2016_2017学年高中数学第2章柯西不等式与排序不等式及其应用2.4最大值与最小值问题优化的数学模型课件
- 格式:ppt
- 大小:13.89 MB
- 文档页数:42
2.3~2.4 平均值不等式(选学)最大值与最小值问题,优化的数学模型[对应学生用书P33][读教材·填要点]1.平均值不等式(1)定理1(平均值不等式): 设a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥ na 1a 2…a n ,等号成立⇔a 1=a 2=…=a n .①推论1:设a 1,a 2,…,a n 为n 个正数,且a 1a 2…a n =1,则a 1+a 2+…+a n ≥n . 且等号成立⇔a 1=a 2=…=a n =1.②推论2:设C 为常数,且a 1,a 2,…,a n 为n 个正数;则当a 1+a 2+…+a n =nC 时,a 1a 2…a n ≤C n ,且等号成立⇔a 1=a 2=…=a n . (2)定理2:设a 1,a 2,…,a n 为n 个正数,则na 1a 2…a n ≥n1a 1+1a 2+…+1a n,等号成立⇔a 1=a 2=…=a n . (3)定理3:设a 1,a 2,…,a n 为正数,则a 1+a 2+…+a n n ≥≥n1a 1+1a 2+…+1a n,等号成立⇔a 1=a 2=…=a n .推论:设a 1,a 2,…,a n 为n 个正数,则 (a 1+a 2+…+a n )(1a 1+1a 2+…+1a n)≥n 2.2.最值问题设D 为f (x )的定义域,如果存在x 0∈D ,使得f (x )≤f (x 0)(f (x )≥f (x 0)),x ∈D , 则称f (x 0)为f (x )在D 上的最大(小)值,x 0称为f (x )在D 上的最大(小)值点,寻求函数的最大(小)值及最大(小)值问题统称为最值问题.[小问题·大思维]1.利用基本不等式a +b2≥ab 求最值的条件是什么?提示:“一正、二定、三相等”,即:(1)各项或各因式为正;(2)和或积为定值;(3)各项或各因式能取得相等的值.2.应用三个正数的算术—几何平均不等式,求最值应注意什么?提示:三个正数的和为定值,积有最大值;积为定值,和有最小值.当且仅当三个正数相等时取得.[对应学生用书P34][例1] 已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[思路点拨] 本题考查基本不等式的应用,解答本题可灵活使用“1”的代换或对条件进行必要的变形,然后再利用基本不等式求得和的最小值.[精解详析] 法一:∵x >0,y >0,1x +9y=1,∴x +y =(1x +9y )(x +y )=y x +9xy+10≥6+10=16. 当且仅当y x =9x y ,又1x +9y=1, 即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.(1)运用不等式求最大值、最小值,用到两个结论,简述为:“和定积最大”与“积定和最小”.(2)运用定理求最值时:必须做到“一正,二定,三相等”.1.求函数f (x )=-2x 2+x -3x(x >0)的最大值及此时x 的值.解:f (x )=1-⎝ ⎛⎭⎪⎫2x +3x .因为x >0,所以2x +3x≥26,得-⎝ ⎛⎭⎪⎫2x +3x ≤-26,因此f (x )≤1-26,当且仅当2x =3x ,即x 2=32时,式子中的等号成立.由于x >0,因而x =62时,等号成立. 因此f (x )max =1-26,此时x =62.[例2] 已知x 为正实数,求函数y =x (1-x 2)的最大值.[思路点拨] 本题考查三个正数的算术—几何平均不等式在求最值中的应用.解答本题要根据需要拼凑出利用其算术—几何平均不等式的条件,然后再求解.[精解详析] ∵y =x (1-x 2),∴y 2=x 2(1-x 2)2=2x 2(1-x 2)(1-x 2)·12.∵2x 2+(1-x 2)+(1-x 2)=2, ∴y 2≤12⎝ ⎛⎭⎪⎫2x 2+1-x 2+1-x 233=427.当且仅当2x 2=1-x 2=1-x 2,即x =33时取“=”号. ∴y ≤239.∴y 的最大值为239.(1)利用三个正数的算术—几何平均不等式定理求最值,可简记为“积定和最小,和定积最大”.(2)应用算术—几何平均不等式定理,要注意三个条件即“一正二定三相等”同时具备时,函数方可取得最值.其中定值条件决定着平均不等式应用的可行性,获得定值需要一定的技巧,如:配系数、拆项、分离常数、平方变形等.(3)当不具备使用平均不等式定理的条件时,求函数的最值可考虑利用函数的单调性.2.已知x 为正实数,求函数y =x 2·(1-x )的最大值. 解:y =x 2(1-x )=x ·x (1-x ) =x ·x ·(2-2x )×12≤12⎝ ⎛⎭⎪⎫x +x +2-2x 33=12×827=427. 当且仅当x =2-2x ,即x =23时取等号.此时,y max =427.[例3] 已知圆锥的底面半径为R ,高为H ,求圆锥的内接圆柱体的高h 为何值时,圆柱的体积最大?并求出这个最大的体积.[思路点拨] 本题考查算术—几何平均不等式在实际问题中的应用,解答本题需要作出圆锥、圆柱的轴截面,利用相似三角形建立各元素之间的关系,然后利用算术—几何平均不等式求最大值.[精解详析]设圆柱体的底面半径为r ,如图,由相似三角形的性质可得H -h H =rR,∴r =R H(H -h ).∴V 圆柱=πr 2h =πR 2H2(H -h )2h (0<h <H ).根据平均不等式可得V 圆柱=4πR 2H 2·H -h 2·H -h 2·h ≤4πR 2H 2⎝ ⎛⎭⎪⎫H 33=427πR 2H . 当且仅当H -h2=h ,即h =13H 时,V 圆柱最大=427πR 2H .(1)在解求最值应用题时,先必须确定好目标函数,再用“平均值不等式”求最值. (2)在确定目标函数时,必须使函数成为一元函数,即只能含一个变量,否则是无法求最值的.3.如图(1)所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,如图(2)所示,求这个正六棱柱容器容积的最大值.解:设正六棱柱容器底面边长为x (x >0),高为h , 如图可知2h +3x =3,即h =32(1-x ), 所以V =S 底·h =6×34x 2·h=332x 2·32·(1-x )=23×332×x 2×x 2×(1-x )≤9×⎝ ⎛⎭⎪⎪⎫x 2+x2+1-x 33 =13. 当且仅当x 2=1-x ,即x =23时,等号成立.所以当底面边长为23时,正六棱柱容器容积最大值为13.[对应学生用书P35]一、选择题1.函数y =3x +12x2(x >0)的最小值是( )A .6B .6 6C .9D .12解析:y =3x +12x 2=3x 2+3x 2+12x 2≥333x 2·3x 2·12x 2=9,当且仅当3x 2=12x 2,即x =2时取等号.答案:C2.已知x +2y +3z =6,则2x+4y+8z的最小值为( ) A .336 B .2 2 C .12D .1235解析:∵2x>0,4y>0,8z>0,∴2x +4y +8z =2x +22y +23z ≥332x ·22y ·23z=332x +2y +3z =3×4=12. 