数模混合信号电路设计__ADC
- 格式:ppt
- 大小:5.31 MB
- 文档页数:3
3.2模数转换器(ADC)参数及其电路形式模数转换器(Analog-to-Digital Converter)简称ADC,它是一种将模拟信号转换成相应的数字信号的装置或器件。
模拟信号是指那些在时间上和数值上都是连续变化的信号。
自然界中各种物理量,如声、光、力、热等,在时间上和量的大小上也都是连续变化的。
这些物理量经过传感器可以被变换成电信号,以便用电子技术手段来处理。
而大多数传感器变换得到的电压、电流信号仍然是连续的。
显然,这种连续变化的电压、电流信号属于模拟信号。
模拟信号需要用模拟仪表指示,用模拟电路进行信号加工、用模拟计算机进行处理。
而模拟系统对外界电磁干扰、环境温度的变化、电子元器件的参数变化都是比较敏感的,因此一个高质量的模拟系统是非常昂贵的。
高速ADC的速度已达1000MHz,高精度ADC的分辨率已达24位;高速DAC 的速度也高达500MHz,高精度DAC的分辨率己达18位。
这样的指标已可以满足绝大多数电子设备对器件的要求,包括某些特殊应用场合的要求。
模数转换过程任何ADC都包括三个基本功能:采样、量化和编码。
采样过程将模拟信号在时间上离散化,使之成为抽样信号;量化将抽样信号的幅度离散化使之成为数字信号;编码则将数字信号最终表示成数字系统所能接受的的形式。
如何实现这三个功能就决定了ADC的形式和性能。
同采样频率应最少大于输入信号中最高频谱分量的两倍。
下图是采样过程:下图是3位采样和量化过程:静态特性ADC的静态特性是指它的实际量化特性。
理想ADC(没有电路误差)的量化特性仅由它的量化方式、输出数字的位数和码制决定。
实际上存在着失调误差、增益误差,线性和微分线性误差以及温度、时间和电源变化所引起的误差漂移。
动态特性ADC的动态特性主要由转换时间和速率两个相关的技术指标来描述。
一.常用术语和主要技术指标1.位(Bit),字节(Byte),字(Word)2.最低有效位 Least Significant Bit(LSB)最高有效位 Most Significant Bit(MSB)3.分辨率(Resolution)分辨率指模数转换器在转换中所能分辨的最小量,习惯上用转换结果的位数表示。
ADC与DAC电路设计精要模拟-数字转换器(ADC)和数字-模拟转换器(DAC)是数字电子系统中常见的关键组件,它们负责将模拟信号转换为数字信号或者将数字信号转换为模拟信号。
在设计ADC和DAC电路时,需要考虑到很多因素,包括精度、速度、功耗、成本等等。
本文将重点介绍ADC与DAC电路设计的关键要点。
首先,ADC电路设计的关键要点之一是分辨率。
分辨率是ADC能够区分的电压值范围的大小,通常以比特为单位表示,比如8位、10位、12位等。
分辨率越高,ADC能够提供的精度就越高。
在选择ADC器件时,需要根据具体的应用需求来确定所需的分辨率,同时还要考虑到采样率和动态范围等因素。
另外,ADC电路设计中还需要考虑信噪比(SNR)和失真。
信噪比是指ADC输出信号与输入信号的比值,表示了ADC在信号转换过程中添加的噪声水平。
失真是指ADC输出信号与输入信号之间的差异,包括非线性失真和量化噪声等。
为了提高ADC的性能,需要尽可能降低噪声水平和失真水平,同时选择合适的滤波器来滤除干扰信号。
对于DAC电路设计而言,精度和线性度是关键要点之一。
DAC的精度指的是输出信号与输入信号之间的误差程度,而线性度表示DAC输出信号与输入信号之间的线性关系。
高精度和高线性度能够保证DAC输出信号与输入信号的一致性,提高系统的性能。
在选择DAC器件时,需要考虑到分辨率、更新速率、功耗等因素,并根据具体的应用需求来确定合适的DAC类型。
此外,DAC电路设计还需要关注输出阻抗和加载效应。
输出阻抗是指DAC输出端的内部电阻,影响着DAC输出信号的稳定性和准确性。
加载效应是指DAC输出端连接的负载电路对DAC输出信号造成的影响。
