2拉伸与压缩
- 格式:ppt
- 大小:2.21 MB
- 文档页数:64
第2章拉伸压缩与剪切教学目的:了解材料的力学性质;掌握轴向拉伸、压缩、剪切和挤压的概念;掌握轴向拉压时构件的内力、应力、变形的计算;熟练掌握剪切应力及挤压应力的计算方法并进行强度校核;掌握拉压杆的超静定问题。
教学重点:建立弹性杆件横截面上内力、内力分量的概念;运用截面法画轴力图;掌握低碳钢的力学性质;掌握轴向拉伸和压缩时横截面上正应力计算公式及其适用条件;掌握拉压杆的强度计算;熟练掌握剪切和挤压的实用计算。
教学难点:低碳钢类塑性材料在拉伸过程中反映出的性质;许用应力的确定和使用安全系数的原因;强度计算问题;剪切面和挤压面的确定;剪切和挤压的实用计算;拉压杆超的静定计算。
教具:多媒体。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
举例掌握轴向拉伸、压缩和剪切变形概念,通过例题、作业,加强辅导熟练运用截面法,掌握轴力图的画法;建立变形、弹性变形、应变、胡克定律和抗拉压刚度的概念;教学内容:轴向拉伸和压缩的概念;强度计算;材料的力学性能及应力应变图;许用应力与安全系数;超静定的计算;剪切概念;剪切实用计算;挤压实用计算。
教学学时:8学时。
教学提纲:2.1 轴向拉伸与压缩的概念和实例1.实例(1)液压传动中的活塞杆(2)内燃机的连杆(3)起吊重物用的钢索(4)千斤顶的螺杆(5)桁架的杆件2.概念及简图这些杆件虽然外形各异,受力方式不同,但是它们有共同的特点:(1)受力特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。
(如果两个F 力是一对离开端截面的力,则将使杆发生纵向伸长,这样的力称为轴向拉力; 如果是一对指向端截面的力,则将使杆发生纵向缩短,称为轴向压力)。
(2)变形特点:主要变形是纵向伸长或缩短。
(3)拉(压)杆的受力简图:(4)说明:本章所讲的变形是指受压杆没有被压弯的情况下,不涉及稳定性问题。
2.2 轴向拉伸或压缩时横截面上的内力和应力1.截面法求内力(1)假想沿m-m 横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力(即轴力)的值。
第2章 杆件的拉伸与压缩提要:轴向拉压是构件的基本受力形式之一,要对其进行分析,首先需要计算内力,在本章介绍了计算内力的基本方法——截面法。
为了判断材料是否会发生破坏,还必须了解内力在截面上的分布状况,即应力。
由试验观察得到的现象做出平面假设,进而得出横截面上的正应力计算公式。
根据有些构件受轴力作用后破坏形式是沿斜截面断裂,进一步讨论斜截面上的应力计算公式。
为了保证构件的安全工作,需要满足强度条件,根据强度条件可以进行强度校核,也可以选择截面尺寸或者计算容许荷载。
本章还研究了轴向拉压杆的变形计算,一个目的是分析拉压杆的刚度问题,另一个目的就是为解决超静定问题做准备,因为超静定结构必须借助于结构的变形协调关系所建立的补充方程,才能求出全部未知力。
在超静定问题中还介绍了温度应力和装配应力的概念及计算。
不同的材料具有不同的力学性能,本章介绍了塑性材料和脆性材料的典型代表低碳钢和铸铁在拉伸和压缩时的力学性能。
2.1 轴向拉伸和压缩的概念在实际工程中,承受轴向拉伸或压缩的构件是相当多的,例如起吊重物的钢索、桁架第2章 杆件的拉伸与压缩 ·9··9·2.2 拉(压)杆的内力计算2.2.1 轴力的概念为了进行拉(压)杆的强度计算,必须首先研究杆件横截面上的内力,然后分析横截面上的应力。
下面讨论杆件横截面上内力的计算。
取一直杆,在它两端施加一对大小相等、方向相反、作用线与直杆轴线相重合的外力,使其产生轴向拉伸变形,如图2.2(a)所示。
为了显示拉杆横截面上的内力,取横截面把m m −拉杆分成两段。
杆件横截面上的内力是一个分布力系,其合力为N F ,如图2.2(b)和2.2(c)所示。
由于外力P 的作用线与杆轴线相重合,所以N F 的作用线也与杆轴线相重合,故称N F 为轴力(axial force)。
由左段的静力平衡条件0X =∑有:()0+−=N F P ,得=N F P 。
实验一 拉伸和压缩实验拉伸和压缩实验是测定材料在静载荷作用下力学性能的一个最基本的实验。
工矿企业、研究所一般都用此类方法对材料进行出厂检验或进厂复检,通过拉伸和压缩实验所测得的力学性能指标,可用于评定材质和进行强度、刚度计算,因此,对材料进行轴向拉伸和压缩试验具有工程实际意义。
不同材料在拉伸和压缩过程中表现出不同的力学性质和现象。
低碳钢和铸铁分别是典型的塑性材料和脆性材料,因此,本次实验将选用低碳钢和铸铁分别做拉伸实验和压缩实验。
低碳钢具有良好的塑性,在拉伸试验中弹性、屈服、强化和颈缩四个阶段尤为明显和清楚。
低碳钢在压缩试验中的弹性阶段、屈服阶段与拉伸试验基本相同,但最后只能被压扁而不能被压断,无法测定其压缩强度极限bc σ值。
因此,一般只对低碳钢材料进行拉伸试验而不进行压缩试验。
铸铁材料受拉时处于脆性状态,其破坏是拉应力拉断。
铸铁压缩时有明显的塑性变形,其破坏是由切应力引起的,破坏面是沿45︒~55︒的斜面。
铸铁材料的抗压强度bc σ远远大于抗拉强度b σ。
通过铸铁压缩试验观察脆性材料的变形过程和破坏方式,并与拉伸结果进行比较,可以分析不同应力状态对材料强度、塑性的影响。
一、 实验目的1.测定低碳钢的屈服极限s σ(包括sm σ、sl σ),强度极限b σ,断后伸长率δ和截面收缩率ψ;测定铸铁拉伸和压缩过程中的强度极限b σ和bc σ。
2.观察低碳纲的拉伸过程和铸铁的拉伸、压缩过程中所出现的各种变形现象,分析力与变形之间的关系,即P —L ∆曲线的特征。
3.掌握材料试验机等实验设备和工具的使用方法。
二、 实验设备和工具1. 液压摆式万能材料试验机。
2. 游标卡尺(0.02mm)。
三、 拉伸和压缩试件材料的力学性能sm s σσ(、sl σ)、b σ、δ和ψ是通过拉伸和压缩试验来确定的,因此,必须把所测试的材料加工成能被拉伸或压缩的试件。
试验表明,试件的尺寸和形状对试验结果有一定影响。
为了减少这种影响和便于使各种材料力学性能的测试结果可进行比较,国家标准对试件的尺寸和形状作了统一的规定,拉伸试件应按国标GB /T6397—1986《金属拉伸试验试样》进行加工,压缩试件应按国标GB /T7314—1987《金属压缩试验方法》进行加工。