二次根式小结与复习教案 人教版(精品教案)
- 格式:pdf
- 大小:143.15 KB
- 文档页数:4
第16章 二次根式的复习一、教学内容与学情分析1.本课在教材、新课标中的地位与作用本课内容是二次根式章节的复习课,是学生在学完新人教版八年级教材下册所有内容的一个总结复习。
二次根式是初中数学知识体系与结构中一个不可或缺的部分,是中考直接考查的一个重点内容。
本课复习内容的教学将让学习更为系统地认识二次根式,并在学习新知的基础上得到一个升华。
2.在学生已有的知识基础上,本节课的教学其实更主要的是经历回顾、理解、巩固的过程。
本节教学内容的新知并不是真正的“新的知识点、新的知识技能、新的知识能力”,而是一种对已学知识的一种重新加工处理的能力,从已学的 知识上提炼出更精粹的东西来。
这也正是学生在这方面的缺憾,需要教师的有效引导与分析。
这更是学生的主要难点。
二.教学目标【知识与技能】(1)二次根式的性质;(2)二次根式的计算与化简;【过程方法】经历例题的讲解让学生理解和掌握二次根式的性质和计算,从此提高学生的计算正确率【情感态度与价值观】通过课堂学习,熏陶学生乐于探究、善于总结的数学学习品质.一.教学重难点教学重点:二次根式的化简和计算教学难点:二次根式的性质,特别突破()2b a -二.教学用具PPT三.教学过程例题讲解例1(1) 3131232-+; (2)()()()1313132-+--. 先引导学生观察是否是最简二次根式,不是最简二次根式要先化简,然后找同类二次根式,最后合并同类二次根式练习1 计算:(1)33162421-+⨯; (2)()()()2525252-+++(3)821212+- (4)226-3628+⨯练习2 当1313-=+=y x ,时,求代数式xy y x +-22的值重点强调格式的书写1.一般地,形如________(a ≥0)的式子叫做二次根式.注意:判断二次根式有意义的条件:被开方数是非负数,即a ≥0.练习1 (1)要使()2b a -在实数范围内有意义,x 的值可以是( ).A.4B.2C.0D.1-(2)若12-m 有意义,则m 的取值范围是 .【补充习题】1. 如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为( )A .2B .2C .22D .62. 正方形的边长是a ,它的面积与长为4,宽为3的矩形面积相等.则a = .3. 若1728+<-<n n ,n 为正整数,则n 的值为 .4. 已知113-=x ,则代数式222++x x 的值为 .5. 已知n 为正整数,若n 12为正整数,则n 的最小值为 .【课堂小测】: 1.计算:_____)2(2=- ; ()_______52=; 612÷=____________.2.若实数a ,b 满足042=-++b a ,则b a =____________. 3.若()x x -=-552,则x 的取值范围是_____________.4. 已知101=+a a ,则aa 1-=___________. 5. 计算: (1)483316122+-; (2)()32748÷- 6. 先化简再求值:当a =9时,求221a a a +-+的值.甲、乙两人的解答如下:甲:原式=()1112=-+=-+a a a a 乙:原式=()1712112=-=-+=-+a a a a a .其中, 的解答是错误的,错误的原因是 课堂小结:()2222yxy x y x ++=+()()22y x y x y x -=-+。
数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。
人教版二次根式小结与复习1、知识与技能目标(1)理解二次根式的概念,二次根式的性质及运算法则,会运用勾股定理;(2)熟练运用二次根式的性质及运算法则解决简单的几何图形问题;2、过程与方法目标(1)经历应用二次根式的性质、运算法则以及勾股定理解决问题的过程,进一步发展学生的推理能力。
(2)在解决问题的过程中,让学生学会聆听、学会思考,同时发展学生归纳和概括能力。
3、情感、态度与价值观目标通过对几何图形问题的解决,培养学生勇于探索的精神,激发学生的学习兴趣和学习积极性。
三、教学重难点重点:利用二次根式的性质与运算法则和勾股定理解决简单的几何图形问题。
难点:利用数形结合的思想解决问题。
