鸽巢问题教学反思
- 格式:doc
- 大小:11.50 KB
- 文档页数:1
第1篇一、活动背景鸽巢问题,又称抽屉原理,是数学中的一个基本原理。
它源于一个简单的实际问题:如果有n个鸽巢和n+1只鸽子,那么至少有一个鸽巢里会有两只鸽子。
这一原理在日常生活、科学研究以及工程技术中都有着广泛的应用。
为了提高教师对鸽巢问题的认识,探索有效的教学策略,我们学校近期组织了一次关于鸽巢问题的教研活动。
以下是本次教研活动的反思。
二、活动过程1. 专题讲座教研活动伊始,我们邀请了数学教育专家进行了专题讲座。
专家详细介绍了鸽巢问题的起源、基本原理及其在各个领域的应用。
讲座中,专家还结合实例,深入浅出地阐述了鸽巢问题的解题方法。
2. 课堂观摩随后,我们组织了观摩课,邀请优秀教师展示了一堂精彩的鸽巢问题教学课。
教师通过精心设计的教学环节,引导学生积极参与课堂讨论,培养学生的逻辑思维能力和解决实际问题的能力。
3. 交流研讨观摩课后,教师们展开了热烈的交流研讨。
大家围绕以下几个方面进行了深入探讨:(1)如何将鸽巢问题与学生的生活实际相结合,提高学生的学习兴趣?(2)如何引导学生运用鸽巢原理解决实际问题?(3)如何在教学中培养学生的逻辑思维能力?4. 总结经验教研活动最后,我们总结了以下经验:(1)加强教师对鸽巢问题的认识,提高教师的教学水平。
(2)注重培养学生的逻辑思维能力,提高学生的综合素质。
(3)关注学生的实际需求,将鸽巢问题与学生的生活实际相结合。
三、活动反思1. 鸽巢问题的重要性通过本次教研活动,我们深刻认识到鸽巢问题在数学教育中的重要性。
鸽巢原理不仅有助于学生掌握数学知识,还能培养学生的逻辑思维能力,提高学生的综合素质。
2. 教学策略的改进在教研活动中,我们发现教师在教学中存在以下问题:(1)对鸽巢问题的认识不足,导致教学过程中无法深入挖掘其内涵。
(2)教学方式单一,难以激发学生的学习兴趣。
针对这些问题,我们提出以下改进措施:(1)加强教师培训,提高教师对鸽巢问题的认识。
(2)丰富教学手段,运用多媒体、游戏等多种方式激发学生的学习兴趣。
“鸽巢”问题教学反思
•相关推荐
“鸽巢”问题教学反思
“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现本章知识。
例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的',是抽屉原理的一个逆向的应用。
本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。
让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。
兴趣是学习最好的老师。
所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。
借机引入本节课的重点“总有……至少……”。
这样设计使学生在生动、活泼的数学活动中主动参与。
鸽巢问题教学设计及反思老师给出一个例子,有5个鸽巢,有6只鸽子,问是否一定有两只鸽子在同一个鸽巢里?请同学们讨论一下。
二)引导探究:通过上述例子,引导学生思考“鸽巢问题”的规律,即“如果有n个鸽巢,有m只鸽子,且m>n,那么一定有至少两只鸽子在同一个鸽巢里”。
三)小组讨论:老师让学生分组,让学生自己设计一个实验,验证鸽巢问题的规律。
四)实验验证:学生们进行实验,记录实验结果,并进行数据分析。
老师引导学生总结规律。
三、归纳总结一)引导思考:老师让学生回忆实验过程,引导学生总结规律。
二)总结规律:学生们结合实验结果,总结出“鸽巢问题”的规律。
三)应用练:老师出一些实际问题,让学生运用“鸽巢问题”的规律解决问题。
四、拓展延伸一)应用拓展:老师出一些更复杂的实际问题,让学生运用“鸽巢问题”的规律解决问题。
二)思考拓展:老师引导学生思考“鸽巢问题”的逆用,即如何通过已知的鸽巢数量和不同类别的物品数量,推算出每个鸽巢中至少有多少个物品。
五、作业布置请学生完成课堂上未完成的练题,并思考如何将“鸽巢问题”应用到生活中。