当且仅当2x=22y=23z,即x =2y =3z ,即x =2,y =1,z =23时取等号.答案:C3.设x ,y 为正实数,且满足x +4y =40,则lg x +lg y 的最大值是( ) A .40 B .10 C .4D .2解析:因为x ,y 为正实数,∴4xy ≤x +4y2.∴xy ≤x +4y4=10.∴xy ≤100.∴lg x +lg y =lg xy ≤lg100=2. 答案:D4.已知x ∈R +,有不等式:x +1x≥2x ·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x2=3,….启发我们可以推广结论为:x +axn ≥n +1(n ∈N +),则a 的值为( )A .n nB .2nC .n 2D .2n +1解析:x +a x n =···n xn nx x x a++++n n n x相乘个 ≥(n +1)···n xn nn n n x∙∙∙∙相乘个 =(n +1)n +1an n,由推广结论知ann =1,∴a =n n. 答案:A 二、填空题5.设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x2+4y 2的最小值为______.解析:⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=1+4+4x 2y 2+1x 2y 2≥1+4+2·4x 2y 2·1x 2y2=9,当且仅当4x 2y 2=1x 2y2时等号成立,即|xy |=22时等号成立. 答案:96.若x ,y ∈R +且xy =1,则⎝ ⎛⎭⎪⎫x y +y ⎝ ⎛⎭⎪⎫y x+x 的最小值是________.解析:∵x >0,y >0,xy =1,∴⎝ ⎛⎭⎪⎫x y +y ⎝ ⎛⎭⎪⎫y x +x =1+x 2y +y 2x +xy≥1+33x 2y 2=4,当且仅当x 2y =y 2x=xy ,即x =y =1时取等号. 答案:47.对于x ∈⎝ ⎛⎭⎪⎫0,π2,不等式1sin 2x +p cos 2x ≥16恒成立,则正数p 的取值范围为________. 解析:令t =sin 2x ,则cos 2x =1-t .又x ∈⎝⎛⎭⎪⎫0,π2,∴t ∈(0,1). 不等式1sin 2x +p cos 2x ≥16可化为 p ≥⎝⎛⎭⎪⎫16-1t (1-t ),而y =⎝ ⎛⎭⎪⎫16-1t (1-t )=17-⎝ ⎛⎭⎪⎫1t +16t ≤17-2 1t·16t =9,当1t =16t ,即t =14时取等号, 因此原不等式恒成立,只需p ≥9. 答案: [9,+∞)8.设三角形三边长为3,4,5,P 是三角形内的一点,则P 到这三角形三边距离乘积的最大值是________.解析:设P 到长度为3,4,5的三角形三边的距离分别是x ,y ,z ,三角形的面积为S .则S =12(3x +4y +5z ),又∵32+42=52,∴这个直角三角形的面积S =12×3×4=6.∴3x +4y +5z =2×6=12.∴333x ·4y ·5z ≤3x +4y +5z =12. ∴(xyz )max =1615.当且仅当x =43,y =1,z =45时等号成立.答案:1615三、解答题9.已知a ,b ,x ,y 均为正实数,x ,y 为变数,a ,b 为常数,且a +b =10,a x +b y=1,x +y 的最小值为18,求a ,b .解:∵x +y =(x +y )⎝ ⎛⎭⎪⎫a x +b y =a +b +bx y +ay x≥a +b +2ab =(a +b )2,当且仅当bx y =ayx时取等号. 又(x +y )min =(a +b )2=18, 即a +b +2ab =18 ① 又a +b =10②由①②可得⎩⎪⎨⎪⎧a =2b =8或⎩⎪⎨⎪⎧a =8b =2.10.已知某轮船速度为每小时10千米,燃料费为每小时30元,其余费用(不随速度变化)为每小时480元,设轮船的燃料费用与其速度的立方成正比,问轮船航行的速度为每小时多少千米时,每千米航行费用总和为最小.解:设船速为V 千米/小时,燃料费为A 元/小时.则依题意有 A =k ·V 3,且有30=k ·103,∴k =3100.∴A =3100V 3.设每千米的航行费用为R ,需时间为1V小时,∴R =1V ⎝ ⎛⎭⎪⎫3100V 3+480=3100V 2+480V =3100V 2+240V +240V ≥333100V 2·240V · 240V =36.当且仅当3100V 2=240V,即V =20时取最小值.答:轮船航行速度为20千米/小时时,每千米航行费用总和最小.11.如图所示,在一张半径是2米的圆桌的正中央上空挂一盏电灯.大家知道,灯挂得太高了,桌子边缘处的亮度就小;挂得太低,桌子的边缘处仍然是不亮的.由物理学知道,桌子边缘一点处的照亮度E 和电灯射到桌子边缘的光线与桌子的夹角θ的正弦成正比,而和这一点到光源的距离r 的平方成反比.即E =k sin θr2. 这里k 是一个和灯光强度有关的常数.那么究竟应该怎样选择灯的高度h ,才能使桌子边缘处最亮?解:∵r =2cos θ,∴E =k ·sin θcos 2θ4(0<θ<π2),∴E 2=k 216·sin 2θ·cos 4θ=k 232·(2sin 2θ)·cos 2θ·cos 2θ ≤k 232·⎝ ⎛⎭⎪⎫2sin 2θ+cos 2θ+cos 2θ33=k 2108, 当且仅当2sin 2θ=cos 2θ即tan 2θ=12,tan θ=22时取等号,∴h =2tan θ=2,即h =2米时,E 最大.。
经典例题透析类型一:利用柯西不等式求最值1.求函数的最大值.思路点拨:利用不等式解决最值问题,通常设法在不等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为ac+bd的形式就能利用柯西不等式求其最大值.也可以利用导数求解。
解析:法一:∵且,∴函数的定义域为,且,当且仅当时,等号成立,即时函数取最大值,最大值为法二:∵且,∴函数的定义域为由,得即,解得∴时函数取最大值,最大值为.总结升华:当函数解析式中含有根号时常利用柯西不等式求解.不等式中的等号能否取得是求最值问题的关键.举一反三:【变式1】(2011,24)已知函数f(x)=|x-2|-|x-5|。
(I)证明:-3≤f(x)≤3;(II)求不等式f(x)≥x2-8x+15的解集。
【答案】(Ⅰ)当时,.所以.…………5分(Ⅱ)由(Ⅰ)可知,当时,的解集为空集;当时,的解集为;当时,的解集为.综上,不等式的解集为.……10分【变式2】已知,,求的最值.【答案】法一:由柯西不等式于是的最大值为,最小值为.法二:由柯西不等式于是的最大值为,最小值为.【变式3】设2x+3y+5z=29,求函数的最大值.【答案】根据柯西不等式,故。
当且仅当2x+1=3y+4=5z+6,即时等号成立,此时,评注:根据所求最值的目标函数的形式对已知条件进行配凑.类型二:利用柯西不等式证明不等式利用柯西不等式证明某些不等式显得特别方便,而利用柯西不等式的技巧也有很多。
如常数的巧拆、结构的巧变、巧设数组等。
(1)巧拆常数:2.设、、为正数且各不相等,求证:思路点拨:∵、、均为正,∴为证结论正确只需证:而,又,故可利用柯西不等式证明之。
证明:又、、各不相等,故等号不能成立∴。
