移相全桥PWM变换器的DCM研究
- 格式:pdf
- 大小:291.99 KB
- 文档页数:3
两种新型移相全桥ZVS-PWM变换器拓扑的比较移相全桥ZVS-PWM变换器是一种高效率、高可靠性的DC-DC变换器,其拓扑结构复杂,但是具有很好的电路性能和电气参数。
在实际应用中,有多种不同的移相全桥ZVS-PWM变换器拓扑可供选择。
本篇文章将比较两种新型移相全桥ZVS-PWM变换器拓扑,分别是基于全桥拓扑的变换器和基于三电平全桥拓扑的变换器。
1. 基于全桥拓扑的变换器基于全桥拓扑的移相全桥ZVS-PWM变换器是最常用的拓扑结构。
该拓扑结构具有轻松实现基本ZVS动作的优点,无需使用任何复杂的电路,而且具有较好的成本和设计灵活性。
在实际应用中,基于全桥拓扑的变换器通常需要使用一些辅助电路,以解决谐振现象。
优点:①电路操作简单,易于实现。
②交流侧的损耗较小。
③实现高功率密度。
缺点:①输出电压受交流电源电压的波动影响较大。
②峰值应力程度较高。
2. 基于三电平全桥拓扑的变换器基于三电平全桥拓扑的移相全桥ZVS-PWM变换器是近年来发展较快的一种拓扑结构。
该拓扑结构下,采用更多的功率器件以及更加复杂的电路拓扑,在谐振问题的处理方面具有重要的优势。
目前该拓扑结构在风能、太阳能等领域得到了广泛应用。
优点:①基本消耗无谐振的电路,减小了电路的开关损耗。
②输出电压呈三级结构,可轻松实现多种电压调节方式。
缺点:①开关器件数目增加,造成电路设计和控制难度大。
②在高频控制时可能造成比较强的谐振噪声。
综上所述,两种新型移相全桥ZVS-PWM变换器拓扑各有优缺点,在选择时应根据实际应用需求进行评估。
虽然基于三电平全桥拓扑的移相全桥ZVS-PWM变换器在谐振问题上更加优越,但其电路复杂度和控制难度也更大,适用于高要求的应用场景。
而基于全桥拓扑的移相全桥ZVS-PWM变换器则相对简单易用,更适用于低功率应用。
数据分析是一种通过数学和统计学方法对数据进行分析和解释,以准确判断数据的意义和价值的方法。
在实际工作中,数据分析在市场调研、销售预测、风险管理、财务报表分析等领域都发挥着重要作用。
移相全桥ZVSPWMDC/DC变换器的仿真分析作者:龙泽彪施博文来源:《消费导刊·理论版》2008年第17期[摘要]本文首先在研究硬开关的缺陷上,提出软开关技术。
对移相控制ZVS PWM DC/DC 变换器的工作原理进行分析研究的基础上,使用PSpice9.2计算机仿真软件对变换器的主电路进行仿真和分析,验证该新型DC/DC变换器的拓扑结构设计的正确性和可行性。
[关键词]软开关 DC/DC ZVS 移相控制 PSpice9.2作者简介:龙泽彪(1985-),男,湖北仙桃人,贵州大学电气工程学院在读硕士研究生,研究方向:异步电机控制;施博文(1985-),男,贵州大学电气工程学院在读硕士研究生,研究方向:电力电子与电气传动。
一、引言随着新型电力电子器件以及适用于更高频率的电路拓扑和新型控制技术的不断出现,开关电源朝着小型化、高效化、低成本、低电磁干扰、高可靠性、模块化、智能化的方向发展。
硬开关DC/DC变换器在电流连续工作模式下会遇到严重的问题,这一般都与有源开关器件的体内寄生二极管有关,其关断过程中的反向恢复电流产生的电流尖峰对开关器件有极大的危害。
本文在对DC/DC变换器的基本工作原理进行分析、研究的基础上,对已经出现的软开关DC/DC变换器拓扑结构进行分析研究,提出的一种新型的DC/DC变换器的拓扑结构,并进行深入的研究。
二、移相控制ZVS PWM DC/DC全桥变换器的工作原理移相控制ZVS PWM DC/DC全桥变换器(Phase-Shifted zero-voltage-switching PWMDC/DC Full-Bridge Converter,PS ZVS PWM DC/DC FB Converter),是利用变压器的漏感或原边串联的电感和功率管的寄生电容或外接电容来实现开关管的零电压开关,其主电路拓扑结构及主要波形如图1所示。
其中,D1~D4分别是S1~S4的内部寄生二极管,C1~C4分别是S1~S4的寄生电容或外接电容,Lr是谐振电感,它包含了变压器的漏感。
移相ZVS-PWM全桥变换器概述摘要:移相ZVS-PWM DC/DC全桥变换器巧妙利用变压器漏感和开关管的结电容来完成谐振过程,使开关管实现零电压开关(ZVS),从而减少了开关损耗。
重点简述了该类变换器的基本原理,介绍了几种常见的拓扑,并简要地分析了它们的优缺点,最后指出了其发展方向。