在设计DAC电路时,需要选择合适的输出缓冲器和负载电路,以确保DAC输出信号能够被准确地传输到下游电路中。
总而言之,ADC与DAC电路设计涉及到很多关键要点,包括分辨率、信噪比、失真、精度、线性度、输出阻抗等等。
在设计ADC与DAC电路时,需要根据具体的应用需求来选择合适的器件和设计方案,以确保电路性能达到预期的要求。
数模混合信号电路设计技术分享混合信号电路设计既包括模拟电路设计,也包括数字电路设计,是一门综合性强的技术,常在通信、医疗和工业控制等领域得到广泛应用。
数模混合信号电路设计技术是一项重要且复杂的工作,需要设计师具备一定的数学、物理、电子学和计算机等知识,下面我将分享一些关于数模混合信号电路设计技术的内容。
首先,数模混合信号电路设计需要设计师对模拟电路和数字电路均有较深的理解。
模拟电路主要处理模拟信号,它以连续的方式表示信号,而数字电路则主要处理数字信号,以离散的方式表示信号。
在混合信号电路设计中,需要设计师根据具体的需求有效地整合模拟和数字电路,以实现所需的功能和性能。
因此,设计师需要了解模拟信号处理和数字信号处理的原理,掌握模拟电路和数字电路的设计方法。
其次,数模混合信号电路设计技术中,模拟信号和数字信号之间的转换是关键的一步。
在实际的电子系统中,模拟信号和数字信号需要相互转换,这就需要设计师使用数模转换器,即ADC(模数转换器)和DAC(数模转换器)。
ADC负责将模拟信号转换为数字信号,而DAC则负责将数字信号转换为模拟信号。
设计师需要根据具体的应用需求选择合适的ADC和DAC,并合理布局在电路中,以确保转换的准确性和稳定性。
此外,数模混合信号电路设计还要考虑功耗、速度和精度等方面的问题。
随着科技的不断发展,电子设备对功耗、速度和精度等性能指标的要求越来越高。
设计师在进行数模混合信号电路设计时,需要在功耗、速度和精度之间找到平衡点,满足产品的性能需求和成本控制。
因此,设计师需要选取合适的元件、进行仿真和优化设计,以提高电路的性能和稳定性。
最后,数模混合信号电路设计是一个复杂而有挑战性的工作,需要设计师具备较强的动手能力和创新意识。
在实际的设计过程中,设计师可能会面临各种问题和挑战,需要灵活应对,通过分析、设计和验证等步骤来解决问题。
设计师还需要不断学习和提升自己的技术水平,掌握最新的数模混合信号电路设计技术,以适应不断变化的市场需求。
模数和数模转换器(ADC和DAC)工作原理为了能够使用数字电路处理模拟信号,必须把模拟信号转化成相应的数字信号,方能送入数字系统进行处理.同时也要把处理后得到的数字信号在转换成相应的模拟信号,作为最后的输出.我们把前一种从模拟信号到数字信号的转换叫做模-数转换,或简称A/D;把后一种从数字信号到模拟信号的转换叫做数-模转换,或简称D/A.同时把A/D或D/A 转换的电路叫做模数转换器(简称ADC)或数模转换器(简称DAC)主要分成以下几个部分:1、取样:取样(也称采样)是将时间上连续变化的信号,转换为时间上离散的信号,即将时间上连续变化的模拟量转换为一系列等间隔的脉冲,脉冲的幅度取决于输入模拟量。
2、保持:模拟信号经采样后,得到一系列样值脉冲。
采样脉冲宽度一般是很短暂的,在下一个采样脉冲到来之前,应暂时保持所取得的样值脉冲幅度,以便进行转换。
因此,在取样电路之后须加保持电路。
3、量化:将采样后的样值电平归化到与之接近的离散电平上,这个过程称为量化。
4、编码:把量化的结果用代码表示出来,称为编码。
这些代码就是A/D转换的输出结果。
模拟信号数字化需要注意两个问题:①每秒钟需要采集多少个信号样本,也就是采样频率(fs)是多少,②每个信号样本的比特数b/s(bit per sample)应该是多少,也就是量化精度。
根据奈奎斯特理论(Nyquist theory),采样频率的高低是由模拟信号本身的最高频率决定的。
奈奎斯特理论指出,采样频率不应低于模拟信号最高频率的两倍,这样就能把以数字表达的信号还原成原来的信号,这叫做无损数字化(lossless digitization)。