(2)重新安排某些项的次序:3.、为非负数,+=1,,求证:思路点拨:不等号左边为两个二项式积,,直接利用柯西不等式,得不到结论,但当把第二个小括号的两项前后调换一下位置,就能证明结论了。
柯西不等式与排序不等式一、基本概念:(一)定理1:二维形式的柯西不等式若,,,a b c d 都是实数,则22222()()()a b c d ac bd ++≥+,当且仅当ad bc =时,等号成立. 证明:(一)代数证明:2222222222222a c b c b d a d a c b d abcd ⇐+++≥++222220b c abcd a d ⇐-+≥2()0bc ad ⇐-≥当且仅当ad bc =时,等号成立.(二)向量证明:构造向量(,),(,)a b c d αβ==,则有cos αβαβθ⋅=⋅ αβαβ⋅≤⋅其坐标形式即为222ac bd a b c +≤+⋅+ 当且仅当,αβ共线或0β=时等号成立,即当且仅当ad bc =时,等号成立. 推论1ac bd≥+(来源于向量证明中)推论2ac bd +(将原式中,,,a b c d 都变为,,,a b c d ) 定理2:柯西不等式的向量形式设α,β是两个向量,则⋅≤αβαβ当且仅当β是零向量,或存在实数k ,使α=kβ时,等号成立.证明:上述向量证明已经说明完毕 定理3:二维形式的三角不等式设1122,,,x yx y R ∈≥证明:22222112222221112122222221112122222121222()()()x y x y x y x x y y x y x y x x y y x y x x y y =+++≥+++++≥+-+++=-+-≥(二)一般形式的柯西不等式设123123,,,,,,,,,n n a a a a b b b b 是实数,则222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++当且仅当0(1,2,,)i b i n ==或存在一个数k ,使得(1,2,,)i i a kb i n ==时,等号成立.简记作:平方和的乘积大于等于乘积和的平方分析:我们可以利用空间向量很容易证明出三维形式的柯西不等式2222222123123112233()()()a a a b b b a b a b a b ++++≥++,但维数再高时就没有几何模型可以构造证明了,那么如何证明这一重要的不等式呢?证明:(一)构造二次函数:222()20i i i i i f x a x a b x b =++≥,222()()()2()0iii iiF x f x a x ab x b ==++≥∑∑∑∑(二)归纳法和平均值不等式:(1)当2n =时,有22222222222222222112211112222111221221212()2()()a b a b a b a ba b a b a b a b a b a b a a b b +=++≤+++=++即命题成立(2)假设当n k =时命题成立,当1n k =+时,由于2222112211112211221111()()2()k k k k k k k k k k k k a b a b a b a b a b a b a b a b a b a b a b a b ++++++++++=++++++++由平均值不等式,得222222221122111121122()()()k k k k k k k k a b a b a b a b a b b b b a a a +++++++≤+++++++由归纳假设得2222112211112211221111222222222221122112112112222222121211()()2()()()()()()(k k k k k k k k k k k k k k k k k k k k kkk a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b b b b a a a a b a a a b b b a b +++++++++++++++=++++++++≤++++++++++++≤+++++++22222222221121122222222121121)()()()kk kk k k k k k b b b a a a a ba a a ab b b b +++++++++++++=++++++++由(1)(2)得原命题成立(三)构造单调数列:构造数列{}n S ,其中222222*********()()()n n n n n S ab a b a b a a a b b b =+++-++++++则22211111()()0S ab a b =-=22222221112211121121222222211221212[()()()][()()()]n n n n n n n n nnS S a b a b a b a a a b b b a b a b a b a a a b b b +++++-=+++-++++++-+++-++++++22222222222211221111121112112()()()n n n n n n n n n n n n ab a b a b a b a b a a a b a b b b a b ++++++++=++++-+++-+++-2221111212111[()()()]0n n n n n n n n a b ba a b b a a b b a ++++++=--+-++-≤ 即1n n S S +≤,所以{}n S 单调减少,从而对一切1n ≥,有10n S S ≤=,故命题成立.(四)归纳法证明更强的结论:1ni ii a b=≤∑ (1)当2n =时,22222222222222222112211112222111221221212()2()()a b a b a b a ba b a b a b a b a b a b a a b b +=++≤+++=++(2)假设当n k =时命题成立,当1n k =+时,由归纳假设11111kk i i k k i ii i a b a b a b +++===≥≥+=∑∑由(1)(2)得原命题成立(三)柯西不等式的变形形式 变形1:已知123,,,,n a a a a 都是实数,求证:222212121()()n n a a a a a a n+++≤+++说明:此变形为1(1,2,,)i b i n ==的特殊形式,经过整理,在都为正数的条件下可变为均值不等式2221212n na a a a a a n ++++++≤变形2:已知123,,,,n a a a a 都是实数,0(1,2,,)i b i n >=则:222212121212()n n n na a a a a ab b b b b b ++++++≥+++ 变形3:已知123123,,,,,,,,,n n a a a a b b b b 同号且不为0,则:21212121122()n n n n na a a a a ab b b a b a b a b ++++++≥+++ 上述各种形式如果灵活运用会给解决问题带来便利. (四)排序不等式设1212,n n a a a b b b ≤≤≤≤≤≤为两组实数,12,,,n c c c 是123,,,,n b b b b 的任一排列,则 121111221122n n n n n n na b a b a b a c a c a c a b a b a b -+++≤+++≤+++,当且仅当123n a a a a ====或123n b b b b ====时,反序和等于顺序和简记作:反序和≤乱序和≤顺序和 证明:设1212,n n a a a b b b ≤≤≤≤≤≤为两组实数,12,,,n c c c 是12,,,n b b b 的任一排列,因为12,,,n b b b 得全排列有!n 个,所以1122n n S a c a c a c =+++(1)的不同值也只有有限个(个数!n ≤),其中必有最大值和最小值,考虑(1)式,若11c b ≠,则有某11(1),k k c b k c c =>> ,将(1)中1,k c c 对换,得11k k n n S a c a c a c '=+++(2)111111()()0k k k k k k S S a c a c a c a c a a c c '-=+--=--≥这说明将(1)中的第一项调换为11a b 后,和式不减小.