数据的数字特征
- 格式:ppt
- 大小:637.50 KB
- 文档页数:18
教案《数据的数字特征》第一章:数据的描述1.1 数据的概念与分类理解数据的概念掌握数据的分类:定量数据、定性数据1.2 数据的收集与整理学习数据收集的方法理解数据整理的意义掌握数据整理的基本技巧第二章:平均数2.1 平均数的定义与计算理解平均数的概念学会计算简单数据的平均数2.2 平均数的作用与局限性理解平均数在数据分析中的作用认识平均数的局限性第三章:中位数3.1 中位数的定义与计算理解中位数的概念学会计算简单数据的中位数3.2 中位数的作用与局限性理解中位数在数据分析中的作用认识中位数的局限性第四章:众数4.1 众数的定义与计算理解众数的概念学会计算简单数据的众数4.2 众数的作用与局限性理解众数在数据分析中的作用认识众数的局限性第五章:方差5.1 方差的定义与计算理解方差的概念学会计算简单数据的方差5.2 方差的作用与局限性理解方差在数据分析中的作用认识方差的局限性第六章:标准差6.1 标准差的定义与计算理解标准差的概念学会计算简单数据的标准差6.2 标准差的作用与局限性理解标准差在数据分析中的作用认识标准差的局限性第七章:离散系数7.1 离散系数的定义与计算理解离散系数的概念学会计算简单数据的离散系数7.2 离散系数的作用与局限性理解离散系数在数据分析中的作用认识离散系数的局限性第八章:数据的关系与趋势8.1 数据的关系:相关系数理解相关系数的概念学会计算简单数据的相关系数8.2 数据的趋势:趋势线理解趋势线的作用学会绘制简单数据的趋势线第九章:数据的分布9.1 数据的正态分布理解正态分布的概念学会识别正态分布的数据9.2 数据的偏态分布理解偏态分布的概念学会识别偏态分布的数据回顾本章所学的内容理解各种数字特征在数据分析中的应用10.2 数据的数字特征应用实例通过实例分析,运用所学知识解决实际问题重点和难点解析重点一:数据的分类数据的分类是理解后续数字特征的基础。
定量数据和定性数据的区别需要学生深刻理解,这将直接影响到对平均数、中位数、众数等概念的理解。
§4 数据的数字特征【自主探讨学习】 【自主归纳】1、平均数:一组数据的和与这组数据的个数的商,数据, ,……,的平均数=nx x x n+++ 212、中位数:一组数据按从小到大的顺序排成一列,处于中间位置的数成为这组数据的中位数。
若个数为偶数,中位数为位于中间的数的平均数,若个数为奇数,位于中间的数为中位数。
3、(1)众数:一组数据中出现次数最多的数为这组数据的众数。
(2)众数特征:一组数据中的众数可能不止一个,也可能没有。
反应该数据的集中趋势 4、极差 一组数据的最大值与最小值的差成为这组数据的极差,表示该组数据之间的差异情况。
5、标准差:样本数据到平均数的一种平均距离。
S=nx x x x x x n 22221)()()(-++-+-6、方差,即标准差的平方 =【问题研讨】疑点一:中位数,众数和平均数的作用及区别①中位数,众数及平均数都是描述一组数据集中趋势的量 ②平均是的大小与一组数据里的每个数的大小均有关系,任何一个数据的变动都会引起平均数的变动。
③众数考察各数出现的频率,其大小与这组数据中部分数据又关,当一组数据中有不少数据重复出现时,其众数往往能反映问题。
④中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给数据中,也可能不再所给数据中,当一组数据中个别数据较大时,可用中位数描述其中集中趋势。
【问题研讨】:1、已知一组数据为10,20,80,40,30,90,50,40,50,40.这组数据的众数是40,中位数是40 平均数是_____。
2、某鞋厂为了了解中学生穿鞋的鞋号情况,对某中学初二某班的20名男生所穿鞋号的统计如右表:那么这20名男生鞋号数据的平均数是24.55,中位数是24.5,众数是25,在平均数、中位疑点二 方差和标准差都是用来描述一组数据被动情况的特征数,方差和标准差的大小与数据被动有何关系?数据的方差(标准差)越大,数据的波动越大,稳定性越差,反之方差(标准差)越小,波动越小,稳定性越好。
教案《数据的数字特征》一、教学目标:1. 理解数据的数字特征的概念和意义。