采样定律用公式表示为fs ≥ 2f或者T s ≤ T/2其中f为被采样信号的最高频率,T为被采样信号的最低周期,fs 称为采样频率,Ts为采样间隔。
如下图,图中的正弦曲线代表原始音频曲线;填了颜色的方格代表采样后得到的结果,二者越吻合说明采样结果越好。
芯片设计中的混合信号电路设计方法是什么在当今科技飞速发展的时代,芯片作为各种电子设备的核心组件,其性能和功能的不断提升至关重要。
而混合信号电路设计在芯片设计中扮演着关键的角色,它融合了模拟电路和数字电路的特点,能够实现更复杂、更高效的功能。
那么,芯片设计中的混合信号电路设计方法究竟是什么呢?要理解混合信号电路设计方法,首先得明白模拟电路和数字电路的区别。
模拟电路处理的是连续的信号,比如声音、图像等,其信号幅度可以在一定范围内连续变化。
而数字电路处理的则是离散的信号,只有 0 和 1 两种状态。
混合信号电路就是要将这两种不同性质的电路有机地结合在一起,以实现特定的功能。
在混合信号电路设计中,系统规划是第一步。
这就好比盖房子之前要先有个蓝图,明确整个电路要实现什么样的功能,性能指标如何,以及与其他系统模块的接口等。
比如,在设计一个用于音频处理的芯片时,需要确定音频的采样频率、分辨率、动态范围等指标。
接下来是电路模块的划分。
根据系统规划,将整个电路划分成不同的模块,有的模块负责模拟信号处理,有的负责数字信号处理,还有的负责两者之间的转换。
比如,在音频处理芯片中,可能会有模拟音频放大器模块、模数转换模块、数字信号处理模块等。
在模拟电路设计部分,精度和稳定性是关键。
由于模拟信号的连续变化特性,很小的干扰或误差都可能对信号质量产生较大影响。
因此,在设计模拟电路时,需要精心选择元器件,考虑其参数的一致性和稳定性。
比如,选择高精度的电阻、电容,以及低噪声的放大器等。
同时,还要注意电路的布局和布线,减少寄生电容和电感的影响,以提高电路的性能。
数字电路设计则更侧重于逻辑功能的实现和时序的优化。
通过使用各种数字逻辑门、寄存器、计数器等元件,构建出满足功能要求的数字电路。
在设计过程中,要考虑时钟频率、时序约束等因素,以确保数字电路能够正确、高效地工作。
而模数转换(ADC)和数模转换(DAC)模块则是混合信号电路中的关键桥梁。
如何设计简单的模数转换器和数模转换器电路在电子领域中,模数转换器(ADC)和数模转换器(DAC)是常见的电路设备,它们可以将模拟信号转换为数字信号或将数字信号转换为模拟信号。
本文将介绍如何设计一种简单但有效的模数转换器和数模转换器电路。
一、模数转换器(ADC)电路设计:ADC的作用是将模拟信号转换为数字信号。
以下是一个简单的ADC电路设计方案:1. 采样电路:ADC的第一阶段是采样,即对模拟信号进行定期的采样。
可以使用开关电容电路或样保持电路来实现这一功能。
这些电路可以将输入信号保持在一个电容中,然后在固定的采样时间内读取电容电压。
2. 量化电路:采样之后,接下来需要将模拟信号量化为数字信号。
使用比较器和计数器可以实现这一过程。
比较器将采样信号与一个参考电压进行比较,并产生高低电平的输出信号。
计数器用于计算比较器输出信号的个数,并将其转换为数字表示。
3. 数字处理电路:ADC的最后一步是数字处理,即将量化后的数字信号进行处理和滤波。
这个过程可以使用微处理器或数字信号处理器(DSP)来完成。
数字处理电路可以对信号进行滤波、平滑和放大等操作,以提高最终输出结果的质量。
二、数模转换器(DAC)电路设计:DAC的作用是将数字信号转换为模拟信号。
以下是一个简单的DAC电路设计方案:1. 数字信号处理:DAC的第一步是对数字信号进行处理。
这可以通过计算机、FPGA或其他数字处理设备来完成。
在这一步中,将数字信号转换为对应的数值表示。
2. 数字到模拟转换:将处理后的数字信号转换为模拟信号的常用方法是使用数字锯齿波发生器。
数字锯齿波发生器通过逐步增加或减小电压的值来产生连续的模拟输出信号。
可以使用操作放大器和运算放大器来实现这个功能。
3. 输出放大和滤波:模拟信号产生后,可能需要通过放大器进行放大以适应实际应用场景。