若11,c b =则转而考察2c ,并进行类似讨论.类似的,可以证明,将(1)中的第一项换为11a b ,第二项换为22a b 后,和式不减小,如此继续下去,经有限步调整,可知一切和数中,最大和数所对应的情况只能是{}i c 由小到大排序的情况,最大和数是顺序和,即顺序和≥乱序和 同样可证,最小和数是反序和,即乱序和≥逆序和二、习题精练:【柯西不等式应用】 (一)求最值例1:设,0a b >,求证:11()()4a b a b++≥.例2:设,,0a b c >,求证:9)111)((≥++++c b a c b a 例3:设,,0a b c >,求证:29)111)((≥+++++++a c c b b a c b a 例4:21x y +=,求22x y +的最小值________15例5:22236x y +≤,求2x y +的最大值 1. 1,a b +=22a b +的最小值为_________122.,a b R +∈,111,a b a b+=+最小值为_________4 3. 1111,,,,a b c a b c R a b c+++=∈++最小值为__________94.已知0,0x y >>且21x y +=,则11u x y=+的最小值为___________3+5.已知,,,1,a b c R a b c +∈++=则149x y z++的最小值为_______366.,,,a b c R a b c +∈++=_________7. ,a b R +∈,a b +=8. 求函数y =的最大值__________________5解:22222(34)25≤++=9. 若,,a b c R +∈,且1a b c ++=,则c b a ++的最大值是10. 若,,a b c R +∈,且2313a b c ++=的最大值是11. 若实数,,,m n x y 满足2222,(),m n a x y b a b +=+=≠则mx ny +的最大值是12.若2222(0,),0,()2cos sin a b a b f πθθθθ∈>>=+的最小值为_________2()a b + 13.设*11,,na b c n N a b b c a c>>∈+≥---且恒成立,则n 的最大值是_________4 14. (06陕西)已知不等式1()()9ax y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为 (C )(A)8 (B)6 (C )4 (D )215.(08浙江5)0,0a b ≥≥,且2a b +=,则 ( C ) (A )12ab ≤(B )12ab ≥ (C )222a b +≥ (D )223a b +≤ 16.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是( B )A .111<+ba B .111≥+ba C .211<+ba D .211≥+ba 17.设实数,,,,abcde 满足8a b c d e ++++=,2222216a b c d e ++++=,求e 的最大值解:8a b c d e +++=-,2222216a b c d e +++=-,根据柯西不等式有22(8)4(16)e e -≤-,解得1605e ≤≤,当65a b c d ====时,e 有最大值165e = (二)证明例:,,a b c R +∈求证:222a b c a b c b c a++≥++ 1. 已知1a b c ++=,求证:22213a b c ++≥ 2.已知12,,,n x x x R +∈,且121n x x x +++=,求证:222121211111n n x x x x x x n +++≥---- 3.,,a b c 为三角形三边,求证:1119a cb bc a a c b a b c++≥+-+-+-++4. 已知,,,a b c R +∈,236,a b c ++=求证:222236a b c ++≥5.设,,a b c R +∈,求证:2221()2a b c a b c b c a c a b ++≥+++++ 6. 若,a b R +∈,求证:2211()()422a b b a+++≥ 7. ,,a b c R +∈且1a b c ++=,求证:222111100()()()3a b c a b c +++++≥证明:222222222222211111111111()()()(111)(()()())()33111111111100(1())(1()())(19)3333a b c a b c a b c a b c a b c a b ca b c a b c a b c +++++=+++++++≥+++++=+++=+++++≥+=8.i a R +∈且11ni i a ==∑,求证:22211(1)()ni i i n a a n =++≥∑证明:同上9.在ABC ∆中,设其各边长为,,a b c ,外接圆半径为 R , 求证:2222222111()()36sin sin sin a b c R A B B++++≥ 10.设12,,,n x x x为任意实数,求证:1222222211212111n nx x x x x x x x x +++<+++++++证明:由柯西不等式得222212122222222222221121211212()[()()()]111111n nn nx x x x x x n x x x x x x x x x x x x +++≤+++⋅++++++++++++++ 对2k ≥,有2222222222222222121212121()1(1)(1)(1)kk k k kk k x x x x x x x x x x x x x x x -=≤++++++++++++++++222222121121111k kx x xx x x-=-++++++++对1k =,有22211122222111111()11(1)(1)1(1)1x x x x x x x x =≤=-+++++,故有 2221222222222222222221121211121211211111[()()()]111111111n n k kx x x x x x x x x x x x x x x x x x x -+++≤-+-++-+++++++++++++++++++ 222121111kx x x =-<++++则有222212122222222222221121211212()[()()()]111111n n n nx x x x x x n n x x x x x x x x x x x x +++≤+++⋅<++++++++++++++ 原命题得证【排序不等式应用】例1:已知,,a b c 为正数,求证:222a b c ab bc ac ++≥++例2:已知,,a b c 为正数,求证:3332222()()()()a b c a b c b a c c a b ++≥+++++(利用同向可加性) 1.