基础盘点1.二次根式的定义:一般地,我们把形如a(a___0)的式子叫做二次根式,“”称为二次根式.定义诠释:(1)二次根式的定义是以形式界定的,如4是二次根式;(2)形如ab(a≥0)的式子也叫做二次根式;(3)二次根式a中的被开方数a,可以是数,也可以是单项式、多项式、分式,但必须满足a≥0.2.二次根式的基本性质(1)a_____0(a___0);(2)()2a=_____(a ___0); (3)aa =2=()()⎩⎨⎧0_____0_____a a ; (4=____________(a ___0,b ___0);(5=_____________(a ___0,b ___0). 3.最简二次根式必须满足的条件为:(1)被开方数中不含_______;(2)被开方数中所有因式的幂的指数都______.4.二次根式的乘、除法则: (1)(a ___0,b ___0);(2)除法法则:=____________(a ___0,b ___0). 复习提示:(1)进行乘法运算时,若结果是一个完全平方数,则应利用==a a 2()()⎩⎨⎧<-≥00a aa a 进行化简,即将根号内能够开的尽方的数移到根号外;(2)进行除法运算时,若除得的商的被开方数中含有完全平方数因数,应运用积的算术平方根的性质将其进行化简.5.同类二次根式:几个二次根式化成_________后,如果_______相同,这几个二次根式就叫做同类二次根式.6.二次根式的加减法则:二次根式加减时,可以先将二次根式化成_______,然后把_________进行合并.复习提示:(1)二次根式的加减分为两个步骤:第一步是_____,第二步是____,在合并时,只需将根号外的因式进行加减,被开方数和根指数不变;(2)不是同类二次根式的不能合并,如:53 ≠8;(3)在求含二次根式的代数式的值时,常用整体思想来计算.7.二次根式的混合运算(1)二次根式的混合运算顺序与实数中的运算顺序一致,也是先____,再____,最后____,有括号的先_____内的.复习提示:(1)在运算过程中,有理数(式)中的运算律,在二次根式中仍然适用,有理数(式)中的乘法公式在二次根式中仍然适用;(2)二次根式的运算结果可能是有理式,也可能是二次根式,若是二次根式,一定要化成最简二次根式.8.二次根式的实际应用利用二次根式的运算解决实际问题,主要从实际问题中列出算式,然后根据运算的性质进行计算,注意最后的结果有时需要取近似值.考点呈现考点1 二次根式有意义的条件例1 若式子43-x 在实数范围内有意义,则x 的取值范围是( )A.x ≥34 B.x >34 C.x ≥43 D.x >43解析:要使43-x 在实数范围内有意义,必须满足条件43-x ≥0,所以x ≥34,故应选A.方法总结:判断含有字母的二次根式是否有意义,就是看根号内的被开方数是不是非负数,如果是,就有意义,否则就没有意义,当二次根式含有分母时,分母不能为0.考点2 二次根式的性质例2 下列各式中,正确的是( ) A.()332-=- B.332-=- C.()332±=± D.332±=解析:本题利用二次根式的性质=2a ()()⎩⎨⎧<-≥00a aa a进行解答,运用排除法不难知道只有选项B 正确,故应选B. 方法总结:()a a=2成立的条件是a ≥0,而在化简()2a 时,先要判断a 的正负情况. 考点3 二次根式的非负性 例3 已知32552--+-=x x y ,则xy 2的值为( )A.—15B.15C.215- D.215解析:由52-x ≥0,且x 25-≥0,解得25=x ,所以3-=y ,因此xy 2=2×25×(—3)=—15,故应选A.方法总结:二次根式a (a ≥0)具有双重非负性,即a ≥0、a ≥0.考点4 最简二次根式例4 下列二次根式中,最简二次根式是( ) A.51B.5.0C.5D.50 解析:因为5551=,22215.0==,2550=,所以A 、B 、D 均不是最简二次根式.方法总结:在进行二次根式化简时,一些同学不知道化到什么程度为止,切记,一定要化到最简二次根式为止. 考点5 二次根式的运算 例5 计算1824-×31=____. 解析:本题是二次根式的混合运算,必须按法则进行,要注意最后结果的化简问题,即原式=1824-×31=2362-×33=662-=6. 方法总结:二次根式的加减运算,一定要先化简才能得知算式中哪些二次根式可以合并,除法运算先化为乘法再运算,混合运算时要正确使用运算法则. 考点6 二次根式的化简求值 例6 若120142013-=m ,则34520132m m m --的值是_____. 解析:先化简m的值,得m=()()()()2014120141201420131201412014120142013=-+=+-++1. 再变形所求代数式34520132m m m --=()()[]20141201322323--=--m m m m m =()()⎥⎦⎤⎢⎣⎡--+•+20141120141201423=0. 方法总结:解决此类问题应注意代数式的变形和整体思想的运用.误区点拨一、考虑问题不全面 例1 代数式21-x 中,x 的取值范围是______.错解:根据题意,得2-x ≥0,解得x ≥2,故填x ≥2. 剖析:整体观察式子的特点,存在分母,应满足分母不为0的条件;又存在二次根式,应满足被开方数为非负数. 错解只注意被开方数的非负性,而忽略了分式中分母不为0的条件.正解:根据题意,得2-x >0,解得x >2,故填x >2. 二、理解性质出错 例2 求()23-的值. 错解:()23-=—3.剖析:()23-表示()23-的算术平方根,应为正数. 错解由于对二次根式的性质理解不透而犯错. 正解:()23-=9=3.三、忽略运算顺序 例3 计算3312⨯÷.