有3支铅笔和2个笔筒,如何把铅笔放进笔筒里?有多少种不同的放法?请一位学生上台试一试。
学生上台演示实物。
有两种情况:一种是把3支铅笔都放在一个笔筒里,另一种是把2支铅笔放在一个笔筒里,另外1支放在另一个笔筒里。
老师根据学生回答在黑板上画图和数的分解两种方法表示两种结果:(3,)、(2,1)。
然后问问题:“不管怎么放,总有一个笔筒里至少有2支铅笔”,这句话正确吗?学生回答后,老师引导他们理解这句话的意思。
得出结论:无论如何放置,总有一个笔筒至少放进2支铅笔。
如果现在有4支铅笔和3个笔筒,是否还会出现这样的结论呢?学生们进行小组合作:1)画出所有情况;(2)找出每种情况中最多的一个笔筒放了几支铅笔;(3)总结出结论。
学生汇报后,得出结论:总有一个笔筒至少放进2支铅笔。
通过“画图”和“数的分解”两种方法列举出所有情况验证了结论,这种方法叫“列举法”。
《鸽巢问题》教学反思《鸽巢问题》是人教版小学数学六年级下册的内容,是数与代数领域的重要知识点。
我教学的是第一课时,本节教材通过几个直观的例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”去解决问题。
通过教学,感受颇深,下面就教学中的得失与大家分享。
可取之处:1、教学思路简洁清晰。
全课紧紧围绕“鸽巢问题”是什么?为什么?怎么用?组织教学。
在游戏激趣导入后开门见山揭示课题,让学生明白学什么?接着通过合作学习、展示交流、点评讲解,让学生探究为什么“总有一个笔筒里至少有2支笔?”建立模型。
最后结合生活中的实例运用模型解决问题。
2、充分运用鸿合白板功能辅助教学,交互体验感强。
a、“翻翻卡”游戏在白板中制作快捷,触屏体验完美,学生兴趣浓厚,很快将学生带入课程学习中。
b、蒙层配合五指檫出功能出示图片、展示总结,使课堂生动有趣,学生注意力高度集中。
C、单指拖动“铅笔”、“鸽子”、“书”等操作,互动体验感爆棚,同学们都跃跃欲试。
d、一键开启、关闭展台,方便快捷。
3、注重对比优化教学中实时指导学生要运用“有序思考”进行枚举,同时对比枚举法与假设法、反正法的优劣,引导学生明白“至少有2支”就是≥2,也就是≠1,从而理解平均分配的优势,当余数大于1时还要继续进行“分散”,找到最不利的情况,建立模型。
遗憾之处:1、练习处理较粗糙。
处理练习时只是简单的运用建立的模型--除法计算求至少数,学生照抄照搬,没有要求学生对照模型指出谁相当于“鸽子”谁相当于“鸽笼”。
2、不敢大胆放手,教师带得太多。
3、合作学习不太规范,效果较差。
《鸽巢问题》课后反思
本节课的教学突出体现一下两个特点:一、游戏导入(魔术表演),激发兴趣。
二、注重“说理活动”,培养学生的逻辑思维能力。
教学中我抓住了假设法的最核心的思路就是用“有余数除法”形式表示出来,能够让学生很好的理解了如果把笔尽量多的“平均分”给各个笔筒里,看每个笔筒里能放个根笔,余下的笔不管怎么放,总有一个笔筒里至少有2支笔,然后又介绍了比余数多2的情况,以及2倍多,3倍多的情况,层层加深,注意板书,有序的板书有利于学生的发现规律,在学习过程中,特别注重引导学生对除法算式中的“商+1”,而不是“商+余数”,适时挑出针对性问题进行交流、讨论,帮助学生从本质上理解了“抽屉原理”(又称鸽巢原理),学生学习效果良好。
课堂导入运用了魔术表演,激发了学生的学习兴趣和激情,同时学完鸽巢原理,课后练习的第一题为开课时的魔术表演,让学生能够用数学只是解决魔术里的原理,获得成功的喜悦,同时也能感受到数学来源于生活,生活离不开数学。
不足:由于本节课内容量较大,时间稍微有些紧张;改进:引导学生学会课前预习,小组交流谈论能更好的把握时间,让课堂的每一分钟都发挥它的作用。
《鸽巢问题》教学反思(通用8篇)《鸽巢问题》教学反思篇1鸽巢问题是我们数学中比较有意思且在生活中运用比较广泛的问题。
因此,在录制一师一优课时我想到了给同学讲这一节课,使同学更加清晰的认识到数学是源于生活,并运用于生活中的。
鸽巢问题又可以叫做抽屉原理,是一种在生活中常见的数学原理,很多游戏的设置都运用了该原理,例如抢凳子游戏,纸牌游戏等。