(08江西)若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是(A ) A .1122a b a b + B .1212a a bb + C .1221a b a b + D .122.b a ab ba Rb a +≥+∈+,求证:已知,3.,,a b c R +∈,求证:2221()2a b c a b c b c c a a b ++≥+++++ 证明:由对称性不妨设a b c ≤≤,则222a b c ≤≤,111b c c a a b≤≤+++,则 222a b c b c c a a b +++++为顺序和,则有222222a b c b c a b c c a a b b c c a a b ++≥++++++++ 同理222222a b c c a b b c c a a b b c c a a b ++≥++++++++ 同向相加,有2222222222()a b c b c a c b a b c c a a b b c c a a b+++++≥++++++++ 因为2222()()b c b c +≥+,所以222b c b c b c ++≥+,同理222a c a c c a ++≥+,222b a a ba b ++≥+ 原式得证 4.设123,,,,,k a a a a 为两两各不相同的正整数,求证:对任何正整数n ,均有2111nnk k k a k k==≥∑∑(IMO20-5) 证明:设123,,,,n b b b b 是123,,,,n a a a a 的从小到大的有序排列,即123n b b b b ≤≤≤≤因为i b 是互不相同的正整数,则1231,2,3,,n b b b b n ≥≥≥≥,又因为222111123n>>>>,所以由排序不等式可得 32122223n a a a a n ++++(乱序)32122223n b b b b n ≥++++(倒序)111123n≥++++原命题成立,此题即为课后练习题 5.设123,,,,n a a a a 为正数,求证:2222231121232341n n n n a a a a a a a a a a a a a a -+++++≥++++(可用排序和柯西两种不等式证明)6.在ABC ∆中,求证:32aA bB cC a b c ππ++≤<++证明:不妨设a b c ≤≤,于是A B C ≤≤由排序不等式得aA bB cC aA bB cC ++=++,aA bB cC bA cB aC ++≥++,aA bB cC cA aB bC ++≥++同向相加可得3()()()()aA bB cC a b c A B C a b c π++≥++++=++,从而3aA bB cCa b cπ++≤++又由0,0,0b c a a b c a c b <+-<+-<+-,有0()()()A b c a Ca b c Ba c b <+-++-++-()()()()2()a B C A b A C B c A B C a b c aA bB cC π=+-++-++-=++-++从而2aA bB cC a b c π++<++由此原命题得证。
第2章 柯西不等式与排序不等式及其应用[自我校对]①向量 ②代数可证明一些简单不等式.【例1】 已知a ,b ,c 是实数,且a +b +c =1,求证:13a +1+13b +1+13c +1≤4 3. [精彩点拨] 设m =(13a +1,13b +1,13c +1),n =(1,1,1),利用柯西不等式的向量形式证明,或把式子左边补上系数1,直接利用柯西不等式求解.[规范解答] 法一:因为a ,b ,c 是实数,且a +b +c =1,令m =(13a +1,13b +1,13c +1),n =(1,1,1).则|m ·n |2=(13a +1+13b +1+13c +1)2, |m |2·|n |2=3[(13a +1)+(13b +1)+(13c +1)] =3[13(a +b +c )+3]=48. ∵|m ·n |2≤|m |2·|n |2,∴(13a +1)+13b +1+13c +1)2≤48, ∴13a +1+13b +1+13c +1≤4 3.法二:由柯西不等式得(13a +1+13b +1+13c +1)2≤(12+12+12)[(13a +1)+(13b +1)+(13c +1)]=3[13(a +b +c )+3]=48,∴13a +1+13b +1+13c +1≤4 3.1.设正数a ,b ,c 满足abc =a +b +c ,求证:ab +4bc +9ac ≥36,并给出等号成立的条件.[证明] 由abc =a +b +c ,得1ab +1bc +1ca=1.由柯西不等式,得(ab +4bc +9ac )⎝⎛⎭⎪⎫1ab +1bc +1ca ≥(1+2+3)2,所以ab +4bc +9ac ≥36,当且仅当a =2,b =3,c =1时,等号成立.应从所要证的式子的结构观察分析,再给出适当的数组.【例2】 已知a ,b ,c 为正数,求证:a +b +c ≤a 2+b 22c +b 2+c 22a +c 2+a 22b.[精彩点拨] 不妨设a ≥b ≥c >0,则a 2≥b 2≥c 2,1c ≥1b ≥1a,根据不等式的特点,利用排序不等式证明.[规范解答] 由于不等式关于a ,b ,c 对称, 可设a ≥b ≥c >0.于是a 2≥b 2≥c 2,1c ≥1b ≥1a.由排序不等式,得反序和≤乱序和,即a 2·1a +b 2·1b +c 2·1c ≤a 2·1b +b 2·1c +c 2·1a,及a 2·1a +b 2·1b +c 2·1c ≤a 2·1c +b 2·1a +c 2·1b.以上两个同向不等式相加再除以2,即得原不等式.2.在△ABC 中,h a ,h b ,h c 为边长a ,b ,c 的高, 求证:a sin A +b sin B +c sin C ≥h a +h b +h c . [证明] 不妨设a >b >c ,则对应的角A >B >C ,A ,B ,C ∈(0,π),∴sin A >sin B >sin C . 由排序原理得a sin A +b sin B +c sin C ≥a sin B +b sin C +c sin A .在△ABC 中,a sin B =h c ,b sin C =h a ,c sin A =h b , ∴a sin A +b sin B +c sin C ≥h a +h b +h c .们通过不等式求最值提供了新的有力工具,但一定要注意取等号的条件能否满足.【例3】 已知实数x ,y ,z 满足x 2+4y 2+9z 2=a (a >0),且x +y +z 的最大值是7,求a 的值.