人教版-高中数学选修4-5-柯西不等式
- 格式:ppt
- 大小:586.00 KB
- 文档页数:23
选修4-5学案 §3.1.3柯西不等式 姓名☆学习目标: 1. 熟悉一般形式的柯西不等式,理解柯西不等式的证明; 2. 会应用柯西不等式解决函数最值、方程、不等式,等一些问题☻知识情景:1. 柯西主要贡献简介:柯西(Cauchy ),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定 了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值 定理、柯西积分不等式、柯西判别法、柯西方程等等.2.二维形式的柯西不等式: 若,,,a b c d R ∈,则 .当且仅当 时, 等号成立.变式10. 若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,则222222()()a b c d a c b d +++-+- ;变式30.(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则:222212122323()()()()x x y y x x y y -+-+-+-≥3. 一般形式的柯西不等式:设n 为大于1的自然数,,i ia b R ∈(=i 1,2,…,n ),则: .当且仅当 时, 等号成立.(若0=i a 时,约定0=i b ,=i 1,2,…,n ).变式10. 设,0(1,2,,),i i a R b i n ∈>= 则:∑∑∑≥=i i ni iib a b a 212)( . 当且仅当 时, 等号成立.变式20. 设0(1,2,,),i i a b i n ⋅>= 则:∑∑∑≥=ii i ni i i b a a b a 21)(. 当且仅当n b b b === 21时,等号成立. 变式30. (积分形式)设)(x f 与)(x g 都在],[b a 可积,则dx x g dx x f dx x g x f ba b a b a )()()()(222⎰⎰⎰⋅≤⎥⎦⎤⎢⎣⎡,当且仅当)()(x g t x f ⋅=时,等号成立.如果一个定理与很多学科或者一个学科的很多分支有着密切联系,那么这个定理肯定很重 要. 而柯西不等式与我们中学数学中的代数恒等式、复数、向量、几何、三角、函数等各方面 都有联系. 所以, 它的重要性是不容置疑的!☆ 柯西不等式的应用:例1. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=. 试求a 的最值例2 在实数集内 解方程22294862439x y z x y y ⎧++=⎪⎨⎪-+-=⎩例3 设P 是三角形ABC 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC 外接圆的半径, 证明22212x y z a b c R ++≤++例4 (证明恒等式) 已知,11122=-+-a b b a 求证:122=+b a 。
三排序不等式1.顺序和、乱序和、反序和设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,称a1b1+a2b2+…+a n b n为这两个实数组的顺序积之和(简称顺序和),称a1b n+a2b n-1+…+a n b1为这两个实数组的反序积之和(简称反序和),称a1c1+a2c2+…+a n c n为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序不等式,又称为排序原理) 设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,等号成立(反序和等于顺序和)⇔a1=a2=…=a n或b1=b2=…=b n.排序原理可简记作:反序和≤乱序和≤顺序和.已知a,b,c为正数,且a≥b≥c,求证:b3c3+c3a3+a3b3≥a+b+c.分析题目中已明确a≥b≥c,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.∵a≥b>0,∴1a ≤1b.又c>0,从而1bc ≥1 ca.同理1ca≥1ab,从而1bc≥1ca≥1ab.又由于顺序和不小于乱序和,故可得a5 b3c3+b5c3a3+c5a3b3≥b5b3c3+c5c3a3+a5a3b3=b2c3+c2a3+a2b3⎝⎛⎭⎪⎫∵a2≥b2≥c2,1c3≥1b3≥1a3≥c2c3+a2a3+b2b3=1c+1a+1b=1a+1b+1c.∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γcos α>12(sin 2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y =sin x 在⎝ ⎛⎭⎪⎫0,π2为增函数,y =cos x 在⎝ ⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.∴sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin β·cos β+sin γcos γ=12(sin2α+sin 2β+sin 2γ).2.设x ≥1,求证:1+x +x 2+…+x 2n≥(2n +1)x n. 证明:∵x ≥1,∴1≤x ≤x 2≤…≤x n.