人教版-高中数学选修4-5 柯西不等式
- 格式:ppt
- 大小:296.50 KB
- 文档页数:25
第二章 柯西不等式与排序不等式及其应用本章概览内容提要1.柯西不等式(1)代数形式:(a 12+a 22)(b 12+b 22)≥(a 1b 1+a 2b 2)2,等号成立⇔a 1b 2=a 2b 1.(2)向量形式:|α||β|≥|α·β|,等号成立⇔α与β共线.(3)平面三角不等式:222211)()(b a b a -+-+222211)()(c b c b -+-2≥222211)()(c a c a -+-,等号成立⇔存在非负实数λ,u 使u (a 1-b 1)=λ(b 1-c 1),u (a 2-b 2) =λ(b 2-c 2).(4)一般形式:(a 12+a 22+…+a n 2)21(b 12+b 22+…+b n 2)21≥|a 1b 1+a 2b 2+…+a n b n |,等号成立⇔2211b a b a ==…=nn b a . 2.排序不等式设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,有a 1b n +a 2b n-1 +…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+…+a n b n ,等号成立⇔a 1=a 2…=a n 或b 1=b 2=…=b n .3.平均值不等式:a 1,a 2,…,a n ∈R +,n n n a a a na a a ⋅⋅⋅≥+++......2121,等号成立⇔ a 1=a 2=…=a n .4.最值问题:把握好函数基本形式,再借用不等式,函数的性质求最值.学法指导根据本章的特点,学习时应加强数学思想方法的学习,加强对各类不等式性质的理解.理解柯西不等式,排序不等式,平均值不等式在具体问题中的作用.。
选修4-5学案 §3.1.3柯西不等式 姓名☆学习目标: 1. 熟悉一般形式的柯西不等式,理解柯西不等式的证明; 2. 会应用柯西不等式解决函数最值、方程、不等式,等一些问题☻知识情景:1. 柯西主要贡献简介:柯西(Cauchy ),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等.2.二维形式的柯西不等式: 若,,,a b c d R ∈,则 .当且仅当 时, 等号成立.变式10. 若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,;变式30.(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则:3. 一般形式的柯西不等式:设n 为大于1的自然数,,i ia b R ∈(=i 1,2,…,n ),则: .当且仅当 时, 等号成立.(若0=i a 时,约定0=i b ,=i 1,2,…,n ).变式10. 设,0(1,2,,),i i a R b i n ∈>= 则:∑∑∑≥=i i ni iib a b a 212)( . 当且仅当 时, 等号成立.变式20. 设0(1,2,,),i i a b i n ⋅>= 则:∑∑∑≥=ii ini i i b a a b a 21)(.当且仅当n b b b === 21时,等号成立. 变式30. (积分形式)设)(x f 与)(x g 都在],[b a 可积,则dx x g dx x f dx x g x f ba b a b a )()()()(222⎰⎰⎰⋅≤⎥⎦⎤⎢⎣⎡,当且仅当)()(x g t x f ⋅=时,等号成立.如果一个定理与很多学科或者一个学科的很多分支有着密切联系,那么这个定理肯定很重要. 而柯西不等式与我们中学数学中的代数恒等式、复数、向量、几何、三角、函数等各方面都有联系. 所以, 它的重要性是不容置疑的!☆ 柯西不等式的应用:例1. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=. 试求a 的最值例2 在实数集内 解方程22294862439x y z x y y ⎧++=⎪⎨⎪-+-=⎩例3 设P 是三角形ABC 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC 外接圆的半径,例4 (证明恒等式) 已知,11122=-+-a b b a 求证:122=+b a 。