2. 学会计算数据的众数、平均数、中位数、方差等数字特征。
3. 能够运用数字特征对数据进行分析和解释。
二、教学内容:1. 数据的数字特征的定义和意义。
2. 众数的计算方法和应用。
3. 平均数的计算方法和应用。
4. 中位数的计算方法和应用。
5. 方差的计算方法和应用。
三、教学过程:1. 导入:通过实例引入数据的数字特征的概念,激发学生的兴趣。
2. 众数:讲解众数的定义和计算方法,通过例题让学生掌握众数的计算和应用。
3. 平均数:讲解平均数的定义和计算方法,通过例题让学生掌握平均数的计算和应用。
4. 中位数:讲解中位数的定义和计算方法,通过例题让学生掌握中位数的计算和应用。
5. 方差:讲解方差的定义和计算方法,通过例题让学生掌握方差的计算和应用。
四、教学方法:1. 讲授法:讲解数据的数字特征的概念和计算方法。
2. 例题解析法:通过例题让学生理解和掌握数据的数字特征的计算和应用。
3. 练习法:通过练习题让学生巩固和加深对数据的数字特征的理解和应用。
五、教学评价:1. 课堂问答:通过提问了解学生对数据的数字特征的概念和计算方法的掌握情况。
2. 练习题:通过练习题的完成情况了解学生对数据的数字特征的计算和应用的能力。
3. 课后作业:通过课后作业的完成情况了解学生对数据的数字特征的理解和应用的情况。
六、教学资源:1. 教学PPT:用于展示数据的数字特征的概念和计算方法。
2. 练习题库:用于巩固学生的学习和检测学生的掌握情况。
3. 数据分析软件:用于展示数据的数字特征在实际应用中的效果。
七、教学环境:1. 教室:提供宽敞的学习空间和舒适的学习环境。
2. 计算机:用于展示PPT和数据分析软件。
3. 投影仪:用于展示PPT和数据分析软件。
八、教学拓展:1. 数据的数字特征在实际应用中的案例分析。
2. 数据的数字特征在其他学科中的应用。
3. 数据的数字特征的进一步研究和发展。
数据的数字特征教案一、教学目标1. 让学生理解数据的数字特征的概念。
2. 让学生学会计算数据的众数、中位数、平均数、方差和标准差。
3. 培养学生运用数字特征分析数据的能力,提高数据处理和解决问题的能力。
二、教学内容1. 众数:一组数据中出现次数最多的数。
2. 中位数:将一组数据从小到大排列,位于中间位置的数。
3. 平均数:一组数据的总和除以数据的个数。
4. 方差:衡量一组数据波动大小的量。
5. 标准差:方差的平方根,衡量一组数据离散程度的量。
三、教学重点与难点1. 教学重点:众数、中位数、平均数、方差和标准差的计算方法及其应用。
2. 教学难点:方差和标准差的计算方法,以及如何运用数字特征分析数据。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过探究问题来学习数据的数字特征。
2. 利用实例和练习题,让学生动手计算和分析数据,提高实际操作能力。
3. 采用小组讨论和汇报的形式,培养学生的合作意识和沟通能力。
五、教学过程1. 导入:通过一个现实生活中的问题,引出数据的数字特征的概念,激发学生的学习兴趣。
2. 讲解:讲解众数、中位数、平均数、方差和标准差的定义和计算方法。
3. 练习:让学生独立完成一些练习题,巩固所学知识。
4. 案例分析:给出一个实际案例,让学生运用数字特征分析数据,解决问题。
6. 作业布置:布置一些有关数据的数字特征的练习题,让学生课后巩固所学知识。
六、教学评估1. 课堂练习:通过课堂练习题,评估学生对数据的数字特征的理解和应用能力。
2. 小组讨论:观察学生在小组讨论中的表现,评估学生的合作意识和沟通能力。
3. 案例分析报告:评估学生在案例分析中的分析能力和解决问题的能力。
七、教学拓展1. 介绍其他数据的数字特征,如极值、范围、四分位数等。
2. 介绍方差和标准差的计算公式及其推导过程。
3. 探讨数据的数字特征在实际应用中的重要性,如统计学、经济学、生物学等领域。
八、教学资源1. 教案、PPT和教学素材。
数字特征的知识点总结一、数字特征的定义和基本概念1. 数字特征的定义:数字特征是对事物、数据或者模式的某种属性或特征进行数字化的描述。
它可以是一个数值、一个统计量、一个概率分布、一个向量等,用来表示事物的某些属性、状态、规律等。