由排序原理,得12+x 2+x 4+…+x 2n≥1·x n +x ·x n -1+…+xn -1·x +x n·1,即1+x 2+x 4+…+x 2n ≥(n +1)x n.①又因为x ,x 2,…,x n,1为1,x ,x 2,…,x n的一个排列, 由排序原理,得1·x +x ·x 2+…+x n -1·x n +x n·1≥1·x n +x ·xn -1+…+xn -1·x +x n·1,得x +x 3+…+x2n -1+x n≥(n +1)x n.②将①②相加,得1+x +x 2+…+x 2n≥(2n +1)x n.在△ABC 中,试证:3≤a +b +c.可构造△ABC 的边和角的有序数列,应用排序不等式来证明. 不妨设a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC ≥aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC .相加,得3(aA +bB +cC )≥(a +b +c )(A +B +C )=π(a +b +c ),得aA +bB +cC a +b +c ≥π3.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设c 1,c 2,…,c n 为正数组a 1,a 2,…,a n 的某一排列,求证:a1c1+a2c2+…+ancn ≥n .证明:不妨设0<a 1≤a 2≤…≤a n ,则1a1≥1a2≥…≥1an. 因为1c1,1c2,…,1cn 是1a1,1a2,…,1an 的一个排列,由排序原理,得a 1·1a1+a 2·1a2+…+a n ·1an ≤a 1·1c1+a 2·1c2+…+a n ·1cn ,即a1c1+a2c2+…+an cn≥n .4.设a 1,a 2,…,a n 是1,2,…,n 的一个排列, 求证:12+23+…+n -1n ≤a1a2+a2a3+…+an -1an.证明:设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n -1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1,则1c1>1c2>…>1cn -1且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n . 利用排序不等式,有a1a2+a2a3+…+an -1an ≥b1c1+b2c2+…+bn -1cn -1≥12+23+…+n -1n . ∴原不等式成立.课时跟踪检测(十一)1.有一有序数组,其顺序和为A ,反序和为B ,乱序和为C ,则它们的大小关系为( ) A .A ≥B ≥C B .A ≥C ≥B C .A ≤B ≤CD .A ≤C ≤B解析:选B 由排序不等式,顺序和≥乱序和≥反序和知:A ≥C ≥B .2.若A =x 21+x 2+…+x 2n ,B =x 1x 2+x 2x 3+…+x n -1x n +x n x 1,其中x 1,x 2,…,x n 都是正数,则A 与B 的大小关系为( )A .A >BB .A <BC .A ≥BD .A ≤B解析:选C 序列{x n }的各项都是正数,不妨设0<x 1≤x 2≤…≤x n ,则x 2,x 3,…,x n ,x 1为序列{x n } 的一个排列.由排序原理,得x 1x 1+x 2x 2+…+x n x n ≥x 1x 2+x 2x 3+…+x n x 1,即x 21+x 2+…+x 2n ≥x 1x 2+x 2x 3+…+x n x 1.3.锐角三角形中,设P =a +b +c 2,Q =a cos C +b cos B +c cos A ,则P ,Q 的关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定解析:选C 不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C , 则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R=R (sin C +sin A +sin B )=P =a +b +c2. 4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花________元.( )A .76B .20C .84D .96解析:选A 设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28. 答案:32 286.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s 、4 s 、3 s 、7 s ,每个人接完水后就离开,则他们总的等候时间最短为________s.解析:由题意知,等候的时间最短为3×4+4×3+5×2+7=41. 答案:417.在Rt △ABC 中,∠C 为直角,A ,B 所对的边分别为a ,b ,则aA +bB 与π4(a +b )的大小关系为________.解析:不妨设a ≥b >0,则A ≥B >0,由排序不等式⎭⎪⎬⎪⎫aA +bB≥aB+bA aA +bB =aA +bB ⇒2(aA +bB )≥a (A +B )+b (A +B )=π2(a +b ), ∴aA +bB ≥π4(a +b ). 答案:aA +bB ≥π4(a +b ) 8.设a ,b ,c 都是正数,求证:a +b +c ≤a4+b4+c4abc .证明:由题意不妨设a ≥b ≥c >0.由不等式的性质,知a 2≥b 2≥c 2,ab ≥ac ≥bc . 