第六章一阶电路分析
- 格式:ppt
- 大小:3.18 MB
- 文档页数:3
第六章一阶电路——经典分析法(微分方程描述)——运算分析法(代数方程描述)见第十三章一、重点和难点1. 动态电路方程的建立和动态电路初始值的确定;2. 一阶电路时间常数、零输入响应、零状态响应、冲激响应、强制分量、自由分量、稳态分量和暂态分量的概念及求解;3. 求解一阶电路的三要素方法;电路初始条件的概念和确定方法;1.换路定理(换路规则)仅对动态元件(又称储能元件)的部分参数有效。
①电容元件:u C(0-) = u C(0+);(即:q C(0-) = q C(0+));i C(0-) ≠i C(0+)。
②电感元件:i L(0-) = i L(0+);(即:ΨL(0-) = ΨL(0+));u C(0-) ≠u C(0+)。
③电阻元件:u R(0-) ≠u R(0+);i R(0-) ≠i R(0+)。
因此,又称电容的电压、电感的电流为状态变量。
电容的电流、电感的电压、电阻的电压和电流为非状态变量。
如非状态变量的数值变化前后出现相等的情况则视为一种巧合,并非是一种规则。
2.画t=0+时刻的等效电路画t=0+时刻等效电路的规则:①对电容元件,如u C(0-) = 0,则把电容元件短路;如u C(0-) ≠ 0,则用理想电压源(其数值为u C(0-))替代电容元件。
②对电感元件,如i L(0-) = 0,则把电感元件开路;如i L(0-) ≠ 0,则用理想电流源(其数值为i L(0-))替代电感元件。
画t=0+时刻等效电路的应用:一般情况下,求解电路换路后非状态变量的初始值,然后利用三要素法求解非状态变量的过渡过程。
3. 时间常数τ①物理意义:衡量过渡过程快慢的技术指标(即等于一阶微分方程的特征方程的特征根)。
仅取决于电路的结构和元件的参数。
②几何意义:状态变量变化曲线中时间坐标轴上任意一点次切距的长度(即曲线上任意一点,如果以该点的斜率为固定变化率衰减,则经过τ时间后为零值)。
③单位:m(秒)、ms(毫秒)。
数字电路第6章(1时序逻辑电路分析方法)1、第六章时序规律电路本章主要内容6.1概述6.2时序规律电路的分析方法6.3若干常用的时序规律电路6.4时序规律电路的设计方法6.5时序规律电路中的竞争-冒险现象1.时序规律电路的特点2.时序规律电路的分类3.时序规律电路的功能描述方法§6.1概述一、时序规律电路的特点1、功能:任一时刻的输出不仅取决于该时刻的输入;还与电路原来的状态有关。
例:串行加法器:两个多位数从低位到高位逐位相加一、时序规律电路的特点2.电路结构①包含存储电路和组合电路,且存储电路必不行少;②存储电路的输出状态必需反馈到组合电路输入端,与输入变量共同确定组合规律的输出。
yi:输出信号xi:输2、入信号qi:存储电路的状态zi:存储电路的输入可以用三个方程组来描述:Z=G(X,Q)二、时序电路的分类1.依据存储电路中触发器的动作特点不同时序电路存储电路里全部触发器有一个统一的时钟源;触发器状态改变与时钟脉冲同步.同步:异步:没有统一的时钟脉冲,电路中要更新状态的触发器的翻转有先有后,是异步进行的。
二、时序电路的分类2.依据输出信号的特点不同时序电路输出信号不仅取决于存储电路的状态,而且还取决于输入变量。
Y=F(X,Q)米利(Mealy)型:穆尔(Moore)型:输出状态仅取决于存储电路的状态。
犹如步计数器Y=F(Q)三、时序规律电路的功能描述方法描述方法3、规律方程式状态转换表状态转换图时序图三、时序规律电路的功能描述方法(1)规律方程式:写出时序电路的输出方程、驱动方程和状态方程。
输出方程反映电路输出Y与输入X和状态Q之间关系表达式;驱动方程反映存储电路的输入Z与电路输入X和状态Q之间的关系状态方程反映时序电路次态Qn+1与驱动函数Z和现态Qn之间的关系三、时序规律电路的功能描述方法(2)状态〔转换〕表:反映输出Z、次态Qn+1和输入X、现态Qn间对应取值关系的表格。
(3)状态〔转换〕图:(4)时序图:反映时序规律电路状态转换规律及相应输入、输出取值关系的有向图形。