2. 数字特征的基本概念:数字特征包括数据的描述性统计量、数据的分布特征、数据的频域特征、数据的空域特征等。
它可以用来描述数据的集中趋势、离散程度、分布形态、相关性、周期性等。
3. 数字特征的作用:数字特征可以用来度量数据的不同属性和特征,帮助人们理解事物的规律和特点,进行数据的分析、聚类、分类、回归、识别等。
二、数字特征的常用描述性统计量1. 均值:均值是一组数据的平均值,用来表示数据的集中趋势。
2. 中位数:中位数是一组数据的中间值,用来表示数据的分布特征。
3. 众数:众数是一组数据中出现次数最多的数值,用来表示数据的分布特征。
4. 标准差:标准差是一组数据的离散程度的度量,用来表示数据的离散程度。
5. 方差:方差是一组数据的离散程度的度量,用来表示数据的离散程度。
6. 偏度:偏度是一组数据的分布形态的度量,用来表示数据的分布形态。
7. 峰度:峰度是一组数据的分布形态的度量,用来表示数据的分布形态。
三、数字特征的常用分布特征1. 正态分布特征:正态分布是一种对称的分布形态,具有单峰性、对称性、均值等于中位数等特点。
2. 偏态分布特征:偏态分布是一种不对称的分布形态,具有偏度大于零或者小于零的特点。
3. 峰态分布特征:峰态分布是一种尖峰或者扁峰的分布形态,具有峰度大于零或者小于零的特点。
4. 均匀分布特征:均匀分布是一种等概率分布形态,具有概率密度在一段区间内等概率分布的特点。
四、数字特征的常用频域特征1. 傅立叶变换特征:傅立叶变换是一种把时域信号转换成频域信号的变换方法,用来表示信号的频域特征。
2. 离散傅立叶变换特征:离散傅立叶变换是一种把离散信号转换成频域信号的变换方法,用来表示信号的频域特征。
教案《数据的数字特征》一、教学目标1. 让学生理解众数、中位数、平均数等数据的数字特征概念。
2. 培养学生运用数据分析问题的能力。
3. 引导学生通过合作交流,提高解决问题的策略。
二、教学内容1. 众数:一组数据中出现次数最多的数。
2. 中位数:将一组数据从小到大(或从大到小)排列,位于中间位置的数。
3. 平均数:一组数据的总和除以数据的个数。
三、教学重点与难点1. 教学重点:理解众数、中位数、平均数的定义及求法。
2. 教学难点:众数、中位数、平均数在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生探究数据的数字特征。
2. 利用案例分析法,让学生通过实际问题体验数据的数字特征。
3. 组织小组合作交流,培养学生解决问题的能力。
五、教学过程1. 导入:通过生活中的实例,如调查同学们最喜欢的学科,引入众数的概念。
2. 讲解:讲解众数、中位数、平均数的定义及求法。
3. 案例分析:分析一组具体数据,求出众数、中位数、平均数,并讨论其在实际问题中的应用。
4. 实践操作:让学生分组收集一组数据,计算众数、中位数、平均数,并分析结果。
6. 课后作业:布置一道有关数据数字特征的练习题,巩固所学知识。
教案《数据的数字特征》(后续章节待补充)六、教学评价1. 评价内容:学生对众数、中位数、平均数的理解与应用。
2. 评价方法:课堂问答、练习题、小组讨论、课后作业。
3. 评价指标:a. 能否正确理解众数、中位数、平均数的定义。
b. 能否运用众数、中位数、平均数解决实际问题。
c. 小组合作交流的效果。
七、教学资源1. 教材:数据数字特征相关章节。
2. 辅助材料:数据收集表、练习题、案例分析资料。
3. technology:投影仪、计算机、网络等。
八、教学进度安排1. 第1-2课时:讲解众数、中位数、平均数的定义及求法。
2. 第3-4课时:案例分析,实际问题中的应用。
3. 第5-6课时:实践操作,分组收集数据并分析。
