见1.A【解析】由21x ,即()()110x x -+,解得11x -,所以{}11B xx =-∣,所以{12}A B xx ⋃=-<∣.故选A .2.D 【解析】2,220x x x ∀∈+-<R 的否定为:2000,220x x x ∃∈+-R ,故选D.3.A 【解析】2(1i)2i z =+=,即复数z 的虚部为2,故选A .4.D【解析】()()()222(2)228,8log 83f f -=--⨯-===,故选D.5.C 【解析】因为1sin 62πα⎛⎫-= ⎪⎝⎭,所以2211cos 2cos 2cos 22sin 11366622ππππααπαα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=--=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故选C.6.A 【解析】()()2e e 1x xf x f x x ---==-+,所以函数()y f x =是奇函数,排除B 选项,又()22e e 215f --=>,排除C ,D 选项,故选A.7.D 【解析】由题意,函数22sin cos212sin 2sin y x x x x =-+=+,令[]sin 1,1t x =∈-,可得221122222y t t t ⎛⎫=+=+- ⎪⎝⎭,当12t =-,即1sin 2x =-时,函数取得最小值,最小值为12-.故选D.8.A【解析】因为10n n a a +-<,所以数列{}n a 为递减数列,当2n 时,()2212(1)2123n n n a S S n n m n n m n -⎡⎤=-=-++---+-+=-+⎣⎦,故可知当2n 时,{}n a 单调递减,故{}n a 为递减数列,只需满足21a a <,即112m m-+⇒-.故选A .9.D【解析】由等比数列的性质,可得()911911918,10102888m n m n m n m n m n n m ⎛⎛⎫⎛⎫+=+=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当6,2m n ==时,等号成立,因此,91m n +的最小值为2.故选D.10.B 【解析】()cos 3f x x π⎛⎫=+⎪⎝⎭,结合图象,()f x 的值域是11,,0,2333x a x a πππ⎡⎤-++⎢⎣⎦,于是533a πππ+,解得2433aππ,所以实数a 的取值范围为24,33ππ⎡⎤⎢⎥⎣⎦.故选B.11.B 【解析】设()()2sin cos sin ,x x x xf x f x x x -==',令()()cos sin ,sing x x x x g x x x =-'=-,当()0,x π∈时,()0g x '<,故()g x 在()0,π上递减,()()()00,0g x g f x <=∴<',故()sin xf x x=在()0,π上递减,023π<<< .()()sin3sin232,,2sin33sin232f f ∴<<<,故c b <,()()()sin 2012,sin1,sin22sin1,3sin232sin14sin12ππππππ-<<-<<<-<-<-,故b a <,故c b a <<,故选B.12.C 【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时231133632212O ABC C AOB V V R R --==⨯⨯⨯==,故3R =O 的体积为343R V π==,故选C.13.3-【解析】0a b a b ⊥⇔⋅=,所以()(1,10,3k k ⋅=+==-.14.18【解析】设等差数列{}n a 的首项和公差分别为1,a d ,则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,所以n S 可看成关于n 的二次函数,由二次函数的对称性及202426,m S S S S ==,可得20242622m++=,解得18m =.15.④【解析】根据线面的位置关系易知,①②③中面α和面β可能相交也可能平行,④:若m α⊥且m β⊥,根据面面平行的判定可知垂直于同一直线的两平面互相平行,故④正确.16.()3,1--【解析】作出函数()f x 的大致图象,如图所示,令()t f x =,则()()()2[]210f x m f x m --+-=可化为()()()221110t m t m t m t --+-=-+-=,则11t =或21t m =-,则关于x 的方程()()()2[]210f x m f x m --+-=恰有5个不同的实数解等价于()t f x =的图象与直线12,t t t t ==的交点个数之和为5个,由图可得函数()t f x =的图象与直线1t t =的交点个数为2,所以()t f x =的图象与直线2t t =的交点个数为3个,即此时214m <-<,解得31m -<<-.17.【解析】(1)在数列{}n a 中,已知12122log log log 1n n n na a a a ++-==,所以12n na a +=,.即{}n a 是首项为12a =,公比为2的等比数列,所以()1*222n n n a n -=⨯=∈N .(2)由()()32322nn n a n -=-⨯,故()()231124272352322n n n S n n -=⨯+⨯+⨯++-⨯+-⨯ ,所以()()23412124272352322nn n S n n +=⨯+⨯+⨯++-⨯+-⨯ ,则()23123222322n n n S n +⎡⎤-=+⨯+++--⨯⎣⎦,()()()11212433221053212n n n n n ++-=-+⨯--⨯=-+-⋅-,故()110352n n S n +=+-⋅.18.