此外,还可以使用滤波器来去除模拟信号中的噪声和杂散成分,以提高输出信号的质量和稳定性。
总结:通过以上简单的电路设计方案,我们可以实现基本的模数转换器和数模转换器。
一个8位200MSPS前端混合模式采样保持电路流水线ADC摘要本文通过在前端使用一种混合模式的采样保持电路设计出一个8位流水线模数转换器(ADC)。
这种混合模式的采样技术减小了维持信噪比时流水线ADC中的信号摆幅。
信号摆幅的减小就会放宽流水线ADC中的运算放大器增益、转换速率、带宽以及电容匹配的要求。
由于有了混合模式采样保持技术,单级运放以及很小的电容尺寸都能用于流水线ADC,从而实现高速和低功耗。
在一个0.18um的CMOS工艺制造中,8位流水线ADC需要在1.8V供给电压下消耗22mW。
当采样达到200MSPS,原型ADC达到54dB的无杂散动态范围以及45dB的信噪失真比。
可测量的积分非线性和微分非线性分别是0.34LSB和0.3LSB。
关键字:模数转换器(ADC)数字接收器高速运算放大器流水线ADC 采样保持1 引言对高数据速率应用如多媒体服务的快速增长的需求促使了有线和无线通信带宽标准升高。
例如,IEEE802.11标准的下一代的数据速率预期会达到540Mb/s并且信号带宽预计会趋于40MHZ。
模数转换器(ADC)是数字通信接收器中的关键组成部分。
对于宽带应用例如1000BASE-T 和IEEE802.11,一个8位或9位ADC的分辨率足够满足系统的信噪比(SNR)需求。
然而,一个几百上千MSPS的采样速率需要去提供增加的信号带宽并且放宽了消除锯齿滤波器的设计。
另外,为了电池供电的便携,ADC的功耗必须最小化。
流水线ADC结构由于它的高速和功耗的高效性成为了宽带接收器的热门候选,大多数的流水线ADC都使用开关电容电路。
运算放大器和电容的大小决定了应用于流水线ADC的形状电容的性能。
运放必须具有高直流增益、高摆率和宽的带宽去满足准确性和速率要求。
运放的性能还对采样保持(S/H)电路的线性度和流水线级数,从而在总体上对ADC动态性产生影响。
电容的大小是另一个限制流水线ADC性能的影响因素。
电子设计中的数模混合设计方法
在电子设计中,数模混合设计方法是一种常用的技术,用于将数字信号与模拟
信号相结合,以实现复杂的电路功能。
数模混合设计方法在各种领域中广泛应用,包括通信、控制系统、传感器等。
数模混合设计方法的核心是将模拟信号转换为数字信号(ADC),或者将数字信号转换为模拟信号(DAC)。
ADC和DAC是电子系统中常用的器件,用于实现信号的数字化和模拟化处理。
在设计中,需要考虑信号的精度、速度、功耗等因素,以确保电路性能的稳定和可靠。
在数模混合设计中,一般会使用模拟电路和数字电路相结合的方式来实现功能。
模拟电路主要负责信号处理和滤波等功能,数字电路则用于控制逻辑和数据处理。
通过合理的设计,可以实现更复杂的功能,提高系统的性能和稳定性。
另外,在数模混合设计中,还需要考虑布局和布线的问题。
良好的布局和布线
可以减少信号的干扰和损耗,提高系统的可靠性和性能。
通常会使用仿真工具来辅助设计和优化布局,以确保电路的稳定和可靠。
总的来说,数模混合设计方法是一种复杂而重要的技术,在电子系统中发挥着
重要作用。
通过合理的设计和优化,可以实现更高性能和更可靠的电子系统,满足各种应用需求。
在未来的发展中,数模混合设计方法将继续发挥重要作用,推动电子技术领域的发展。
adc电路原理
ADC电路(模数转换器)是一种将模拟信号转换为数字信号
的电路。
其原理是将输入的连续模拟信号进行采样并离散化,然后利用编码器将离散化的信号转换为数字形式。
ADC电路中的主要组成部分包括采样保持电路、量化电路和
编码器。
采样保持电路用于将连续的模拟信号转换为离散化的信号,通常通过采样保持电容来实现。
量化电路将采样信号进行量化,即将其分成若干个离散的电平。
编码器则根据量化后的信号将其转换为数字形式,常见的编码方式有二进制和格雷码编码。