[精彩点拨] 由x 2+4y 2+9z 2=x 2+(2y )2+(3z )2,x +y +z =x +12·2y +13·3z ,联想到柯西不等式求解.[规范解答] 由柯西不等式: [x 2+(2y )2+(3z )2]⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫132≥⎝ ⎛⎭⎪⎫x +12×2y +13×3z 2.因为x 2+4y 2+9z 2=a (a >0),所以4936a ≥(x +y +z )2,即-7a 6≤x +y +z ≤7a 6.因为x +y +z 的最大值是7, 所以7a 6=7,得a =36.当x =367,y =97,z =47时,x +y +z 取最大值,所以a =36.3.求实数x ,y 的值,使得(y -1)2+(x +y -3)2+(2x +y -6)2达到最小值. [解] 由柯西不等式,得(12+22+12)×[(y -1)2+(3-x -y )2+(2x +y -6)2] ≥[1×(y -1)+2×(3-x -y )+1×(2x +y -6)]2=1, 即(y -1)2+(x +y -3)2+(2x +y -6)2≥16,当且仅当y -11=3-x -y 2=2x +y -61,即x =52,y =56时,上式取等号.故x =52,y =56时,(y -1)2+(x +y -3)2+(2x +y -6)2达到最小值.【例4】 已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x 21x 2+x 22x 3+…+x 2n -1x n +x 2n x 1的最小值. [精彩点拨] 不妨设0<x 1≤x 2≤…≤x n ,利用排序不等式求解. [规范解答] 不妨设0<x 1≤x 2≤…≤x n , 则1x 1≥1x 2≥…≥1x n>0,且0<x 21≤x 22≤…≤x 2n .∵1x 2,1x 3,…,1x n ,1x 1为序列⎩⎨⎧⎭⎬⎫1x i (i =1,2,3,…,n )的一个排列,根据排序不等式,得F=x21x2+x22x3+…+x2n-1x n+x2nx1≥x21·1x1+x22·1x2+…+x2n·1x n=x1+x2+…+x n=P(定值),当且仅当x1=x2=…=x n时等号成立,∴F=x21x2+x22x3+…+x2n-1x n+x2nx1的最小值为P.4.设x1,x2,…,x n取不同的正整数,则m=x112+x222+…+x nn2的最小值是( ) A.1B.2C.1+12+13+…+1nD.1+122+132+…+1n2[解析]设a1,a2,…,a n是x1,x2,…,x n的一个排列,且满足a1<a2<…<a n,故a1≥1,a2≥2,…,a n≥n.又因为1>122>132>…>1n2,所以x11+x222+x332+…+x nn2≥a1+a222+a332+…+a nn2≥1×1+2×122+3×132+…+n×1n2=1+12+13+…+1n.[答案] C在利用平均值不等式求函数最值时.一定要满足下列三个条件:(1)各项均为正数.(2)“和”或“积”为定值.(3)等号一定能取到,这三个条件缺一不可.2.解决实际问题由于受算术平均与几何平均定理求最值的约束条件的限制,在求最值时常常需要对解析式进行合理的变形.对于一些分式结构的函数,当分子中变量的次数不小于分母中变量的次数时,通常采用分离变量(或常数)的方法,拼凑出和的形式,若积为定值则可用平均值不等式求解.【例5】某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.[精彩点拨] (1)设每件定价为t 元,表示总收入,根据题意列不等式求解.(2)利用销售收入≥原收入+总投入,列出不等式,由题意x >25,此时不等式求解.[规范解答] (1)设每件定价为t 元, 依题意,有⎝⎛⎭⎪⎫8-t -25t ×0.2t ≥25×8, 整理得t 2-65t +1 000≤0, 解得25≤t ≤40.∴要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2150x ×16x =10(当且仅当x =30时,等号成立),∴a ≥10.2. 当该商品明年的销售量a 至少达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.5.若a >b >0,则a 2+1b (a -b )的最小值为( )A .2B .3C .4D .5 [解析] 依题意得a -b >0,所以a 2+1b (a -b )≥a 2+1⎣⎢⎡⎦⎥⎤b +(a -b )22=a 2+4a2≥2a 2·4a2=4,当且仅当⎩⎪⎨⎪⎧b =a -b >0,a 2=4a 2,即a =2,b =22时取等号,因此a 2+1b (a -b )的最小值是4,选C.[答案] C思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题.本章常把要证明的不等式通过换元或配凑等整体应用,把命题转化为柯西不等式或排序不等式的形式加以解决.【例6】 已知a ,b ,c 为正数,求证:a b +c +b c +a +ca +b ≥32.[精彩点拨] 将不等式的左边进行变形,再利用柯西不等式证明. [规范解答] 左端变形ab +c+1+bc +a+1+ca +b+1=(a +b +c )⎝⎛⎭⎪⎫1b +c +1c +a +1a +b ,∴只需证此式≥92即可.∵ab +c +bc +a +ca +b+3=⎝⎛⎭⎪⎫a b +c +1+⎝ ⎛⎭⎪⎫b a +c +1+⎝ ⎛⎭⎪⎫c a +b +1=(a +b +c )⎝⎛⎭⎪⎫1b +c +1c +a +1a +b=12[(b +c )+(c +a )+(a +b )]⎝ ⎛⎭⎪⎫1b +c +1c +a +1a +b≥12(1+1+1)2=92, ∴ab +c +ba +c+ca +b ≥92-3=32.6.已知a ,b ,c 为正数,求证:2(a 3+b 3+c 3)≥a 2(b +c )+b 2(a +c )+c 2(a +b ). [证明] 不妨设0≤a ≤b ≤c ,则a 2≤b 2≤c 2, 由排序不等式,得a 2a +b 2b +c 2c ≥a 2b +b 2c +c 2a ,a 2a +b 2b +c 2c ≥a 2c +b 2a +c 2b .以上两式相加,得2(a 3+b 3+c 3)≥a 2(b +c )+b 2(a +c )+c 2(a +b ).1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .9[解析] 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ab =(-2)2,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9.[答案] D2.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则 m 2+n 2的最小值为________. [解析] 根据柯西不等式(ma +nb )2≤(a 2+b 2)(m 2+n 2),得25≤5(m 2+n 2),m 2+n 2≥5,m 2+n 2的最小值为 5.[答案]53.已知x >0,y >0,证明:(1+x +y 2)·(1+x 2+y )≥9xy .