【解析】(1)解法一:由题,cos cos 2cos a A c C b B +=,由正弦定理得,sin2sin cos sin cos B A A C C =+,.3,,sin2sin 2sin 2cos2422C A B C B A A A ππππ⎛⎫⎛⎫=++==-=-=- ⎪ ⎪⎝⎭⎝⎭,所以1cos2sin cos 2A A A -=+,221sin cos sin cos 2A A A A --=22tan 1tan 1tan 12A A A --=+,化简得2tan 2tan 30A A --=,解得tan 3A =或tan 1A =-(舍去).解法二:由题,cos cos 2cos a A c C b B +=,由正弦定理得,2sin2sin2sin2B A C =+,即()()()()2sin2sin sin B A C A C A C A C ⎡⎤⎡⎤=++-++--⎣⎦⎣⎦,即()()sin2sin cos B A C A C =+-,又A B C π++=,故()sin sin A C B +=,所以()2sin cos sin cos B B B A C =-,又0B π<<,故sin 0B ≠,所以()2cos cos B A C =-,又A B C π++=,故()cos cos B A C =-+,化简得sin sin 3cos cos A C A C =,因此tan tan 3A C =且tan 1C =,所以tan 3A =.(2)由(1)知tan 3A =,因此()tan tan tan tan 21tan tan A CB AC A C+=-+=-=-,.所以sin 10A =,sin 5B =2sin 2C =,因为,6sin sin a c a A C==,.所以1125sin 612225ABC S ac B ==⨯⨯= .19.【解析】(1)因为,PB PC O =是BC 的中点,所以PO BC ⊥,在直角POC 中,1PC OC ==,所以PO =,在矩形ABCD 中,1,2AB BC ==,所以DO =,又因为2PD =,所以在POD 中,222PD PO OD =+,即PO OD ⊥.而,,BC OD O BC OD ⋂=⊂平面ABCD ,所以PO ⊥平面ABCD ,而PO ⊂平面PBC ,所以平面PBC ⊥平面ABCD .'(2)由(1)平面PBC ⊥平面ABCD ,且DC BC ⊥,所以DC ⊥平面PBC ,所以DC PC ⊥,即PCD 是直角三角形,因为1PC CD ==,所以13122PDC S =⨯=,又知11212ACD S =⨯⨯= ,PO ⊥平面ABCD ,设点A 到平面PCD 的距离为d ,则A PCD P ACD V V --=,即1133PCD ACD S d S PO ⨯⨯=⨯⨯ ,即1311323d ⨯⨯=⨯⨯所以263d =,所以点A 到平面PCD 的距离为3..20.【解析】(1)由题当1n =时,()111223262a +=-⋅+=,即11a =.()21112122222326n n n n n a a a a n -+-++++=-⋅+ ①当2n 时,()211212222526n n n a a a n --+++=-⋅+ ②.①-②得()()()1223262526212nn n n n a n n n +=-⋅+--⋅-=-⋅,所以21n a n =-..(2)由(1)知,212221n an n n b a n -=+=+-,则()()()()3521212325221n n T n -=++++++++- ()()3521222213521n n -=+++++++++-⋅()()212214121232..1423nn n n n +⨯-+-+-=+=-21.【解析】(1)当1a =时,()()111e ln ,e 1x xf x x x f x x--=-+=-+',所以()()12,11f f '==,.则切线方程为()211y x -=⨯-,.即10x y -+=曲线()f x 在点()()1,1f 处的切线方程为10x y -+=.(2)证明:要证()2f x x >+,即证e ln 2x a x -->,设()eln ,0x aF x x x -=->,即证()2F x >,当0a 时,()()1e 1e ln ,ex a x ax ax F x x F x x x----=-=-='在()0,∞+上为增函数,且()e1x ah x x -=-中,()()0100e 110,1e 1e 10a a h h --=⨯-=-=-->.故()0F x '=在()0,∞+上有唯一实数根0x ,且()00,1x ∈..当()00,x x ∈时,()0F x '<,当()0,x x ∞∈+时,()0F x '>,从而当0x x =时,()F x 取得最小值.由()00F x '=,得001ex ax -=,故()()000001eln 2x aF x F x x x a a x -=-=+->.综上,当0a 时,()2F x >即()2f x x >+.22.【解析】(1)由题2,21,2x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数t得直线:20l x a -=,.22413sin ρθ=+,即2224cos 4sin ρθθ=+,即曲线C 的直角坐标方程为2214x y +=.