ADC电路的工作过程一般分为三个阶段:采样、量化和编码。
在采样阶段,输入的连续模拟信号经过采样保持电路被抽样离散化。
在量化阶段,采样信号经过量化电路被分成离散的电平,并与一个参考电平进行比较。
在编码阶段,量化后的信号经过编码器转换为数字信号,输出给数字系统进行处理。
ADC电路的应用非常广泛,特别是在数字信号处理系统和通
信系统中。
它可以将模拟信号转换为数字信号,方便数字系统对信号进行处理、存储和传输。
常见的应用包括音频、视频、传感器信号等的数字化处理。
同时,ADC电路的性能也直接
影响到数字信号处理的精度和准确度,因此在设计中需要考虑采样率、分辨率、非线性误差等参数。
总之,ADC电路通过采样、量化和编码的过程将模拟信号转
换为数字信号,并广泛应用于数字信号处理系统和通信系统中。
它的原理是通过将连续模拟信号离散化并转换为数字形式,实现信号的数字化处理和传输。
adc电路课程设计一、课程目标知识目标:1. 学生能理解ADC(模拟-数字转换器)电路的基本原理,掌握其工作流程及组成部分。
2. 学生能掌握ADC电路中的关键参数,如分辨率、转换精度、转换速率等,并了解它们之间的关系。
3. 学生能够运用ADC电路知识,分析实际电路中的模拟信号转换过程。
技能目标:1. 学生能够运用所学知识,设计简单的ADC电路,并进行仿真实验。
2. 学生能够利用相关软件(如Multisim、Proteus等)进行ADC电路的搭建、调试和测试,分析实验结果。
3. 学生能够通过小组合作,共同解决ADC电路设计过程中遇到的问题,提高团队协作能力。
情感态度价值观目标:1. 学生通过学习ADC电路,培养对电子技术的兴趣,增强学习积极性。
2. 学生在课程学习过程中,培养良好的实验习惯,严谨的科学态度和创新能力。
3. 学生通过小组合作,培养团队精神,学会尊重他人,提高沟通能力。
本课程旨在帮助学生掌握ADC电路的基本原理和设计方法,培养学生实际操作和解决问题的能力,同时注重培养学生的情感态度和价值观,使学生在学习过程中形成积极的学习态度,为后续相关课程打下坚实基础。
二、教学内容1. ADC电路基本原理:介绍ADC电路的作用、分类及其工作原理,重点讲解逐次逼近(SAR)ADC的原理和流程。
教学内容关联教材章节:第三章“模拟-数字转换器”第一节“ADC的基本原理”。
2. ADC电路关键参数:详细讲解分辨率、转换精度、转换速率等参数的定义、计算方法及其相互关系。
教学内容关联教材章节:第三章“模拟-数字转换器”第二节“ADC的关键参数”。
3. ADC电路设计与应用:介绍ADC电路的设计方法,结合实际案例进行分析,使学生了解ADC电路在实际应用中的关键作用。
教学内容关联教材章节:第三章“模拟-数字转换器”第三节“ADC的设计与应用”。
4. ADC电路仿真实验:指导学生使用Multisim、Proteus等软件进行ADC电路的搭建、调试和测试,分析实验结果。
目录:前言一、数模混合设计的难点二、提高数模混合电路性能的关键三、仿真工具在数模混合设计中的应用四、小结五、混合信号PCB设计基础问答前言:数模混合电路的设计,一直是困扰硬件电路设计师提高性能的瓶颈。
众所周知,现实的世界都是模拟的,只有将模拟的信号转变成数字信号,才方便做进一步的处理。
模拟信号和数字信号的转变是否实时、精确,是电路设计的重要指标。
除了器件工艺,算法的进步会影响系统数模变换的精度外,现实世界中众多干扰,噪声也是困扰数模电路性能的主要因素。
本文通过Ansoft公司的“AD-Mix Sig nal Noise Design Suites” 数模混合噪声仿真设计软件的对数模混合设计PCB 的仿真,探索分析数模混合电路的噪声干扰和优化设计的途径,以达到改善系统性能目的。
一、数模混合设计的难点数模混合电路设计当中,干扰源、干扰对象和干扰途径的辨别是分析数模混合设计干扰的基础。