[证明] 因为x >0,y >0,所以1+x +y 2≥33xy 2>0,1+x 2+y ≥33x 2y >0, 故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy . 4.若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.[解] (1)由ab =1a +1b≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.5.已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4. (1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值.[解] (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c , 当且仅当-a ≤x ≤b 时,等号成立. 又a >0,b >0,所以|a +b |=a +b , 所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4. (2)由(1)知a +b +c =4,由柯西不等式,得⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1)≥⎝ ⎛⎭⎪⎫a 2×2+b 3×3+c ×12=(a +b +c )2=16, 即14a 2+19b 2+c 2≥87. 当且仅当12a 2=13b 3=c 1,即a =87,b =187,c =27时等号成立,故14a 2+19b 2+c 2的最小值是87.。
人教A 版高中数学目录必修1第一章集合与函数概念1 1..1 1 集合集合 1 1..2 2 函数及其表示函数及其表示 1 1..3 3 函数的基本性质函数的基本性质第二章基本初等函数(Ⅰ)2.1 1 指数函数指数函数 2 2..2 2 对数函数对数函数 2 2..3 3 幂函数幂函数第三章函数的应用3.1 1 函数与方程函数与方程 3 3..2 2 函数模型及其应用函数模型及其应用必修2第一章空间几何体1 1..1 1 空间几何体的结构空间几何体的结构 1 1..2 2 空间几何体的三视图和空间几何体的三视图和直观图1 1..3 3 空间几何体的表面积与空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 2..1 1 空间点、直线、平面之空间点、直线、平面之间的位置关系2 2..2 2 直线、平面平行的判定直线、平面平行的判定及其性质 2 2..3 3 直线、平面垂直的判定直线、平面垂直的判定及其性质第三章直线与方程3.1 1 直线的倾斜角与斜率直线的倾斜角与斜率 3 3..2 2 直线的方程直线的方程3 3..3 3 直线的交点坐标与距离直线的交点坐标与距离公式必修3第一章算法初步1 1..1 1 算法与程序框图算法与程序框图 1 1..2 2 基本算法语句基本算法语句 1 1..3 3 算法案例算法案例阅读与思考割圆术第二章统计2 2..1 1 随机抽样随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应 2 2..2 2 用样本估计总体用样本估计总体阅读与思考生产过程中的质量控制图2 2..3 3 变量间的相关关系变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 3..1 1 随机事件的概率随机事件的概率阅读与思考天气变化的认识过程 3 3..2 2 古典概型古典概型 3 3..3 3 几何概型几何概型必修4第一章三角函数1 1..1 1 任意角和弧度制任意角和弧度制 1 1..2 2 任意角的三角函数任意角的三角函数1 1..3 3 三角函数的诱导公式三角函数的诱导公式 1 1..4 4 三角函数的图象与性质三角函数的图象与性质 1 1..5 5 函数函数y=Asin y=Asin((ωx+ψ) 1 1..6 6 三角函数模型的简单应三角函数模型的简单应用第二章平面向量 2 2..1 1 平面向量的实际背景及平面向量的实际背景及基本概念 2 2..2 2 平面向量的线性运算平面向量的线性运算 2 2..3 3 平面向量的基本定理及平面向量的基本定理及坐标表示 2 2..4 4 平面向量的数量积平面向量的数量积 2 2..5 5 平面向量应用举例平面向量应用举例第三章三角恒等变换3 3..1 1 两角和与差的正弦、余两角和与差的正弦、余弦和正切公式 3 3..2 2 简单的三角恒等变换简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n 项和2.4等比数列2.5等比数列的前n 项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用的应用3.4生活中的优化问题举例举例选修1-2第一章第一章 统计案例统计案例 1.1 回归分析的基本思想及其初步应用思想及其初步应用 1.2 独立性检验的基本思想及其初步应用本思想及其初步应用第二章第二章 推理与证明推理与证明 2.1 合情推理与演绎证明证明2.2 直接证明与间接证明证明第三章第三章 数系的扩充与复数的引入与复数的引入3.1数系的扩充和复数的概念的概念3.2复数代数形式的四则运算则运算第四章第四章 框图框图 4.1流程图流程图 4.2结构图结构图选修2-1第一章第一章 常用逻辑用语1.1 命题及其关系命题及其关系 1.2 充分条件与必要条件条件1.3 简单的逻辑联结词1.4 全称量词与存在量词量词第二章第二章 圆锥曲线与方程方程2.1 曲线与方程曲线与方程2.2 椭圆椭圆 2.3 双曲线双曲线 2.4 抛物线抛物线第三章第三章 空间向量与立体几何立体几何3.1 空间向量及其运算3.2 立体几何中的向量方法量方法选修2-2第一章第一章 导数及其应用1.1 变化率与导数变化率与导数1.2 导数的计算导数的计算1.3 导数在研究函数中的应用中的应用1.4 生活中的优化问题举例题举例1.5 定积分的概念定积分的概念 1.6 微积分基本定理微积分基本定理 1.7 定积分的简单应用第二章第二章 推理与证明推理与证明 2.1 合情推理与演绎推理推理2.2 直接证明与间接证明证明2.3 数学归纳法数学归纳法第三章 数系的扩充与复数的引入与复数的引入3.1 数系的扩充和复数的概念数的概念3.2 复数代数形式的四则运算四则运算选修2-3第一章第一章 计数原理计数原理1.1 分类加法计数原理与分步乘法计数原理理与分步乘法计数原理1.2 排列与组合排列与组合 1.3 二项式定理二项式定理第二章第二章 随机变量及其分布其分布2.1 离散型随机变量及其分布列及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差的均值与方差2.4 正态分布正态分布 第三章第三章 统计案例统计案例3.1 回归分析的基本思想及其初步应用思想及其初步应用 3.2 独立性检验的基本思想及其初步应用本思想及其初步应用选修3-1第一讲第一讲 早期的算术与几何与几何第二讲第二讲 古希腊数学古希腊数学 第三讲第三讲 中国古代数学瑰宝学瑰宝第四讲第四讲 平面解析几何的产生何的产生第五讲第五讲微积分的诞生 第六讲第六讲 近代数学两巨星巨星第七讲第七讲 千古谜题千古谜题第八讲第八讲 