(2)由,2,x x y y ⎧=⎪⎨⎪='⎩'得2,,x x y y =⎧⎨=''⎩又2214x y +=,所以()()22214x y +'=',即'2'21x y +=,所以曲线C '的方程是221x y +=,.由1d =得11a -.所以a 的取值范围是[]1,1-.23.【解析】(1)()222f x x x t x x t x t =++-=++-+-,()2222y x x tx x t t t =++-+--=+=+,当2x t -时等号成立,.⋅又知当x t =时,x t -取得最小值,所以当x t =时,()f x 有最小值,此时()min ()25f x f t t ==+=,所以3t =..(2)由(1)知,23a b c ++=,()22141114111162(121)232333a b c a b c a b c ⎛⎫++=++++=++= ⎪⎝⎭,当且仅当333,,824a b c ===时取等号,所以1412a b c ++的最小值为163.。
绝密★启用前2021年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
考前须知:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:此题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项是符合题目要求的。
1.集合 A { 1,0,1,2},B {xx21},那么ABA. 1,0,1 B. 0,1 C. 1,1 D. 0,1,22.假设z(1 i) 2i,那么z=A.1 i B.1+i C.1 i D. 1+i3.两位男同学和两位女同学随机排成一列,那么两位女同学相邻的概率是1 1 1 1A. B. C.D.6 4 3 24.?西游记??三国演义??水浒传?和?红楼梦?是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过?西游记?或?红楼梦?的学生共有90位,阅读过?红楼梦?的学生共有80位,阅读过?西游记?且阅读过?红楼梦?的学生共有60位,那么该校阅读过?西游记?的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.85.函数 f(x) 2sinxsin2x 在[0,2π]的零点个数为A.2B.3C.4D.56.各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,那么a3=A.16B.8C.4D.27x1aey=2x+b.曲线y ae xlnx在点〔,〕处的切线方程为,那么-1,b=1D.a=e-1,A.a=e,b=-1B.a=e,b=1C.a=e b1文科数学试题第1页〔共9页〕8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,那么A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线为,那么输出s的值等于9.执行下边的程序框图,如果输入的1A.2241B.2251C.2261D.22710.F是双曲线C:x2y21的一个焦点,点P在C上,O为坐标原点,假设OP=OF,45那么△OPF的面积为3579A.B.C.D .222211.记不等式组xy?6,表示的平面区域为D.命题p:(x,y)D,2xy?9;命题2x y0q:(x,y)D,2x y,12.下面给出了四个命题①pq②pq③pq④p q这四个命题中,所有真命题的编号是A.①③B.①②C.②③D.③④12.设fx是定义域为R的偶函数,且在0, 单调递减,那么132A.f〔log32〕>f〔23〕B.f〔log3〕>f〔2423〕>f〔23〕>f〔22〕3C.f〔22223〕>f〔23〕>f〔log31〕D.f〔23〕>f〔22〕>f〔log31〕44文科数学试题第2页〔共9页〕二、填空题:此题共4小题,每题5分,共20分。
绝密★启用前2021年普通高等学校招生全国统一考试〔新课标Ⅲ〕文科数学考前须知:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答复选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答复非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.集合A={1,2,3,4},B={2,4,6,8},那么A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游效劳质量,收集并整理了2021年1月至2021年12月期间月接待游客量〔单位:万人〕的数据,绘制了下面的折线图.根据该折线图,以下结论错误的选项是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量顶峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比拟平稳4.4sin cos3αα-=,那么sin2α=A .79-B .29-C .29D .795.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,那么z =x -y 的取值范围是 A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .157.