因此,在讲课开始我先用纸牌游戏中引出今日的鸽巢问题,让同学带着新奇心来学习本节课内容。
接着我出例如题,先找一位同学演示3支笔放进2个笔筒中应当怎么放,并记录下来,使同学明白小组应当怎样进行活动并记录。
接着出示课本例1的题目,同学小组内通过刚才的方法很轻易的就找出一共有几种方法,在找一位同学进行演示加强大家的认识。
我有介绍了刚才同学们试验的方法叫做枚举法。
并通过观测引出概念总有一个笔筒里至少有2支铅笔。
接着让同学们转换思想求实有没有更简约的方法得出结论,同学通过试验和争论得出可以用平均分的方法得到同样的结论。
并把其转化为算式。
接着增加铅笔和笔筒的个数仍能得到相同的结论,由此同学发觉当铅笔数比笔筒数多1时,总有一个笔筒至少有2支铅笔的结论。
把铅笔和笔筒换成其他物品同学还能相像的结论,说明同学已经可以学移致用了。
之后介绍鸽巢问题的发觉者,增加同学的知识面。
最末,我又引到游戏揭示答案,再通过几道层次递进的题目的练习,使同学能够敏捷运用鸽巢问题,从而达到本节课的教学目的。
《鸽巢问题》教学反思篇2本节课是通过几个直观例子,借助实际操作,引导同学探究“鸽巢原理”,初步经受“数学证明“的过程,并有意识的培育同学的“模型思想。
1、借助直观操作,经受探究过程。
老师着重让同学在操作中,经受探究过程,感知、理解抽屉原理。
2、老师着重培育同学的“模型”思想。
通过一系列的操作活动,同学对于枚举法和假设法有肯定的认识,加以比较,分析两种方法在解决抽屉原理的优超性和局限性,使同学逐步学会运用一般性的数学方法来思索问题。
《鸽巢问题》教学反思教学反思是教师在课后对自己的教学方法以及内容进行的反思。
下面是关于六年级数学的教学反思范文,欢迎阅读!在教学这篇课文之前,我怕孩子们会出现觉得乌鸦的这个办法并不十分了不起的情绪。
如果这样,就阻碍了学生去认真体会文本。
所以在教学中我并没有急于让孩子们发散自己的思维,提出像“说说你还会想出什么好办法?”“如果你是这个乌鸦你会怎么做?”这一类的问题。
而是与学生一起,在学习课文的同时,去感受这只乌鸦的高明之举。
《鸽巢问题》教学反思(一)兴趣是学习最好的老师。
所以在本节课我就设计了“抢凳子”游戏来导入新课,在上课伊始我就说:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。
相机引入本节课的重点“总有……至少……”。
这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
只有学生主动参与到学习活动中,才是有效的教学。
在教学过程中,充分利用学具操作,如把4支笔放入3个杯子学习中,把5支笔放入2个杯子学习中等,都是让学生自己操作,这为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。
通过直观例子,借助实际操作,引导学生探究“鸽巢问题”,初步经历“数学证明“的过程,并有意识的培养学生的“模型思想。
为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解鸽巢问题。
人教版数学六年级下册鸽巢问题教案与反思(优选3篇)〖人教版数学六年级下册鸽巢问题教案与反思第【1】篇〗鸽巢问题教案教学目标:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义;经历“鸽巢原理”的学习过程,体验观察,猜测,实验,推理等活动的学习方法,渗透数形结合的思想;通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
重点:整合教材,由浅入深,逐层深入引导学生把具体问题转化成鸽巢问题,最终达到深入浅出解决问题。
难点:找出鸽巢问题解决的窍门进行反复推理。
并对一些简单的实际问题加以“模型化”。
教学准备:课件、扑克牌。
学生准备:小棒、杯子。
教学过程:一、情境导入:由游戏“抢凳子”引入课题并板书课题“鸽巢问题”二、探究新知1.动手操作,动画演示(1)(摆一摆)4只鸽子飞进3个鸽巢,会怎么飞呢?请同学们用小棒当鸽子,杯子做鸽巢,试试看!并把各种结果用你喜欢的方法记录下来。