错解:原式=212=÷.剖析:由于乘除是同一级运算,应按照从左到右的顺序进行.正解:原式=23332=⨯⨯.四、对最简二次根式判断不准例4 下列各式中,是最简二次根式的是( ) A.23 B.36 C.2.1 D.49错解:选C.剖析:最简二次根式的被开方数中既不含开的尽方的因式或因数,也不含分母,满足条件的只有B. 错解只看表面形式,不求甚解,C 中被开方数是小数形式,化为分数后,可继续化简. 正解:选B.跟踪训练1.根式3-x 中x 的取值范围是( )A.x ≥3 B.x ≤3 C.x <3 D.x >32.下列各式是最简二次根式的是( ) A.20B.1.2C.72D.513.下列各式中,与3是同类二次根式的是( )A.18B.24C.12D.94.化简122154+⨯的结果是( )A.25 B.36 C.3 D.355.下列运算正确的是()A.25=±5B.12734=-C.9218=÷ D.62324=•6.已知:132-=-ba,3=ab,则()()11-+ba的值为()A.3- B.33 C.223- D.13-7.已知三角形三边的长分别为18cm、12cm、18cm,则它的周长为_____cm.8.当m<0时,化简mm2=____.9.计算:()2850÷-的结果是_____.10.实数在数轴上的位置如下图所示,化简()221-+-aa=_____.11.已知011=-++ba,则20132013ba+=____.12.如果最简二次根式a m a--7与m2是同类二次根式,则a =____,m=____.13.先化简,再求值:()()()633--+-aaaa,其中215+=a.14.先化简,再求值:221aaa+-+,其中1007=a. 下图是小亮和小芳的解答过程:解:原式=+a()21a-11=-+=aa解:原式=+a()21a-=1-+aa=2013(1)_____的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:___________.(3)先化简,再求值:9622+-+a a a ,其中2007-=a .跟踪训练参考答案:1.A2.C3.C4.D5.D6.A7.3226+ 8.—1 9.3 10.32-a 11.012.1,313.解:(1)原式=366322-=+--a a a a ,当215+=a 时,原式=6×(215+)—3=56. 14.解:(1)小亮; (2)a a -=2(a <0); (3)原式=()()a a a a -+=-+32322=a -6=6—(—2007)=2013.。
第16章 二次根式复习 一、复习目标 1. 使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子; 2.熟练地进行二次根式的加、减、乘、除混合运算.二、课时安排1课时三、复习重难点重点:二次根式的概念以及运算.难点:二次根式有意义的条件.四、教学过程(一)知识梳理1.二次根式的概念一般地,形如 (a ≥0)的式子叫做二次根式;(1)对于二次根式的理解:①带有根号;②被开方数是非负数.(2)a 是非负数,即a ≥0.2.二次根式的性质(a )2= ;a 2=||a =⎩⎪⎨⎪⎧ a >0,a =0,a <0.3.最简二次根式满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含 ;(2)被开方数中不含能 的因数或因式.4.二次根式的运算a ·b = (a ≥0,b ≥0);ab = (a ≥0,b >0).二次根式加减时,可以先将二次根式化成 ,再将 的二次根式进行合并.(二)题型、技巧归纳考点一 确定二次根式中被开方数所含字母的取值范围例1 若实数x ,y 满足+(y -)2=0,则xy 的值是________.考点二 二次根式性质的运用 例2 如图21-1所示是实数a 、b 在数轴上的位置,化简:a 2-()b 2-a -b 2.图21-1考点三 二次根式的化简例3 设2=a , 3=b ,用含a ,b 的式子表示0.54,则下列表示正确的是() A .0.03ab B .3abC .0.1ab 3D .0.1a 3b考点四 二次根式的运算例4 计算下列各题:(1)3105ab c ·532acb ·⎝ ⎛⎭⎪⎫-215bc a ;(2)(1-3+2)(1+3-2).(三)典例精讲1、若a a -=2,则a 的取值范围是( )(A )0>a (B )0≠a (C )0≤a (D )0≥a2、若a a 21)12(2-=-,则a 的取值范围( )(A )21≤a (B )21>a(C )21≥a (D )a 为任意实数3、下列计算正确的是( )(A )15)535(2=-- (B )71)71(2-=--(C )12)32(2-=- (D )53)535(2=4、若0,0≤>b a ,则b a +2的值是( )(A )b a + (B )b a - (C )a b - (D )b a --5.