函数y =1+x +2sin xx的局部图像大致为A .B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,那么输入的正整数N 的最小值为A .5B .4C .3D .29.圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,那么该圆柱的体积为 A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,那么A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.椭圆C :22221x y a b+=,〔a >b >0〕的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,那么C 的离心率为AB C D .1312.函数211()2()x x f x x x a ee --+=-++有唯一零点,那么a =A .12-B .13C .12D .1二、填空题:此题共4小题,每题5分,共20分。
绝密★启封并使用完毕前试题类型:新课标Ⅲ2017年普通高等学校招生全国统一考试文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I 卷一、单选题 (本大题共12小题,每小题5分,共60分。
) 1. 已知集合{}{}1,2,3,4,2,4,6,8A B ==,则AB 中的元素的个数为( )A. 1B. 2C. 3D. 42. 复平面内表示复数()2z i i =-+的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A. 月接待游客量逐月增加B. 年接待游客量逐年增加C. 各年的月接待游客量高峰期大致在7,8月D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知4sin cos 3αα-=,则sin 2α=( ) A. 79-B. 29-C. 29D. 795. 设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩则z x y =-的取值范围是( )A. []3,0-B. []3,2-C. []0,2D. []0,36. 函数()1sin cos 536f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为( )A.65 B. 1 C. 35 D. 157. 函数2sin 1xy x x =++的部分图像大致为( )8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A. 5B. 4C. 3D. 29. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A. πB.34π C.2π D. 4π 10. 在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A.11A E DC ⊥B. 1A E BD ⊥C. 11A E BC ⊥D. 1A E AC ⊥11. 已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A .63 B . 33 C . 23D . 1312. 已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则a =( )A . 12-B . 13C . 12 D . 1 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答. 二、填空题 (本大题共4小题,每小题5分,共20分)13. 已知向量()2,3a =-,()3,b m =,且a b ⊥,则m =____。
14. 双曲线()222109x y a a -=>的一条渐近线方程为35y x =,则a =____。
15. ABC ∆内角,,A B C 的对边分别为,,a b c ,已知60,6,3C b c ===,则__.A = 16. 设函数()1,02,0x x x f x x +≤⎧=⎨>⎩则满足()112f x f x ⎛⎫+-> ⎪⎝⎭的x 的取值范围是_______。
三、简答题(本大题共6小题,共70分。
) 17. 设数列{}n a 满足()123...212n a a n a n +++-= (1)求数列{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和;18. 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完。
根据往年销售经验,每天需求量与当天最高气温(单位:C )有关。
如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶。
为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频率分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率。
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元)。