关键词:移相全桥变换器零电压开关(ZVS)Overview of Phase Shift ZVS-PWM Full Bridge ConverterAbstract:Phase shift PWM DC/DC full bridge converter completing resonance procedure through leakage inductance of the transformer and junction capacitor of switch. It can make the switch achieve ZVS, decreasing the switching loss and interference .This paper describes the basi c principle of the converter, introduce several common topology, some common topologies as well as their advantages and drawbacks are discussed and analyzed. Finally it points out the development direction of the Converter.Key words:phrase shift,full bridge converter,ZVS引言全桥变换器广泛应用于中大功率的直流变换场合,近些年来,其软开关技术吸引了国内外学者的广泛关注,出现了很多控制策略和电路拓扑,其中移相控制是目前研究较多的控制方式,而以移相全桥零电压开关变换器(FB-ZVS-PWM)应用更为广泛。
移相全桥移相全桥ZVS 变换器由于其充分利用了电路本身的寄生参数,使开关管工作在软开关状态,降低了开关管的开关噪声和开关损耗,提高了变换器的效率,近年来在中大功率场合得到广泛应用。
随着微处理器价格的不断下降和计算能力的不断提高,采用数字控制已经成为中大功率开关电源的发展趋势,许多数字控制方法相继提出。
但对于DC/ DC 变换器这种强非线性系统,传统的基于线性系统理论的控制方法并不能获得理想的动态特性。
该文在建立移相全桥变换器模型的基础上,提出一种新的模糊PID 预测控制策略,将传统控制方法与智能控制方法相结合,通过模糊控制对传统PID 控制器进行增益调节,同时采用预测控制以补偿数字控制系统中的时延。
这种控制策略比较简单,易于数字控制器的实现,该文采用MA TLAB 方法进行了仿真研究。
2 移相全桥变换器小信号模型的建立一般建立DC/ DC 变换器的小信号模型的方法是状态空间平均法,但对于移相全桥ZVS 变换器来说,用状态空间平均法建模是一项十分复杂的工作。
因为这种变换器具有12种开关状态,因此列写状态空间方程式是一个非常复杂的工作。
根据移相全桥ZVS PWM 变换器源于BUCK 变换器的事实,从电路工作的描述中可以看出变压器副边的有效占空比^off off off d D d =-,变压器原边电压的占空比d 而且依靠输出滤波电感电流L i ,漏感lk L ,输入电压in V 和开关频率s f ,所以移相全桥变换器小信号传递函数也将取决于漏感lk L ,开关频率s f ,滤波电感电流扰动^L i ,输入电压扰动^in V ,和变压器原边占空比扰动^d 等因素。
为了精确地建立移相全桥变换器的动态特性模型,找出lk L ,s f ,^L i ,^in V 和^d 对^off d 的影响是必要的。
这些影响可以加入到PWM BUCK 变换器的小信号电路模型中( 图1),从而获得移相全桥PWM 变换器的小信号模型(图2)。
移相ZVS-PWM全桥变换器综述移相ZVS-PWM全桥变换器概述摘要:移相ZVS-PWM DC/DC全桥变换器巧妙利用变压器漏感和开关管的结电容来完成谐振过程,使开关管实现零电压开关(ZVS),从而减少了开关损耗。
重点简述了该类变换器的基本原理,介绍了几种常见的拓扑,并简要地分析了它们的优缺点,最后指出了其发展方向。
关键词:移相全桥变换器零电压开关(ZVS)Overview of Phase Shift ZVS-PWM Full Bridge ConverterAbstract:Phase shift PWM DC/DC full bridge converter completing resonance procedure through leakage inductance of the transformer and junction capacitor of switch. It can make the switch achieve ZVS, decreasing the switching loss and interference .This paper describes the basi c principle of the converter, introduce several common topology, some common topologies as well as their advantages and drawbacks are discussed and analyzed. Finally it points out the development direction of the Converter.Key words:phrase shift,full bridge converter,ZVS引言全桥变换器广泛应用于中大功率的直流变换场合,近些年来,其软开关技术吸引了国内外学者的广泛关注,出现了很多控制策略和电路拓扑,其中移相控制是目前研究较多的控制方式,而以移相全桥零电压开关变换器(FB-ZVS-PWM)应用更为广泛。