根据排序原理,得a 2bc +ab 2c +abc 2≤a 3c +b 3a +c 3b .① 又由不等式的性质,知a 3≥b 3≥c 3,且a ≥b ≥c .再根据排序不等式,得a 3c +b 3a +c 3b ≤a 4+b 4+c 4.②由①②及不等式的传递性,得a 2bc +ab 2c +abc 2≤a 4+b 4+c 4.两边同除以abc 得证原不等式成立.9.设a ,b ,c 为任意正数,求a b +c +b c +a +ca +b 的最小值.解:不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b .由排序不等式,得a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b, 以上两式相加,得2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3,∴a b +c +b c +a +c a +b ≥32, 即当且仅当a =b =c 时, a b +c +b c +a +c a +b 的最小值为32.10.设x ,y ,z 为正数,求证:x +y +z ≤x2+y22z +y2+z22x +z2+x22y. 证明:由于不等式关于x ,y ,z 对称, 不妨设0<x ≤y ≤z ,于是x 2≤y 2≤z 2,1z ≤1y ≤1x ,由排序原理:反序和≤乱序和,得x 2·1x +y 2·1y +z 2·1z ≤x 2·1z +y 2·1x +z 2·1y, x 2·1x+y 2·1y+z 2·1z≤x 2·1y+y 2·1z+z 2·1x,将上面两式相加,得2(x +y +z )≤x2+y2z +y2+z2x +z2+x2y ,于是x +y +z ≤x2+y22z +y2+z22x +z2+x22y.本讲高考热点解读与高频考点例析考情分析从近两年高考来看,对本部分内容还未单独考查,可也不能忽视,利用柯西不等式构造“平方和的积”与“积的和的平方”,利用排序不等式证明成“对称”形式,或两端是“齐次式”形式的不等式问题.真题体验(陕西高考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值.解:(1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1.(2)-3t +12+t =3·4-t +t ≤3+4-t+t=24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t)max =4.1122n n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式证明问题迎刃而解.已知a ,b ,c ,d 为不全相等的正数,求证:1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.由柯西不等式⎝ ⎛⎭⎪⎫1a2+1b2+1c2+1d2⎝ ⎛ 1b2+1c2+⎭⎪⎫1d2+1a2≥⎝ ⎛⎭⎪⎫1ab +1bc +1cd +1da 2, 于是1a2+1b2+1c2+1d2≥1ab +1bc +1cd +1da.①等号成立⇔1a 1b =1b 1c =1c 1d =1d 1a⇔b a =c b =d c =ad ⇔a =b =c =d .又已知a ,b ,c ,d 不全相等,则①中等号不成立. 即1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.关的不等式问题,利用排序不等式解决往往很简便.设a ,b ,c 为实数,求证:a12bc +b12ca +c12ab ≥a 10+b 10+c 10.由对称性,不妨设a ≥b ≥c , 于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab .由排序不等式:顺序和≥乱序和,得a12bc +b12ca +c12ab ≥a12ab +b12bc +c12ca =a11b +b11c +c11a .① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c,再次由排序不等式:反序和≤乱序和,得 a11a +b11b +c11c ≤a11b +b11c +c11a .② 由①②得a12bc +b12ca +c12ab≥a 10+b 10+c 10.理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易.已知5a 2+3b 2=158,求a 2+2ab +b 2的最大值.解:∵⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫552+⎝ ⎛⎭⎪⎫332 ≥⎝⎛⎭⎪⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2,当且仅当5a =3b ,即a =38,b =58时,等号成立.∴815×(5a 2+3b 2)≥a 2+2ab +b 2. ∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1. ∴a 2+2ab +b 2的最大值为1.已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x21x2+x22x3+…+x2n -1xn +x2nx1的最小值.不妨设0<x 1≤x 2≤…≤x n , 则1x1≥1x2≥…≥1xn>0,且0<x 21≤x 2≤…≤x 2n . ∵1x2,1x3,…,1xn ,1x1为序列⎩⎨⎧⎭⎬⎫1xn 的一个排列, 根据排序不等式,得F =x21x2+x22x3+…+x2n -1xn +x2nx1≥x 21·1x1+x 2·1x2+…+x 2n ·1xn=x 1+x 2+…+x n =P (定值),当且仅当x 1=x 2=…=x n =Pn 时,等号成立.即F =x21x2+x22x3+…+x2n -1xn +x2n x1的最小值为P .。