(2)(议一议)教师引导学生分析各种情况,得出结论,不管怎么飞,总有一个鸽巢里至少飞进了2只鸽子。
(3)(飞一飞):4只鸽子飞进3个鸽巢,要使每个鸽巢里鸽子最少,该怎么飞?你能发现什么?通过引导让学生说出平均分的'方法。
2.以此类推,发现规律(1)6只鸽子飞进了5个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?你是怎么想的?(2)100只鸽子飞进了99个鸽巢,总有一个鸽巢至少飞进了()只鸽子?3.由浅入深,逐层深入(1)(飞一飞)5只鸽子飞进了3个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?是怎么飞的?通过演示鸽子飞的过程,引导学生理解平均分后,剩下的鸽子数不能超过鸽巢数,把剩下的鸽子再平均分,才能保证总有一个鸽巢里至少有的鸽子数。
(2)(说一说)7本书放进3个抽屉,总有一个抽屉里至少放进了()本书?你是怎么想的?4.动画演示,掌握规律14只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了4只鸽子。
为什么?5.学以致用,总结规律(1)10支铅笔放进3个笔筒中,总有一个笔筒里至少有4支铅笔,为什么?(2)28本书放进5个抽屉,总有一个抽屉里至少放进了几本书?为什么?(3)33只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了9只鸽子?为什么?(4)思考:你能发现什么规律吗?引导学生总结出计算方法,列出算式,最终得出至少数=商+1。
⼩学数学_《鸽巢问题》教学设计学情分析教材分析课后反思《鸽巢问题》教学设计教学⽬标:1、知识与技能:通过操作、观察、⽐较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析⽅法,运⽤鸽巢原理的知识解决简单的实际问题。
2、过程与⽅法:在鸽巢原理的探究过程中,使学⽣逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学⽣的模型思想。
3、情感态度:通过对鸽巢原理的灵活运⽤,感受数学的魅⼒,体会数学的价值,提⾼学⽣解决问题的能⼒和兴趣。
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的⽅法。
教学难点:理解“总有”“⾄少”的意义,理解“⾄少数=商数+1”。
教学准备:多媒体课件、、合作探究作业纸。
教学过程:⼀、谈话引⼊:1、师:同学们,你们喜欢玩游戏吗?今天⽼师要和⼤家玩⼀个有猜花⾊的游戏,需要五位同学配合,谁愿意上来?五位同学任意抽⼀张,⼤家猜猜看有⼏张牌的花⾊是相同的?2、⽣:可能两张,三张,四张⽣:⾄少两张适时引导:“⾄少张”是什么意思?(也就是2张或2张以上,可能2张、3张、4张……,也可以⽤⼀句话概括就是“⾄少有2张牌同⼀花⾊”)3、设疑:你们想知道这是为什么吗?通过今天的学习,你就能解释这个现象了。
下⾯我们就来研究这类问题,我们先从简单的情况⼊⼿研究。
⼆、合作探究(⼀)初步感知,列举法1、出⽰题⽬:有4⽀铅笔,3个笔筒,把4⽀铅笔放进3个笔筒(允许有笔筒空着)怎么放?有⼏种不同的放法?2、⼩组合作:(1)画⼀画:借助“画图”或“数的分解”的⽅法把各种情况都表⽰出来;(2)找⼀找:每种摆法中最多的⼀个笔筒放了⼏⽀,⽤笔标出;(3)我们发现:总有⼀个笔筒⾄少放进了()⽀铅笔。
学⽣汇报,展台展⽰,师引导:这句话⾥“总有⼀个笔筒”是什么意思?(⼀定有,不确定是哪个笔筒,最多的笔筒)。
这句话⾥“⾄少有2⽀”是什么意思?(最少有2⽀,不少于2⽀,包括2⽀及2⽀以上)3、得到结论:从刚才的实验中,我们可以看到4⽀铅笔放进3个笔筒,总有⼀个笔筒⾄少放进2⽀笔。
鸽巢问题又称抽屉原理,来源于一个基本的数学事实,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。
