换路定律
- 格式:doc
- 大小:78.00 KB
- 文档页数:3
换路定律(RL电路)预习自查提纲:1、RL电路接通直流电源的瞬态过程(1)叙述RL电路接通直流电源所经历的瞬态过程。
(2)引起RL电路瞬态过程的内因和外因分别是什么?(3)除开接通电源可以引起RL电路瞬态过程外,还有哪些因素可以引起瞬态过程?(4)什么叫换路?【对基础较差的同学掌握问题(2)(3)(4)】2、RL电路中的换路定律(5)RL电路中什么能量不能跃变?能量的计算公式是什么?反映在电路中,什么物理量不能跃变?(6)RL电路中换路定律的内容是什么?(7)没有储能的电感,在换路瞬间,是相对于开路还是相对于短路?为什么?(8)RL电路中,不能跃变的量有哪些?【对基础较差的同学掌握问题(5)、(6)】3、RL电路中电流、电压初始值的计算(9)RL电路中电流、电压初始值计算的步骤是什么?(10)试标出RL电路接通电源瞬间,各电流、电压的参考方向。
【对基础较差的同学可根据自己实际情况,能掌握多少是多少。
】课堂练习:如图为一测量电感中电流以及两端电压的电路图,E=4V,R=2Ω,电压表内阻RV =2.5KΩ, 电流表内阻RA=2Ω,合上开关S进行测量,(1)试估算测量值的大小;(2)在测量过程中,若不小心断开开关S,将出现什么样的后果?换路定律(RL电路)预习自查提纲:1、RL电路接通直流电源的瞬态过程(1)叙述RL电路接通直流电源所经历的瞬态过程。
(2)引起RL电路瞬态过程的内因和外因分别是什么?(3)除开接通电源可以引起RL电路瞬态过程外,还有哪些因素可以引起瞬态过程?(4)什么叫换路?【对基础较差的同学掌握问题(2)(3)(4)】2、RL电路中的换路定律(5)RL电路中什么能量不能跃变?能量的计算公式是什么?反映在电路中,什么物理量不能跃变?(6)RL电路中换路定律的内容是什么?(7)没有储能的电感,在换路瞬间,是相对于开路还是相对于短路?为什么?(8)RL电路中,不能跃变的量有哪些?【对基础较差的同学掌握问题(5)、(6)】3、RL电路中电流、电压初始值的计算(9)RL电路中电流、电压初始值计算的步骤是什么?(10)试标出RL电路接通电源瞬间,各电流、电压的参考方向。
.-换路定律————————————————————————————————作者:————————————————————————————————日期:12.1 换路定律、一阶电路的三要素法考纲要求:1、了解电路瞬态过程产生的原因。
2、掌握换路定律。
教学目的要求:1、了解电路瞬态过程产生的原因。
2、掌握换路定律。
教学重点:换路定律教学难点:换路定律课时安排:4节课型:复习教学过程:【知识点回顾】一、瞬态过程(过程)1、定义:。
2、瞬态过程产生的原因外因:。
内因:。
(元件上所储存的能量突变是产生瞬态过程的根本原因。
)二、换路定理1、换路:。
2、换路定理(1)定义:。
(2)表达式:。
3、应用电容器:换路前未储能,在换路瞬间,相当于。
换路前储能,在换路瞬间,相当于。
电感:换路前未储能,在换路瞬间,相当于。
换路前储能,在换路瞬间,相当于。
在稳态1和稳态2时,电感相当于,电容器相当于。
4、注意事项:只有和不能跃变,其他的电压和电流可以跃变。
5、电压、电流初始值的计算(1);(2);(3) ;(4) ;【课前练习】一、判断题1、发生过渡过程时,电路中所有电流、电压均不能发生突变。
( )2、在电路的过渡过程中,电感中的电流和电容两端的电压是不能突变的。
( )3、在电路的换路瞬间,电感两端电压和电容中的电流是可以突变的。
( )4、换路定律不仅适用于换路的瞬间,也适用于瞬态过程中。
( )5、电路的瞬态过程是短暂的,其时间的长短是由电路的参数决定的。
( )6、电路中只要有储能元件,且进行换路,就会存在过渡过程。
( )7、电容元件的电压、电流可由换路定律确定。