求下列各式的值(1)221ba +,其中12,9==b a (2)ac b 42-,其中9,23,21-===c b a (四)归纳小结 1.本节课学习了哪些主要内容?2.本节课是怎样进行二次根式的运算的?3.在运算时要注意哪些问题?(五)随堂检测1.要使+有意义,则x 应满足( )A .≤x≤3B .x≤3且x≠C .<x<3D .<x≤3 2.若y =+-1,则2x =______,y =______. 3.已知x<1,则化简的结果是( )A .x -1B .x +1C .-x -1D .1-x4.实数a ,b 在数轴上的位置如图所示,那么化简|a -b|-a 2的结果是( )A .2a -bB .bC .-bD .-2a +b5.若实数a ,b 满足|a +2|+=0,则=________.6.若+b 2+2b +1=0,则a 2+-=________. 7、计算:(-3)0-27+||1-2+13+2. 8.已知x =2-10,试求代数式x 2-4x -6的值.五、板书设计把黑板分成两份,左边部分板书例题,右边部分板书学习练习题,重复使用六、作业布置完成课后同步练习题七、教学反思。
二次根式教案【精品】二次根式教案(通用8篇)作为一位不辞辛劳的人民教师,时常需要编写教案,借助教案可以更好地组织教学活动。
快来参考教案是怎么写的吧!以下是小编整理的二次根式教案,希望能够帮助到大家。
二次根式教案篇1【教学目标】1.运用法则进行二次根式的乘除运算;2.会用公式化简二次根式。
【教学重点】运用进行化简或计算【教学难点】经历二次根式的乘除法则的探究过程【教学过程】一、情境创设:1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?2.计算:二、探索活动:1.学生计算;2.观察上式及其运算结果,看看其中有什么规律?3.概括:得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:积的算术平方根,等于积中各因式的算术平方根的积。
三、例题讲解:1.计算:2.化简:小结:如何化简二次根式?1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;2.P62结果中,被开方数应不含能开得尽方的因数或因式。
四、课堂练习:(一).P62 练习1、2其中2中(5)注意:不是积的形式,要因数分解为36×16=242.(二).P67 3 计算 (2)(4)补充练习:1.(x>0,y>0)2.拓展与提高:化简:1).(a>0,b>0)2).(y2.若,求m的取值范围。
☆3.已知:,求的值。
五、本课小结与作业:小结:二次根式的乘法法则作业:1).课课练P9-102).补充习题二次根式教案篇2活动1、提出问题一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。
你能告诉运动场的负责人要准备多少面积的草皮吗?问题:10+20是什么运算?活动2、探究活动下列3个小题怎样计算?问题:1)-还能继续往下合并吗?2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
人教版九年级上册数学教案第二^一章二次根式一、教材分析本章是在第13章的基础上,进一步研究二次根式的概念和运算。
在本章中, 学生将学习二次根式的概念、性质、运算法则和化简的方法,通过对二次根式的概念和性质的学习,学生将对实数的概念有更深刻的认识,通过对二次根式的加、减、乘、除运算的学习,学生将对实数的简单四则运算有进一步的了解。
学习本章的关键是理解二次根式的概念和性质,它们是学习二次根式的化简与运算的依据,重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。
本章内容分为三节,第一节主要学习二次根式的概念和性质,本节既是第10章相关内容的发展,同时又是后面两节内容的基础,因此本节起承上启下的作用;第二节是二次根式的乘除运算,主要研究二次根式的乘除运算法则和二次根式的化简;第三节是二次根式的加减,主要研究二次根式的加减运算法则和进一步完善二次根式的化简。
在第21.1节“二次根式”中,教科书首先给出四个实际问题,要求学生利用已学的平方根和算术平方根的知写出这四个问题的答案,并分析所得答案的表达式的共同特点引出二次根式的概念。
在二次根式的概念中,重要的一点是理解被开方数是非负数的要求,教科书结合例题对此进行了较详细的分析。
接下去,教科书依次探讨了关于二次根式的结论:T"是一个非负数、-二二-匚、■「」•:;© M::。
对于“- -1是非负数”,教科书是利用算术平方根的概念得到的;对于• 1 ='''',教科书则采用由特殊到一般的方法归纳得出的。
在研究这个结论时,教科书首先设置“探究”栏目,要求学生利用算术平方根的概念进行几个具体的计算,并对运算过程和运算结果进行进一步的分析,最后归纳给出这条结论;对于结论’:匕亠二“—,教科书同样采用了让学生通过具体计算,分析运算过程和运算结果,最后归纳得出一般结论的方法进行研究。
第一节的内容是学习后两节内容的直接基础。