5.1.2 数据的数字特征学习目标 1.理解样本数据标准差的意义和作用,学会计算数据的标准差.2.能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.知识点一 最值、平均数、中位数、百分位数、众数1.一组数据的最值指的是其中的最大值与最小值,最值反映的是这组数最极端的情况.一般地,最大值用max 表示,最小值用min 表示. 2.平均数如果给定的一组数是x 1,x 2,…,x n ,则这组数的平均数为x =x 1+x 2+…+x nn ,简记为x =1n i =1nx i . 如果x 1,x 2,…,x n 的平均数为x ,且a ,b 为常数,则ax 1+b ,ax 2+b ,…,ax n +b 的平均数为a x +b . 3.中位数如果一组数有奇数个数,且按照从小到大排列后为x 1,x 2,…,x 2n +1,则称x n +1为这组数的中位数;如果一组数有偶数个数,且按照从小到大排列后为x 1,x 2,…,x 2n ,则称x n +x n +12为这组数的中位数. 4.百分位数设一组数按照从小到大排列后为x 1,x 2,…,x n ,计算i =np %的值,如果i 不是整数,设i 0为大于i 的最小整数,取xi 0为p %分位数;如果i 是整数,取x i +x i +12为p %分位数.特别地,规定:0分位数是x 1(即最小值),100%分位数是x n (即最大值). 5.众数一组数据中,某个数据出现的次数称为这个数据的频数,出现次数最多的数据称为这组数据的众数,一组数据的众数可以是一个,也可以是多个. 知识点二 极差、方差与标准差 1.极差一组数据中最大值减去最小值所得的差称为这组数据的极差.2.方差如果x 1,x 2,…,x n 的平均数为x ,则方差可用求和符号表示为s 2=1n ∑i =1n(x i -x )2.此时,如果a ,b 为常数,则ax 1+b ,ax 2+b ,…,ax n +b 的方差为a 2s 2. 3.标准差方差的算术平方根称为标准差.标准差描述了数据相对于平均数的离散程度,一般用s 表示. s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].1.中位数是一组数据中间的数.( × ) 2.众数是一组数据中出现次数最多的数.( √ )3.一组数据的标准差越小,数据越稳定,且稳定在平均数附近.( √ ) 4.一组数据10,11,9,8,6,12,4的25%分位数是6.( √ )一、利用概念求平均数、中位数、百分位数、众数 例1 甲、乙两人在10天中每天加工零件的个数分别为 甲:18 19 20 20 21 22 23 31 31 35 乙:11 17 19 21 22 24 24 30 30 32则这10天甲的日加工零件的平均数为________;乙的日加工零件的众数与中位数分别为________和________. 答案 24 24与30 23解析 甲每天加工零件的个数分别为18,19,20,20,21,22,23,31,31,35, 所求平均数为x 甲=110×(18+19+20+20+21+22+23+31+31+35)=24.乙每天加工零件的个数分别为11,17,19,21,22,24,24,30,30,32,故众数为24与30. 中位数为12×(22+24)=23.反思感悟 平均数、众数、中位数的计算方法平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.跟踪训练1 十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( ) A .a >b >cB .c >b >aC .c >a >bD .b >c >a答案 B解析 从小到大排列此数据为10,12,14,14,15,15,16,17,17,17. 平均数为110(10+12+14×2+15×2+16+17×3)=14.7;数据17出现了三次,17为众数;在第5位、第6位均是15,故15为中位数.所以这组数据的平均数是14.7,中位数是15,众数是17. 二、极差、方差、标准差的计算及应用例2 甲、乙两机床同时加工直径为100 mm 的零件,为检验质量,各从中抽取6件测量,数据为甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定. 解 (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73, s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1. (2)两台机床所加工零件的直径的平均值相同,又s 2甲>s 2乙, 所以乙机床加工零件的质量更稳定. 