ItEsS /柚西祜站排酥福茂1. 二维形式的柯西不等式⑴定理1:若a, b, c, d都是实数,则(a2+ b2)(c2+ d2)>(ac+ bd)2,当且仅当ad= be时,等号成立.二维形式的柯西不等式(2)二维形式的柯西不等式的推论:(a + b)(c+ d) > ( ac+ bd)2(a, b, c, d 为非负实数);a2+ b2• c2+ d2> |ac+ bd|(a, b, c, d€ R);a2+ b2• c2+ d2> |ac| + |bd|(a, b, c, d€ R).2. 柯西不等式的向量形式定理2:设a, B是两个向量,则|a •澤| ” |件当且仅当B是零向量,或存在实数k, 使a= k B时,等号成立.[注意]柯西不等式的向量形式中a•其| a|B,取等号“=”的条件是B= 0或存在实数k,使a= k •3. 二维形式的三角不等式(1)定理3:也2+ y + v x2+ y2Z(X i —X2 2+ (y i —y2$(x i, y i, X2, R).当且仅当三点P i, P2与O共线,并且P i, P2点在原点O异侧时,等号成立.(2)推论:对于任意的X i, X2, X3, y i, y2,涉 R,有7 (x i —x3 2 +(y i —y3 2 +P(X2 - X3 f +( y2 - y3 2(x i —x?2+ (y i —y?2.事实上,在平面直角坐标系中,设点P i, P2, P3的坐标分别为(X i, y i), (X2, y2), (X3,y3),根据△ P i P2P3的边长关系有|P i P31+ |P2P3|> |P i P2|,当且仅当三点P i,卩2 ,卩3共线,并且点P i, P2在P3点的异侧时,等号成立.利用柯西不等式证明不等式a b2[例1]已知B为锐角,a, b€ R+,求证:一(a+ b)2.cos 0 sin 0[思路点拨]可结合柯西不等式,将左侧构造成乘积形式,利用“ 1 = sin20+ cos0”,然后用柯西不等式证明.a2b2[证明]J破+诙=為+滸0(8孑0+引『0》爲cos 0+盒sin 00=(a + b)2,2 b2:(a+b)2<cOs i+亦[右法-规律…卜结]----------------------------利用柯西不等式证明不等式的关键在于利用已知条件和所证不等式,把已知条件利用添项、拆项、分解、组合、配方、变量代换等,将条件构造成柯西不等式的基本形式,从而利用柯西不等式证明,但应注意等号成立的条件.1.已知a i, a2,切,b2为正实数.求证:(a i b i+ a2b2)畫+ 舊》(a i+ a?)2.证明:J (叭 + a2b2)b1+b•••原不等式成立.2.设a, b, c为正数,求证:a2+ b2+ b2+ c2+ a2+ c2> 2(a+ b+ c).证明:由柯西不等式,得a2+ b2• i2+ 12>a+ b,即 _ 2 • a2+ b2> a+ b.同理:,2 • b2+ c2> b+ c,2 • a2+ c2> a+ c,将上面三个同向不等式相加得:2(、J a 2+ b 2+ 工/b 2 + c 2 + --J a 2 + c 2) > 2(a + b + c)订a 2+ b 2 + p,b 2+ c 2 +、.../a 2+ c 2》;2(a + b +c).2 2a b+ > 2.2— a 2 — b证明:根据柯西不等式,有2 .2丄 +_b _2— a 2 — b声+戸厲丿2 =(a + b)2= 4. 2 2••亠 + 亠 > 4 = 2.2— a 2— b 2 — a + 2 — b 原不等式成立.[例2] 求函数y = 3sin a+ 4cos a 的最大值.[思路点拨]函数的解析式是两部分的和,若能化为 ac + bd 的形式就能用柯西不等式求其最大值.[解]由柯西不等式得(3sin a+ 4cos a)2<(32+ 42)(sin 2 a+ cos a)= 25,• 3sin a+ 4cos a< 5.当且仅当sj y a= c os a>0即sin a= 5, cos a= 4时取等号,即函数的最大值为5.[方法•规律•小结〕利用柯西不等式求最值的注意点(1) 变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决条件;(2) 有些最值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常 数的各项,就可以利用柯西不等式来解,这也是运用柯西不等式解题的技巧;(3)有些最值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每 运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.多次反复运 用柯西不等式的方法也是常用技巧之一.4.已知2x 2+ y 2 = 1,求2x + y 的最大值.3.设 a , b € R + ,且 a + b = 2.