电动汽车移相全桥DC-DC变换器研究共3篇电动汽车移相全桥DC/DC变换器研究1电动汽车移相全桥DC/DC变换器研究近年来,随着环保理念的兴起以及能源问题的日益严峻,电动汽车正逐步成为人们关注的焦点。
而在电动汽车发展的过程中,电池和电机的性能和控制水平是决定其能否商业化、能否长期竞争的关键因素之一。
而作为电池和电机控制的枢纽,电源管理系统也在不断地进化和完善。
在电源管理系统中,DC/DC变换器是电池电压对电机电压进行变换的必要措施之一。
因此,对DC/DC变换器的研究和改进也变得尤为重要。
作为DC/DC变换器的一种常用形式,电气传动系统移相全桥DC/DC变换器因其灵活控制和有利的性能参数而备受研究者青睐。
移相全桥DC/DC变换器含有3个电感和4个开关管,其输出电压可通过改变开关管的导通方式进行控制。
总体来说,移相全桥DC/DC变换器采用了较为灵活的控制策略,且具有输出电压稳定、功率密度大、效率高等优点,因此十分适合应用于电动汽车等领域。
然而,传统的移相全桥DC/DC变换器具有电容电压分布不均、输出电压波动较大等缺陷,这些问题很大程度上受到了开关管的质量、损失以及开关策略的影响。
近年来,研究学者们通过改变开关策略、增加电感等措施来提高移相全桥DC/DC变换器的性能。
以全桥变换器为例,研究者引入了较为复杂的控制策略,如分割电容、交错半砌体等方式来缓解容压分布不均的问题。
然而,这些复杂的方案对于电动汽车等对控制系统稳定性、结构简洁、效率高等要求较高的系统来说不尽合适。
因此,为了进一步提高移相全桥DC/DC变换器的性能,研究者们提出了多种新型控制策略。
例如,采用基于PWM的移相全桥DC/DC变换器的控制系统,采用预计算方法确定电源电路运行状态的控制系统等等。
通过综合利用这些新型技术,使得移相全桥DC/DC变换器的性能得到了显著改善,容压分布与输出电压波动大大降低,这种改进措施有望为电动汽车等领域的应用提供更优秀的解决方案。
移相全桥零电压开关PWM设计实现摘要移相全桥电路具有结构简单、易于恒频控制和高频化,通过变压器的漏感和功率开关器件的寄生电容构成谐振电路,使开关器件的应力减小、开关损耗减小等优点,被广泛应用于中大功率场合。
近年来随着微处理器技术的发展,各种微控制器和数字信号处理器性能价格比的不断提高,采用数字控制已经成为大中功率开关电源的发展趋势。
相对于用实现的模拟控制,数字控制有许多的优点。
本文的设计采用TI公司的高速数字信号处理器TMS320F28027系列的DSP作为控制器。
该模块通过采样移相全桥零电压DC-DC变换器的输出电压、输入电压及输出电流,通过实时计算得出移相PWM信号,然后经过驱动电路驱动移相全桥零电压DC-DC变换器的四个开关管来达到控制目的。
实验表明这种控制策略是可行的,且控制模块可以很好的实现提出的控制策略。
关键词:移相全桥;零电压;DSPPhase-shifted Full-bridge Zero-voltage Switching PWM Design andImplementationABSTRACTPhase-shifted full-bridge circuit . In recent years, with the development of microprocessor technology, a variety of microcontrollers and digital signal processor cost performance continues to improve, the use of digital control uses DSP ,the TI company TMS320F28027 series of of phase-shifted PWM signal phase-shifted full-bridge zero-voltage DC-DC conversion, and then after the drive circuit the four switch control purposes. The experiments show that this control strategy is feasible, and the control module can achieve the proposed control strategy.Key words: phase-shifted full-bridge;zero-voltage;DSP目录1 引言 (1)1.1 移相全桥软开关研究背景及现状 (1)1.2 本文要做的工作 (1)2 