延伸探究在本例中,若甲机床所加工的6个零件的数据全都加10,那么所得新数据的平均数及方差分别是多少?解 甲的数据为99+10,100+10,98+10,100+10,100+10,103+10,平均数为100+10=110, 方差为16[(109-110)2+(110-110)2+(108-110)2+(110-110)2+(110-110)2+(113-110)2]=73. 反思感悟 在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度.在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据越集中、越稳定.跟踪训练2某班20位女同学平均分为甲、乙两组,她们的劳动技术课考试成绩如下(单位:分):甲组:60,90,85,75,65,70,80,90,95,80;乙组:85,95,75,70,85,80,85,65,90,85.(1)试分别计算两组数据的极差、方差和标准差;(2)哪一组的成绩较稳定?解(1)甲组:最高分为95分,最低分为60分,极差为95-60=35(分),平均分为x甲=110×(60+90+85+75+65+70+80+90+95+80)=79(分),方差为s2甲=110×[(60-79)2+(90-79)2+(85-79)2+(75-79)2+(65-79)2+(70-79)2+(80-79)2+(90-79)2+(95-79)2+(80-79)2]=119,标准差为s甲=s2甲=119≈10.91(分).乙组:最高分为95分,最低分为65分,极差为95-65=30(分),平均分为x乙=110×(85+95+75+70+85+80+85+65+90+85)=81.5(分),方差为s2乙=110×[(85-81.5)2+(95-81.5)2+(75-81.5)2+(70-81.5)2+(85-81.5)2+(80-81.5)2+(85-81.5)2+(65-81.5)2+(90-81.5)2+(85-81.5)2]=75.25,标准差为s乙=s2乙=75.25≈8.67(分).(2)由于乙组的方差(标准差)小于甲组的方差(标准差),因此乙组的成绩较稳定.从(1)中得到的极差也可得到乙组的成绩比较稳定.1.2019年某高一学生下学期政治考试成绩为79798484868487909097则该生政治考试成绩的平均数和众数依次为()A.8584 B.8485C.8684 D.8486答案 C解析由题意可知,平均数x=79+79+84+84+86+84+87+90+90+9710=86,众数为84.2.某地铁运行过程中,10个车站上车的人数统计如下:70,60,60,50,60,40,40,30,30,10,则这组数据的众数、极差的和为()A .120B .165C .160D .150 答案 A解析 这组数据的众数是60,极差为70-10=60,它们的和为120. 3.计算∑i =13(2i +1)等于( )A .6B .9C .10D .15 答案 D解析 ∑i =13(2i +1)=(2×1+1)+(2×2+1)+(2×3+1)=3+5+7=15.4.国家射击队要从甲、乙、丙、丁四名队员中选出一名选手去参加射击比赛,四人的平均成绩和方差如下表:甲 乙 丙 丁 平均成绩x 8.5 8.8 8.8 8 方差s 23.53.52.18.7则应派________参赛最为合适. 答案 丙解析 由表可知,丙的平均成绩较高,且发挥比较稳定,应派丙去参赛最合适.5.样本中共有5个个体,其值分别为a ,0,1,2,3,若该样本的平均数为1,则样本方差为________. 答案 2解析 由题意知15(a +0+1+2+3)=1,解得a =-1.所以样本方差为s 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.1.知识清单:(1)数据的数字特征的计算方法. (2)数据的数字特征的应用. 2.常见误区:(1)数据同时增加或减少相同的数,平均数变化,方差不变. (2)方差、标准差的计算.。