通过例1的学习,使学生感知这类问题的基本结构,掌握两种思考方法—枚举和假设,形成对“抽屉原理”的初步认识。
例1是例2的一个特例,是例2、例3学习的基础,十分重要,因此要求学生在理解这一数学原理的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。
本节课的重点在于模型思想的建立和具体应用上,以及用抽屉原理来解释相关现象。
可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。
但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。
基于对教材、对学生这些认识,对于例1我进行了如下设计:1.让学生通过摆一摆、画一画、写一写的方法来验证这句话是正确的。
2.优化方法。
3.构建模型。
上完本节课后,本来本节课的重点是构建模型,为例2、例3打下基础,结果构建模型这一环节几乎是一带而过,并没有从实物抽离出模型。
本节课的问题缺乏层次性。
应做改正。
基于上次讲课及同组老师提的意见和建议,我对本节课做了如下改变:1.将“把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
”这一句话的验证过程完全放手给学生,放在小组合作中,提出合作要求,让学生充分地在小组内进行讨论。
2.构建模型这一方面,给予充分的时间让学生提炼数学模型。
在本节课中,时间的安排不太合理,由于想给学生在小组内充分表达自己想法的机会,因此时间过长。
对学生的关注不够广。
在今后应该改正。
.%基于上次讲课及同组老师提的意见和建议,做了如下调整:1.将对鸽巢问题的解决过程分为了三步:摆一摆、画一画、想一想。
从实物到想象再到有逻辑的思维,循序渐进地经历鸽巢问题的解决过程。
2.构建模型,让学生试着发现这类问题是说不完,然后引导学生找好的方法来表示,从而建立模型。
《鸽巢问题》教学反思
我在设计鸽巢原理教学时,课堂上,我首先采用游戏导入、小组活动的形式,使学生集中注意力,把心思马上放到课堂上,让学生觉得这节课探究的问题既好玩又有意义。
但这部分内容属于奥数知识范畴,真正理解对于学生来说有一定的难度。
在教学中我通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。
本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“鸽巢原理”,会用“鸽巢原理”解决实际问题。
在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的过程。
1、采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个抽屉里至少有2枝笔”。
2、让学生借助直观操作发现,把笔尽量多的“平均分”给各个笔筒,看每个笔筒能分到多少枝笔,剩下的笔不管放到哪个笔筒里,总有一个笔筒比平均分得的枝数多1,可以用有余数的除法这一数学规律来表示。
3、大量例举之后,再引导学生总结归纳这一类“鸽巢问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。
在这堂课的难点突破处,也就是让学生借助直观操作发现,把笔尽量多的“平均分”到各个笔筒,看每个笔筒能分到多少枝笔,剩下的笔不管放到哪个笔筒里,总有一个笔筒比平均分得的枝数多1,我还可以对教学环节进行再安排,让学生体会到多余的物体只要不超过抽屉的个数,总有一个抽屉至少放2个物体,这样学生对“鸽巢原理”规律会更清晰更明了。
同时,我们要明确,教学知识不光是让学生按照公式来套用公式,这样很容易造成学生的思维定势,所以在让学生充分说理的基础上,明确把什么当作“抽屉数”,把什么当作“物体数”是相当重要的。
在这节课里部分学生判断不出谁是“物体”,谁是“抽屉”。
因此,在今后的教学中,多下些功夫,以求在课堂上让学生更好地理解、消化所授知识。
课后还要让多做相关的练习加以巩固。