移相全桥电路的工作原理 (2)2.1 电路工作状态及特点 (2)2.2 电路的运行模式分析 (3)2.2.1 工作过程分析 (3)2.3 软开关实现的条件 (7)3 DSP结构功能 (9)3.1 DSP适合于数字信号处理的特点 (9)3.2 TMS320系列DSP概况 (9)3.3 TMS320F2802x芯片特点 (10)3.4 CCSv5平台 (12)3.5 利用CCSv5.1导入已有工程 (12)3.6 利用CCSv5.1调试工程 (13)4 系统程序设计实现 (14)4.1 PWM的产生原理 (14)4.2 主程序的流程图 (15)4.3 程序设计 (18)4.4 最终实现的波形图 (18)5 总结 (24)参考文献 (25)致谢 (26)1 引言1.1 移相全桥软开关研究背景及现状[1]随着电力电子技术的飞速发展,电子设备与人们的关系越来越密切,可靠的电子设备都离不开可靠的电源。
改进型全桥移相ZVS-PWM DC/DC变换器摘要:介绍了一种能在全负载范围内实现零电压开关的改进型全桥移相ZVS-PWMDC/DC变换器。
在分析其开关过程的基础上,得出了实现全负载范围内零电压开关的条件,并将其应用于一台48V/6V的DC/DC变换器。
关键词:全桥DC/DC变换器;零电压开关;死区时间引言移相控制的全桥PWM变换器是在中大功率DC/DC变换电路中最常用的电路拓扑形式之一。
移相PWM控制方式利用开关管的结电容和高频变压器的漏电感作为谐振元件,使开关管达到零电压开通和关断。
从而有效地降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰,为变换器提高开关频率、提高效率、降低尺寸及重量提供了良好的条件。
同时保持了电路拓扑结构简洁、控制方式简单、开关频率恒定、元器件的电压和电流应力小等一系列优点。
移相控制的全桥PWM变换器存在一个主要缺点是,滞后臂开关管在轻载下难以实现零电压开关,使得它不适合负载范围变化大的场合[1]。
电路不能实现零电压开关时,将产生以下几个后果:1)由于开关损耗的存在,需要增加散热器的体积;2)开关管开通时存在很大的di/dt,将会造成大的EMI;3)由于副边二极管的反向恢复,高频变压器副边漏感上的电流瞬变作用,在二极管上产生电压过冲和振荡,所以,在实际应用中须在副边二极管上加入R-C吸收。
针对上述问题,常见的解决方法是在变压器原边串接一个饱和电感Ls,扩大变换器的零电压开关范围[2][3]。
但是,采用这一方法后,电路仍不能达到全工作范围的零电压开关。
而且,由于饱和电感在实际应用中不可能具有理想的饱和特性,这将会导致:1)增加电路环流,从而增加变换器的导通损耗;2)加重了副边电压占空比丢失,从而增加原边电流及副边二极管电压应力;3)饱和电感以很高的频率在正负饱和值之间切换,磁芯的损耗会很大,发热严重。
改进型全桥移相ZVS PWMDC/DC变换器是针对上述缺点所提出的一种电路拓扑[4][5][6]。
第一章软开关技术发展的概述§1.1引言电源有如人体的心脏,是所有用电设备的动力。
但电源却不像心脏那样形式单一。
因为,标志电源特性的参数有功率、电压、频率、噪声及带载时参数的变化等等;在同一参数要求下,又有体积、重量、形态、效率、可靠性等指标,并按此去“塑造”完美的电源,因此电源的形式是多种多样的。
按电力电子学的习惯称谓,AC-DC(AC表示交流电,DC表示直流电)称为整流,DC-AC称为逆变,AC-AC称为交-交变频,DC-DC称为直流-直流变换。
其中为达到转换目的,手段是多样的。
六十年代,开发了半导体器件,并用此器件为主实现这些转换。
电力电子学从此有了迅速发展。
广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成为另一形态的主电路都叫做开关变换器电路[1]。
在DC-DC变换器中,都要使用电子开关。
在80年代前主要使用的是晶闸管(SCR)作为开关器件。
到1980年,传统的电力电子器件已由普通晶闸管衍生出了快速晶闸管、逆导晶闸管、双向晶闸管、不对称晶闸管等,从而形成了一个晶闸管大家族。
与此同时,各类晶闸管的电压、电流、dv/dt、di/dt等参数定额均有很大提高,开关特性也有很大改善。
传统的电力电子器件已发展到相当成熟的地步。
从理论上讲,这类器件在电压、电流两个方面仍有很大的发展自由度,但是实际上却存在着两个制约其继续发展的重要因素。
一是控制功能上的欠缺,因为它通过门极只能控制开通而不能控制关断,所以称之为半控型器件。
要想关断这种器件必须另加用电感、电容和辅助开关器件组成的强迫换流电路,这样将使整机体积增大、重量增加,效率降低;二是因为它立足于分立元件结构,工作频率难以提高,一般情况下难以高于400Hz,因而大大地限制了它的应用范围。
由于上述两个原因,以半控型器件晶闸管为代表的传统电力电子器件的发展已处于停滞状态。
这就要求新一代电力电子器件及其变换电路尽快取代旧的传统电力电子技术。