( )二、选择题1、如图所示电路中,t=0时,开关闭合,若uc (0-)=0,则ic(0+)为( )A .0B .1AC .2A D.∞2、如图所示电路,t=0时开关打开,则u(O+)为( )A .25VB .- 25VC .OV D. 50V3、图示电路中.,t=0时开关S 闭合,那么电路中电流的初始值和稳态值分别为( )A .iL(0+)=R E 2 iL (∞)=O ; B .iL(0+)=O iL (∞)= RE ; C. iL(0+)=R E 2 / iL (∞)= R E ; D .iL(0+)=R E iL (∞)= R E 2第1题图 第2题图 第3题图4、如图所示电路中,t=0时开关断开,则8Ω电阻初始电流i(0+)为 ( )A. 2A B .- 2A C .4A D .- 4A5、如图所示电路中,t=0时开关打开,则uc(0+)为 ( )A .3 VB .-3VC .OVD .6V6、如图所示电路中,在已稳定状态下断开开关S ,则该电路( )A.因为有储能元件L ,产生过渡过程B .因为电路有储能元件,且发生换路,要产生过渡过程C .因为换路时元件L 上的电流储能不发生变化,不产生过渡过程D .因为电路有储能元件,但不能确定是否有过渡过程第4题图 第5题图 第6题图三、填空题1、电路产生瞬态过程的充分条件是,必要条件是(1) ,(2) .2、RL串联电路,已知,L=2H,R=4Ω,iL(0-)=2 A,在t=0时闭合开关S对电阻R放电,则电阻R在此放电过程中吸收的能量为,电感元件在未放电前储存的能量为。
单元三动态电路分析一、过渡过程(暂态过程)1. 概念:电路从一个稳定状态过渡到另一个稳定状态,电压、电流等物理量经历一个随时间变化的过程。
2. 产生过渡过程的原因:内因:电路中含有储能元件。
外因:换路二、换路定律1. 换路:电路工作条件发生变化,如电源的接通或切断,电路连接方法或参数值的突然变化等称为换路。
2. 换路定理:电容上的电压u C 及电感中的电流i L 在换路瞬间不能发生跃变,即:t=0+换路,则注意:只有u C 、i L 受换路定理的约束而保持不变,电路中其他电压、电流都可能发生跃变。
)0()0()0()0(L L C C -+-+==i i u u 1)概念:电压、电流的0+值。
2. 分类3. 初始值独立初始值:)0(C +u )0(L +i )0(C +i )0(R +i )0(R +u )0(L +u 相关初始值:3)初始值的计算(1)在换路前的稳态电路中,求)0(-C u )0(-L i 直流电路:C 开路、L 短路稳态电路正弦交流电路:相量法计算(2)在换路瞬间,利用换路定律得)0()0()0()0(L L C C -+-+==i i u u (3)画t=0+电路,求相关初始值。
t=0+电路C 用值的电压源替代。
)0(C +u L 用值的电流源替代。
)0(L +i例:图示电路原处于稳态,t =0时开关S 闭合,求初始值u C (0+)、i C (0+)和u (0+)。
解:由于在直流稳态电路中,电感L 相当于短路、电容C 相当于开路,因此t =0-时电感支路电流和电容两端电压分别为:4ΩR 1R 22Ω+u-+C u C - +U s 12V - L i L + u L - R 36Ωi 1 i C V2.762.1)0()0()0(A2.16412)0(3L 31C 31L =⨯====+=+=----R i R i u R R U i s 在开关S 闭合后瞬间,根据换路定理有:V 2.7)0()0(A 2.1)0()0(C C L L ====-+-+u u i i由此可画出开关S 闭合后瞬间即时的等效电路,如图所示。
简述换路定则
换路定则,又称为摆渡定理,是电子器件中常用的一种方法,用
于求解差分电压信号下的电流。
简单来说,换路定则可以帮助我们在
电路中找到合适的路径,使得电流能够流经我们所关注的部分。
根据换路定则,电流在电路中的分布是基于路径的选择的。
当我
们在电路中确定一个路径后,根据换路定则,电流会优先选择该路径,而忽略其他可能的路径。
此外,换路定则还告诉我们,电流在分歧和
聚集的节点处会遵循电流守恒定律,即进入节点的电流总量等于离开
节点的电流总量。
换路定则主要适用于一些复杂的电路问题,尤其是多分支电路中,通过选取不同的路径,可以有针对性地求解特定的参数值。
同时,换
路定则的应用也需要遵循一些基本的前提条件,如电流只在导线和分
支的交汇处分布,而不会在分支内部产生分布。
总之,换路定则是解决电路中电流分布问题的一种重要方法,通
过合理选择路径,根据电流守恒定律,可以有效求解电路中的各个分
支上的电流值。
一阶rc电路换路定律表示(实用版)目录一、引言二、一阶 RC 电路的概念及换路定律的定义三、一阶 RC 电路的换路定律公式四、一阶 RC 电路中换路定律的应用举例五、一阶 RC 电路中电阻 R 对换路后过渡过程的影响六、结论正文一、引言在电子电路中,一阶 RC 电路是一种常见的电路类型,其由一个电阻R、一个电容 C 和一个电源 E 组成。