求证: [(2 — a + (2 - b )] 利用二维形式的柯西不等式求最值+解:••• 2x+ y= 2X 2x + 1X y w 厂22+ 12x 一2x 2+ y2= 3X 2x2+ y2= 3,当且仅当x= y=¥时取等号••• 2x+ y的最大值为 3.5.求函数y = x2—2x + 3+ x2—6x + 14的最小值.解:y= x— 1 2+ 2+ 3 —x 2+ 5,y2= (x—1)2+ 2 + (3 —x)2+ 5+ 2X 寸[(X—1 :+ 2][(3—x$+ 5]》(x —1)2+ 2+ (3 —x)2 + 5 + 2X [(x—1)(3 —x) + 10]= [(x—1)+ (3 —x)]2+ (7 + 2 10) = 11 + 2 10.当且仅当即x=骰时等号成立.此时y min= 11+ 2一10= 10+ 1.1.已知a, b€ R +且a + b= 1,贝U P = (ax+ by)2与Q = ax2+ by2的大小关系是(A. P< QB. P v QC. P>QD. P>Q解析:选 A 设m= ( ax, , by), n = ( a, . b),则|ax + by| = |m-n|< |m||n| =旨上ax 2+ . by 2• a 2+ b 2= ax2+ by2• a + b = ax2+ by2,•(ax+ by)2w ax2+ by2,即P w Q.2. 若a, b€ R,且a2+ b2= 10,则a—b的取值范围是()A. [—2 5, 2 5 ]B. [—2 10, 2 10 ]C. [—10, 10 ]D. (—5, 5)解析:选 A (a2+ b2)[i2+ (—I)2] > (a—b)2,•/ a2+ b2= 10,•(a —b)2w 20.•••—2 5 w a —b w 25.3. 已知x+ y= 1,那么2x2+ 3,的最小值是()5A"625解析:选 B (2X 1 2+ 3y 2)[( 3)2+ ( 2)2]>( 6x + 6y)2=[ 6(x + y)]2= 6, 3 2当且仅当X = 5, y = 2时取等号, 即 2X 2 + 3y 2> 6.5故2X 2 + 3y 2的最小值为6.5 4. 函数y = X - 5+ 26 — x 的最大值是()A.3B. 5 C . 3D . 5解析:选B 根据柯西不等式,知y = 1X X — 5 + 2X 6— X <12+ 22x 寸&X —5 2 +(V 6 - x 2 = <5,当且仅当X = 26时取等号.5.设 xy>0,则 |x 2 + ___________ i'|y 2 + X 2 的最小值为 . 解析:原式=X 2+ £:+ y 2x £+ y y 2= 9,当且仅当xy=/2时取等号.答案:96. ______________________________________________ 设 a = (-2,1,2), |b|= 6,贝U a b 的最小值为 ________________________________________________ ,此时 b= ________ .解析:根据柯西不等式的向量形式,有 |a b|w |a| |b|,•••|a b|w - 2 2+ 12+ 22x 6= 18, 当且仅当存在实数 k , 使a = kb 时,等号成立.•••— 18W a b w 18,• a b 的最小值为一18, 此时 b =- 2a = (4, - 2,- 4). 答案:—18(4,- 2,- 4)7. _________________________________________________________ 设实数X , y 满足3X 2 + 2y 2w 6,贝V P = 2X + y 的最大值为 _______________________________ .解析:由柯西不等式得(2x + y)2w[( .3X )2+ ( 2y)2] • : 2+ : 2 = (3x 2+ 2y 2) £+ 1 w 6X f= 11,当且仅当C.3636 D.25y =爲时取等号,故P = 2x + y 的最大值为 11.4所以1 +丄》2.x y9.若x 2 + 4y 3 4= 5,求x + y 的最大值及此时 x , y 的值. 解:由柯西不等式得 [x 2+ (2y )2] 12+ j 1/ l> (x + y)2, 即(x + y)2w 5x 5 =严,x + y < 2.4 4 2 当且仅当x =空,即x = 4y 时取等号. 1 125••• x + y 的最大值为5, 1此时 x = 2, y = 2.10.求函数f(x)= 3cosx + 4, 1 + sin 2x 的最大值,并求出相应的 x 的值. 解:设 m = (3,4), n = (cosx , 1 + sin 2x),则 f(x) = 3cosx + 4 1 + sin 2x=|m n|w |m| |n|f(x)= 3cos x + 4 ・J 1 + sin 2x 取最大值 5 2.=^co&x + 1 + sin 2x • 32 + 42 =5 2,当且仅当m// n 时,上式取“=”. 此时,3 叮 1 + sin 2x — 4cos x = 0. 解得 sin x=-^, cosx = ^t^.5 5 故当 sin x =」,cosx = ^2时. 5 5「心=血 当且仅当 y .x' 时等号成立,此时 x = 1, y = 1. x + y = 2丄 x 2+ 4y 2= 5, 由彳x = 4y ,x = 2,得i 1l y= 1x — 2, 或丫 1 l y =- 1(舍去).。