通常的电路中,模拟信号上由于存在随时间变化的连续变化的电压和电流有效成分,在设计和调试过程中,需要同时控制这两个变量,而且他们对于外部的干扰更敏感,因而通常作为被干扰对象做分析;数字信号上只有随时间变化的门限量化后的电压成分,相比模拟信号对干扰有较高的承受能力,但是这类信号变化快,特别是变化沿速度快,还有较高的高频谐波成分,对外释放能量,通常作为干扰源。
作为干扰源的数字电路部分多采用CMOS工艺,从而导致数字信号输入端极高的输入电阻,通常在几十k欧到上兆欧姆。
这样高的内阻导致数字信号上的电流非常微弱,因而只有电压有效信号在起作用,在数模混合干扰分析中,这类信号可以作为电压型干扰源,如CLK信号,Reset等信号。
除了快速交变的数字信号,数字信号的电源管脚上,由于引脚电感和互感引起的同步开关噪声(SSN),也是数模混合电路中存在的重要一类电压型干扰源。
此外,电路中还存在一些电流信号,特别是直流电源到器件负载之间的电源信号上有较大的电流,根据右手螺旋定理,电流信号周围会感应出磁场,进而引起变化的电场,在分析时,直流电源作为电流型干扰源。
专利名称:一种ADC电路的模数混合测试通道专利类型:实用新型专利
发明人:李怀亮,胡靖,张茜薇,王东旭,王静宁申请号:CN201920762870.0
申请日:20190525
公开号:CN209949080U
公开日:
20200114
专利内容由知识产权出版社提供
摘要:本实用新型公开了一种ADC电路的模数混合测试通道,包括电路板、数字电路、模数电路和模拟电路,电路板上设置有数字电路、模数电路和模拟电路,数字电路、模数电路和模拟电路之间通过ADC测试通道相连,数字电路分别与数字信号输入端和数字信号输出端相连,模拟电路分别与模拟信号输入端和模拟信号输出端相连,模数电路与模数输入端和模数输出端相连,ADC测试通道与通道输入端和通道输出端相连。
本实用新型有助于芯片级内测试,用虚拟探针代替传统的物理探针,用较少测试线完成芯片内核功能、元器件与PCB板、芯片间的互连等方面测试。
申请人:黑龙江大学
地址:150080 黑龙江省哈尔滨市南岗区学府路74号
国籍:CN
代理机构:西安研创天下知识产权代理事务所(普通合伙)
代理人:杨凤娟
更多信息请下载全文后查看。
《数字逻辑电路分析与设计》课程项目实施报告题目(A):基本模数转换器(ADC)的设计组号: 8 任课教师:。
组长:。
成员:。
成员:。
成员:。
成员:。
联系方式:。
二零一四年十月二十五日基本模数转换器(ADC )的设计一.设计要求(1) 设计一个每单次按下按钮,就能够实现数模转换的电路,并用LED 显示对应输入模拟电压(0—3V )的等级,当输入电压>3V 后,有“溢出”显示。
(2) 功能模块如图:(3) 图中的“模数转换”为本教材第六章的并行ADC 转换电路。
在此基础上自行设计按键、LED 显示、模拟电压调节等模块,实现单次模数转换的功能。
模拟电压调节模数转换LED 显示按键5V 电源自行设计溢出标记的显示。
(4) 本电路的测试方法是,通过一个电位器对电源电压连续分压,作为ADC的输入电压,每按下一次按键时,ADC 电路进行一次ADC 转换,并将转换的结果用数码管显示出来。
注意不要求显示实际的电压值,仅显示模拟电压的量化等级。
二.电路原理图LED显示三.设计思路根据题目要求,我们的电路本应分五个个模块,但实验室缺少8-3编码器不能实现转化,所以只能有四个一下模块:模拟电压调节;比较电路;记忆模块;LED显示。
模拟电压的调节可以用划变电阻来调节电压,理想中数模转化模块应由比较器,D触发器和编码器来实现,在我们的实际电路中我们只用了前两者。
最终我们用LED的亮灭来显示结果。
具体原理叙述如下:在比较电压时,将参考电压V ref经电阻分压器产生一组不同的量化电平V i:v1=1/16V ref,v2=3/16V ref,v3=5/16V ref ,v4=7/16V ref ,v5=9/16V ref ,v6=11/16V ref ,v7=13/16V ref ,v8=15/16V ref ,这些量化电平分别送到相应lm339比较器的反相输入端,而输入电压V同时作用于lm339比较器的同相输入端。