在电路运行过程中,当电路的结构或参数发生变化,如开关的突然关闭或打开,这时电路中的电流和电压会瞬间发生改变,这一现象被称为电路的换路。
针对这一现象,电路理论中提出了换路定律,用于描述电路在换路瞬间的电压和电流变化规律。
二、一阶 RC 电路的概念及换路定律的定义一阶 RC 电路指的是在电路中,电阻 R 和电容 C 通过电源 E 相连,形成一个闭合回路。
当电路发生换路时,由于电容 C 和电阻 R 的存在,使得电路中的电流和电压不能瞬间发生跃变,这就导致了换路定律的产生。
换路定律指出,在电路发生换路瞬间,电容电压和电感电流不能发生跳变,即它们的初始值必须保持不变。
三、一阶 RC 电路的换路定律公式在一阶 RC 电路中,根据换路定律,可以得到以下两个公式:uc(0+) = uc(0-) (电容电压在 0+时刻等于 0-时刻)il(0+) = il(0-) (电感电流在 0+时刻等于 0-时刻)其中,uc 表示电容电压,il 表示电感电流。
四、一阶 RC 电路中换路定律的应用举例假设在一个一阶 RC 电路中,电源 E 突然从电压 U0 切换到电压U1,此时电路中的电容电压和电感电流会发生怎样的变化?根据换路定律,我们可以知道,在换路瞬间,电容电压和电感电流的初始值必须保持不变。
因此,在 0+时刻,电容电压 uc(0+) 等于 0-时刻的电容电压 uc(0-),电感电流 il(0+) 等于 0-时刻的电感电流 il(0-)。
五、一阶 RC 电路中电阻 R 对换路后过渡过程的影响在一阶 RC 电路中,电阻 R 对电路的换路后过渡过程有着重要的影响。
换路定则与初始值的确定1、换路定则(1)根据能量不能突变,即能量的累积和衰减要有的一定过程(时间),否则相应的功率将会趋于无穷大。
那么由2L L 21Li W =和2C C 21Cu W =,可得i L 和u C 不能跃变,因此则有换路瞬间有)0()0(L L +-=i i )0()0(C C +-=u u 上式称为换路定则。
(2)应注意:1)0+和0-在数值上不等于0。
0+是指t 从正值趋近于0;0-是指t 从负值趋近于0;2)换路瞬间电感元件的电压、电容元件中的电流均可跃变;3)换路定则仅用于换路瞬间来确定暂态过程中u C 、i L 初始值。
2、初始值确定(1)所谓初始值是指电路在t =0+时电压和电流值。
(2)初始值的确定时要注意以下几点:▲u C (0+)、i L (0+)的求法1)先由t =0-的等效电路求出u C (0–)、i L (0–);2)根据换路定律求出u C (0+)、i L (0+)。
▲其它电量初始值的求法1)由t=0+的等效电路求其它电量的初始值;2)在t=0+时等效电路中将电容用理想电压源替代,电压源的电压u C=u C(0+),将电感用理想电流源替代,电流源的电流i L=i L(0+)。
▲作电路t=0–和t=0+等效电路1)换路前若储能元件没有储能,则t=0–和t=0+等效电路中可视电容元件短路,电感元件开路;2)换路前若储能元件有储能,并设电路已经处于稳态,则t=0–等效电路中:电容元件可视为开路,其电压为u C(0–);电感元件可视为短路,其电流为i L(0–)。
在t=0+等效电路中:电容元件可用一理想电压源替代,其电压为u C(0+);电感元件可用一理想电流源替代,其电流为i L(0+)。
关于换路定律的证明(哈尔滨工业大学,黑龙江 哈尔滨 150001)郭男杰摘要:换路定律是描述电路过渡状态的重要定律,它表明了电容电压和电感电流的连续性,是分析一阶动态电路的理论基础。
本文重点讨论了对换路定律的证明方法。
关键词:一阶动态电路;换路定律;证明方法大多数电工学著作通过建立能量方程的方法证明u C ,i C 不能跃变。
以下是一种典型的证明过程。
以RC 串联电路为例,当它与电源接通时,储能元件的瞬时功率为p C =u C i C =u C ∙C du C dd =Cu C du C dd (1)p L =u L i L =L di L dd ∙i L =Li L di L dd (2)RC 电路若电容元件在开关闭合前未积累电荷,那么当开关闭合后,时间由0~t 时,它的端电压由0升高到u c ,其储存的电场能量则由0增长到W C =�p C dd =�Cu C du C dd u C 0=t 01Cu C 2可见电容元件的电场能量与其端电压的平方成正比。