对无穷的深入思考入思考第九讲第九讲 中国现代数学的开拓与发展学的开拓与发展选修3-2选修3-3第一讲第一讲 从欧氏几何看球面看球面第二讲第二讲 球面上的距离和角离和角第三讲第三讲 球面上的基本图形本图形第四讲第四讲 球面三角形球面三角形 第五讲第五讲 球面三角形的全等的全等第六讲第六讲 球面多边形与欧拉公式与欧拉公式第七讲第七讲 球面三角形的边角关系边角关系第八讲第八讲 欧氏几何与非欧几何非欧几何选修3-4第一讲第一讲 平面图形的对称群对称群第二讲第二讲 代数学中的对称与抽象群的概念对称与抽象群的概念 第三讲第三讲 对称与群的故事故事选修4-1第一讲第一讲 相似三角形的判定及有关性质的判定及有关性质第二讲 直线与圆的位置关系位置关系第三讲 圆锥曲线性质的探讨质的探讨选修4-2第一讲 线性变换与二阶矩阵二阶矩阵第二讲 变换的复合与二阶矩阵的乘法与二阶矩阵的乘法 第三讲 逆变换与逆矩阵矩阵第四讲 变换的不变量与矩阵的特征向量量与矩阵的特征向量选修4-3 选修4-4第一讲第一讲 坐标系坐标系 第二讲第二讲 参数方程参数方程选修4-5第一讲 不等式和绝对值不等式对值不等式第二讲 证明不等式的基本方法的基本方法第三讲 柯西不等式与排序不等式与排序不等式第四讲 数学归纳法证明不等式证明不等式选修4-6第一讲第一讲 整数的整除整数的整除 第二讲第二讲 同余与同余方程方程第三讲第三讲 一次不定方程第四讲第四讲 数伦在密码中的应用中的应用选修4-7第一讲第一讲 优选法优选法 第二讲第二讲 试验设计初步选修4-8选修4-9第一讲第一讲 风险与决策的基本概念的基本概念第二讲第二讲 决策树方法决策树方法 第三讲第三讲 风险型决策的敏感性分析的敏感性分析第四讲第四讲 马尔可夫型决策简介决策简介高中人教版(高中人教版(B B )教材目录介绍必修一第一章第一章 集合集合1.1 1 集合与集合的表示方法集合与集合的表示方法集合与集合的表示方法 1 1..2 2 集合之间的关系与运算集合之间的关系与运算集合之间的关系与运算 第二章第二章 函数函数2 2..1 1 函数函数函数 2 2..2 2 一次函数和二次函数一次函数和二次函数一次函数和二次函数 2 2..3 3 函数的应用(Ⅰ)函数的应用(Ⅰ)函数的应用(Ⅰ) 2 2..4 4 函数与方程函数与方程函数与方程第三章第三章 基本初等函数(Ⅰ)3 3..1 1 指数与指数函数指数与指数函数指数与指数函数 3 3..2 2 对数与对数函数对数与对数函数对数与对数函数3 3..3 3 幂函数幂函数幂函数 3 3..4 4 函数的应用(Ⅱ)函数的应用(Ⅱ)函数的应用(Ⅱ)必修二第一章第一章 立体几何初步立体几何初步1.1 1 空间几何体空间几何体空间几何体 1 1..2 2 点、线、面之间的位置点、线、面之间的位置关系关系第二章第二章 平面解析几何初步平面解析几何初步 2 2..1 1 平面真角坐标系中的基平面真角坐标系中的基本公式本公式2 2..2 2 直线方程直线方程直线方程 2 2..3 3 圆的方程圆的方程圆的方程 2 2..4 4 空间直角坐标系空间直角坐标系空间直角坐标系必修三第一章第一章 算法初步算法初步1.1 1 算法与程序框图算法与程序框图算法与程序框图 1 1..2 2 基本算法语句基本算法语句基本算法语句 1 1..3 3 中国古代数学中的算法中国古代数学中的算法案例案例第二章第二章 统计统计2.1 1 随机抽样随机抽样随机抽样 2 2..2 2 用样本估计总体用样本估计总体用样本估计总体 2 2..3 3 变量的相关性变量的相关性变量的相关性第三章第三章 概率概率3.1 1 随机现象随机现象随机现象 3 3..2 2 古典概型古典概型古典概型 3 3..3 3 随机数的含义与应用随机数的含义与应用随机数的含义与应用 3 3..4 4 概率的应用概率的应用概率的应用必修四第一章第一章 基本初等函基本初等函((Ⅱ) 1 1..1 1 任意角的概念与弧度制任意角的概念与弧度制任意角的概念与弧度制 1 1..2 2 任意角的三角函数任意角的三角函数任意角的三角函数 1 1..3 3 三角函数的图象与性质三角函数的图象与性质三角函数的图象与性质第二章第二章 平面向量平面向量 2 2..1 1 向量的线性运算向量的线性运算向量的线性运算 2 2..2 2 向量的分解与向量的坐向量的分解与向量的坐标运算标运算 2 2..3 3 平面向量的数量积平面向量的数量积平面向量的数量积2 2..4 4 向量的应用向量的应用向量的应用第三章第三章 三角恒等变换三角恒等变换3.1 1 和角公式和角公式和角公式 3 3..2 2 倍角公式和半角公式倍角公式和半角公式倍角公式和半角公式 3 3..3 3 三角函数的积化和差与三角函数的积化和差与和差化积和差化积必修五第一章第一章 解直角三角形解直角三角形1.1 1 正弦定理和余弦定理正弦定理和余弦定理正弦定理和余弦定理 1 1..2 2 应用举例应用举例应用举例第二章第二章 数列数列2 2..1 1 数列数列数列 2 2..2 2 等差数列等差数列等差数列 2 2..3 3 等比数列等比数列等比数列第三章第三章 不等式不等式3 3..1 1 不等关系与不等式不等关系与不等式不等关系与不等式 3 3..2 2 均值不等式均值不等式均值不等式3 3..3 3 一元二次不等式及其解一元二次不等式及其解法 3 3..4 4 不等式的实际应用不等式的实际应用不等式的实际应用 3 3..5 5 二元一次不等式(组)二元一次不等式(组)与简单线性规划问题与简单线性规划问题选修1-1第一章第一章 常用逻辑用语常用逻辑用语1.1 1 命题与量词命题与量词命题与量词 1 1..2 2 基本逻辑联结词基本逻辑联结词基本逻辑联结词 1 1..3 3 充分条件、必要条件与充分条件、必要条件与命题的四种形式命题的四种形式第二章第二章 圆锥曲线与方程圆锥曲线与方程2.1 1 椭圆椭圆椭圆 2 2..2 2 双曲线双曲线双曲线 2 2..3 3 抛物线抛物线抛物线第三章第三章 导数及其应用导数及其应用3 3..1 1 导数导数导数 3 3..2 2 导数的运算导数的运算导数的运算 3 3..3 3 导数的应用导数的应用导数的应用选修1-2第一章第一章 统计案例统计案例 第二章第二章 推理与证明推理与证明 第三章第三章 数系的扩充与复数的引入的引入 第四章第四章 框图框图选修4-5第一章第一章 不等式的基本性质和证明的基本方法和证明的基本方法1 1..1 1 不等式的基本性质和一不等式的基本性质和一元二次不等式的解法元二次不等式的解法 1 1..2 2 基本不等式基本不等式基本不等式1 1..3 3 绝对值不等式的解法绝对值不等式的解法绝对值不等式的解法 1 1..4 4 绝对值的三角不等式绝对值的三角不等式绝对值的三角不等式 1 1..5 5 不等式证明的基本方法不等式证明的基本方法不等式证明的基本方法第二章第二章 柯西不等式与排序不等式及其应用不等式及其应用2.1 1 柯西不等式柯西不等式柯西不等式 2 2..2 2 排序不等式排序不等式排序不等式 2 2..3 3 平均值不等式平均值不等式平均值不等式((选学选学) ) 2 2..4 4 最大值与最小值问题,最大值与最小值问题,优化的数学模型优化的数学模型第三章第三章 数学归纳法与贝努利不等式利不等式3.1 1 数学归纳法原理数学归纳法原理数学归纳法原理 3 3..2 2 用数学归纳法证明不等用数学归纳法证明不等式,贝努利不等式式,贝努利不等式。