当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值并估计Y 大于0的概率? 19. 如图,四面体ABCD 中,ABC ∆是正三角形,AD CD = (1)证明:AC BD ⊥(2)已知ACD ∆是直角三角形,AB BD=,若E 为棱BD 上与D 不重合的点,且AE EC ⊥,求四面体ABCE 与四面体ACDE 的体积比20. 在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于,A B 两点,点C 的坐标为(0,1)。
当m 变化时,解答下列问题: (1)能否出现AC BC ⊥的情况?说明理由;(2)证明过,,A B C 三点的圆在y 轴上截得的弦长为定值。
21. 设函数()()2ln 21f x x ax a x =+++.(1)讨论()f x 的单调性; (2)当0a <时,证明()324f x a<--. 22. 选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
在直角坐标系xOy 中,直线1l 与参数方程为2,,x t y kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x m m y k =-+⎧⎪⎨=⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C . (1) 写出C 的普通方程;(2) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+-=,M 为l 3与C 的交点,求M 的极径.23.选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
已知函数f(x)=│x+1│–│x–2│.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2–x +m的解集非空,求m的取值范围.参考答案单选题1. B2. C3. A4. A5. B6. A7. D8. D9. B 10. C 11. A 12. C单选题 详解 1. 集合和集合有共同元素2,4,则所以元素个数为2.2. 化解得,所以复数位于第三象限。
3. 由折线图可知,每年月接待游客量从8月份后存在下降趋势,故选A .4.由题意易知,()216sin cos 9αα-=,1612sin cos 9αα∴-=,167sin 22sin cos 199ααα∴==-=-5.由题意,画出可行域,端点坐标 ,,.在端点处分别取的最小值与最大值.所以最大值为,最小值为.故选6.()111331sin cos sin cos cos sin 53652222f x x x x x x x ππ⎛⎫⎛⎫⎛⎫=++-=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()3333sin 3cos sin 3cos 2sin 55553x x x x x π⎛⎫=+=+=⨯+ ⎪⎝⎭故最大值为657.注意到四个答案的差别,可以取一个较小的自变量值,比如0.01x =,则()()2sin 0.010.0110.01 1.0100.01f =++>>,故排除,A C 注意,B D 的差别,可取特别大的自变量,此时2sin xx 可忽略不计此时1y x ≈+,故排除B8. 当输入的正整数时,否,输出9.如图所示,易知11,2OA OB ==,32AB ∴=,233124S ππ⎛⎫∴=⨯= ⎪ ⎪⎝⎭,选B 10. 平面,又,平面,又平面.11. 易知圆心为原点,半径为a ,故圆心到直线20bx ay ab -+=的距离为半径即222aba a b=+ 2224b a b ∴=+ ()222233a b a c ∴==-2263cc e aa ∴===12. ()()()21111x x f x x a e e --+=--++令()()21g x x =-,则()g x 在(),1-∞上单调递减,在()1,+∞上单调递增;令()()11x x h x ee --+=+,则由均值不等式得,()h x 在(),1-∞上单调递减,在()1,+∞上单调递增;故当0a >时,()f x 在(),1-∞上单调递减,在()1,+∞上单调递增; ()1120f a ∴=-+=B OA102a ∴=>满足题意,结合选项知选C填空题 13. 2 14. 5 15. 75 16.填空题 详解 13. 因为得,。
14. 令双曲线右边的1为0,可得22209x y a -=,故双曲线的渐近线方程为3y x a=±5a ∴= 15. 有正弦定理知:sin sin B C b c=,3622sin 32B ⨯∴==,45B ∴=,故75A = 16.画出()f x 及12f x ⎛⎫- ⎪⎝⎭的图像知()f x 及12f x ⎛⎫- ⎪⎝⎭都是R 上的单调递增函数,故()12f x f x ⎛⎫+- ⎪⎝⎭也是R 上的单调递增函数,从图像上易判断()112f x f x ⎛⎫+-= ⎪⎝⎭的解在直线部分,故令1112x x +++=,解得14x =-,故()112f x f x ⎛⎫+-> ⎪⎝⎭的解集为1,4⎛⎫-+∞ ⎪⎝⎭简答题 17. (1)当时, (1分)当时,由① (2分)② (3分)① -②得(4分) 即x yf (x -12)-11f (x )验证符合上式 所以 (6分) (2) (8分)(12分) 18. 216363905P ++== (4分) 当温度大于等于时,需求量为,元 (6分) 当温度在时,需求量为, (8分)元 当温度低于时,需求量为,元 (10分) 当温度大于等于时,,3625744905P +++==。