RL 电路当开关S 闭合后,时间由0~t 时,电感元件的电流由0增大到i L ,其储存的磁场能量则由0增长到W L =�p L t 0dd =�Li L di L dd i L 0dd =12Li L 2可见电感元件的磁场能量与其通过的电流的平方成正比。
换路瞬间,储能元件的能量是不能跃变的。
对电容元件而言,W C 不能跃变,即u C 不能跃变;对电感元件而言,W L 不能跃变,即i L 不能跃变。
但是 (1)、(2)成立的前提是u C 、i L 连续,即u C 、i L 不能跃变,否则u C 、i L 不存在对时间t 的导数。
因此,在不确定u C 、i L 是否连续的情况下,不能使用它们对时间的t导数。
用这种方法证明换路定律是不合适的。
换路定律可以用局域电荷守恒定律和磁链守恒定律证明。
由电荷和磁链的连续性方程可知,电荷q、磁链ψ是时间t 的连续函数,又因为q=C u C,ψ=L i L,所以u C、i L是时间t的连续函数,即u C、i L不能跃变。
电容换路定律电容换路定律是电路分析中的一条重要定律,它描述了电容器在电路中的作用和行为。
根据电容换路定律,我们可以建立电容器与其他元件之间的等效电路模型,进而对电路进行分析和计算。
电容换路定律的核心概念是电容器的电压-电荷关系。
根据这个关系,我们可以得到如下定律:在不考虑电容器内部损耗的情况下,电容器两端的电压与电容器储存的电荷成正比,即电压等于电荷与电容器的比例系数。
这个比例系数称为电容器的电容量,用C表示,单位是法拉(Farad)。
根据电容换路定律,当电容器与其他元件相连时,可以用等效电路模型来描述。
在直流电路中,电容器相当于一个断路器,不允许电流通过。
而在交流电路中,电容器会根据电压的变化而充放电,起到储能和滤波的作用。
在电路分析中,我们经常使用电容换路定律来简化复杂的电路。
例如,在计算电路中某一节点的电压时,如果该节点与电容器相连,我们可以将电容器看作短路,忽略电容器对该节点电压的影响。
同样地,在计算电路中某一支路的电流时,如果该支路与电容器相连,我们可以将电容器看作开路,忽略电容器对该支路电流的影响。
这样可以大大简化电路分析的复杂度。
电容换路定律还有一个重要的应用是电压跟随电路。
电压跟随电路是一种利用电容器的充放电特性来实现电压跟随的功能的电路。
在这种电路中,电容器通过充放电来记录输入电压的变化,并将这些变化传递给输出电压。
电压跟随电路常用于信号调理、滤波和放大等应用中。
除了电容换路定律,电容器还有其他重要的特性和应用。
例如,电容器具有存储电能的能力,可以在电路中储存电荷和释放电荷。
电容器还可以作为频率选择器和相移器,用于频率调制、滤波和相位校正等电路中。
在实际应用中,我们需要根据电容器的电容量和工作条件来选择合适的电容器。
电容量越大的电容器可以存储更多的电荷,但体积和成本也会增加。
同时,电容器的工作电压和最大允许电流也是选择的重要考虑因素。
电容换路定律是电路分析中的重要定律,它描述了电容器在电路中的作用和行为。
一阶rc电路换路定律表示
摘要:
1.介绍一阶RC电路的基本概念
2.阐述RC电路的换路定律
3.分析换路定律在电路分析中的应用
4.总结换路定律的重要性
正文:
在电路分析中,一阶RC电路是一个基本的电路元件,它由电阻R和电容C组成。
当我们需要分析这种电路的动态特性时,RC电路的换路定律就显得尤为重要。
RC电路的换路定律表示为:电容器上的电压不能跃变,电阻上的电流不能跃变。
这个定律可以用数学公式表示为:u(t)=u0+C*(di/dt),
i(t)=i0+R*(du/dt)。
其中,u(t)表示电容器上的电压,u0表示换路前的电压,C表示电容量,di/dt表示电容器电流的变化率;i(t)表示电阻上的电流,i0表示换路前的电流,R表示电阻值,du/dt表示电压的变化率。
换路定律在电路分析中的应用主要体现在两个方面。
首先,它可以用来计算电路中的电压和电流。
根据换路定律,我们可以通过测量电路中的电压和电流的变化率,来计算电容器和电阻的参数。
其次,换路定律也可以用来分析电路的稳定性。
例如,当电路中的电阻和电容的数值发生变化时,可以通过分析换路定律来判断电路的稳定性。
总的来说,RC电路的换路定律是电路分析的基础,它为我们提供了一种有
效的分析方法。
掌握换路定律,不仅可以使我们更好地理解电路的动态特性,也可以帮助我们更好地设计和管理电路系统。