数字电路(第一章逻辑代数基础)
- 格式:ppt
- 大小:1016.50 KB
- 文档页数:6
第一章逻辑代数基础【本章主要内容】本章介绍分析数字电路逻辑功能的数学方法。
内容包括:逻辑代数的基本公式和定理;逻辑函数及其表示方法;逻辑函数的化简和变换。
【本章学时分配】本章分为4讲,每讲2学时第一讲绪论和逻辑代数的基本运算一、主要内容1、绪论1)电子电路的分类:2)数字电路的基本特点;3)数字电路的基本应用;4)本课程的主要内容a. 逻辑代数基础;b. 逻辑门电路;c. 组合逻辑电路;d. 触发器;e. 时序逻辑电路;f. 半导体存储器;g. 可编程逻辑器件;h. 脉冲波形的产生和整形;i. D/A和A/D转换。
5)本课程的学习方法和对学生的基本要求。
2、基本逻辑运算和复合逻辑运算1)与、或、非运算是逻辑代数的基本运算,它们分别实现与、或和非的逻辑关系。
设A,B表示输入逻辑变量,Y表示输出逻辑变量,三种运算的表达式如下:与运算:Y=A•B或运算:Y=A+B非运算:Y=A它们的运算规则见P2的表1.1~表1.3,其逻辑符号见P2的图1.1~图1.3。
2)以三种基本运算为基础,还可以形成其他复合运算,常用的是与非、或非、与或非、异或、同或运算,它们的运算规则见P3~P4的表1.4~表1.8,而符号和表达式见P4的图1.4。
.二、本讲重点1、绪论:重点讲述数字电路的基本特点、应用状况和课程主要内容。
2、逻辑代数的基本运算:重点讲述各种运算的运算规则、符号和表达式。
三、本讲难点绪论:注意内容和时间的把握,做到深入浅出。
四、教学组织过程绪论部分采用多媒体教学,逻辑代数部分采用课堂讲授。
第二讲逻辑代数的基本公式与定理、逻辑函数的表示方法一、主要内容1、基本公式基本公式是逻辑运算的基础,它们是根据逻辑运算的规则而导出,其正确性可以用列真值表的方法加以验证。
基本公式包括18个,见P12表1.3.1,可分为若干组。
常量与变量公式:0•A=0;1+A=11•A=A;0+A=A同一律:A•A=A;A+A=A互补律:A•A=0;A+A=1交换律:A•B=B•A;A+B=B+A结合律:A•(B•C)=(A•B)•C;A+(B+C)=(A+B)+C分配律:A•(B+C)=A•B+A•C;A+B•C=(A+B)•(A+C)反演律:BB+A=A⋅ABA+⋅;B=还原律:AA=2、常用公式常用公式是利用基本公式导出的,可用基本公式加以证明,它们主要用于化简逻辑函数,若干常用公式见P5~6。
第一章逻辑代数基础1.1概述1.1.1模拟信号和数字信号电子电路中的信号可以分为两大类:模拟信号和数字信号。
模拟信号——时间连续、数值也连续的信号。
数字信号——时间上和数值上均是离散的信号。
(如电子表的秒信号、生产流水线上记录零件个数的计数信号等。
这些信号的变化发生在一系列离散的瞬间,其值也是离散的。
)数字信号只有两个离散值,常用数字0和1来表示,注意,这里的0和1没有大小之分,只代表两种对立的状态,称为逻辑0和逻辑1,也称为二值数字逻辑。
数字电路的特点和分类传递与处理数字信号的电子电路称为数字电路。
1、数字电路的特点数字电路与模拟电路相比主要有下列优点:(1)由于数字电路是以二值数字逻辑为基础的,只有0和1两个基本数字,易于用电路来实现,比如可用二极管、三极管的导通与截止这两个对立的状态来表示数字信号的逻辑0和逻辑1。
(2)由数字电路组成的数字系统工作可靠,精度较高,抗干扰能力强。
它可以通过整形很方便地去除叠加于传输信号上的噪声与干扰,还可利用差错控制技术对传输信号进行查错和纠错。
(3)数字电路不仅能完成数值运算,而且能进行逻辑判断和运算,这在控制系统中是不可缺少的。
(4)数字信息便于长期保存,比如可将数字信息存入磁盘、光盘等长期保存。
(5)数字集成电路产品系列多、通用性强、成本低。
由于具有一系列优点,数字电路在电子设备或电子系统中得到了越来越广泛的应用,计算机、计算器、电视机、音响系统、视频记录设备、光碟、长途电信及卫星系统等,无一不采用了数字系统。
2、数字电路的分类按集成度分类:数字电路可分为小规模(SSI,每片数十器件)、中规模(MSI,每片数百器件)、大规模(LSI,每片数千器件)和超大规模(VLSI,每片器件数目大于1万)数字集成电路。
集成电路从应用的角度又可分为通用型和专用型两大类型。
1.1.2 数制与码制1. 数制一.几种常用的计数体制1、十进制(Decimal)数码为:0~9;基数是10。
一、各章的重点、难点和教学要求(这里所的难点内容中的难点,不包括非重点内容中的难点。
)第一章逻辑代数基础逻辑代数是本书中分析和和设计数字逻辑电路时使用的主要数学工具,所以把它安排在第一章。
本章重点内容有:1、逻辑代数的基本公式和常用公式:2、逻辑代数的基本定理;3、逻辑函数的各种表示方法及相互转换;4、逻辑函数的化简方法;5、约束项、任意项、无关项的概念以及无关项在化简逻辑函数中的应用。
“最小项”和“任何一个逻辑函数式都可以化为最小项之和形式”是两个非常重要的概念,在逻辑函数的化简和变换中经常用到。
而“最大项”用得很少,不是本章的重点内容。
第一章里没有太难掌握的内容。
稍微难理解一点的是约束项、任意项、无关项这几个概念。
建议讲授过程中多举几个例子,这样可加深对这几个概念的理解。
第二章门电路虽然这章讨论的只是门电路铁外特性,但无论集成电路内部电路多么复杂,只要它们和这一章所讲的门电路具有相同的输入、输出电路结构,则这里对输入、输出特性的分析对它们也同样适同。
因此,这一章是全书对电路进行分析的基础。
本章的重点内容包括以下三个方面:1、半导体二极管三极管(包括双极型和MOS型)开关装态下的等效电路和外特性;2、TTL电路的外特性及其应用;3、CMOS电路的外特性及应用。
为了正确理解和运用这些外特性,需要了解TTL电路和CMOS电路的输入电路和输出电路结构及它们的工作原理。
内部的电路结构不是重点内容。
鉴于CMOS电路在数字集成电路中所占的比重已远远超过了TTL电路,建议在讲授时适当加大C MOS电路的比重,并相应压缩TTL电路的内容。
其他类型的双极型数字集成电路属于扩展知识面的内容。
第2.8节两种集成电路的接口问题可以作为学生自学时的阅读材料。
TTL电路的外特性是本章的一个难点,同时也是一个重点。
尤其是输入端采用多发射极三极管结构时,对输入特性的全面分析比较复杂。
从实用的角度出发,只要弄清输入为高/低时输入电流的实际方向和数值的近似计算就可以了。
数电期末总结基础知识要点数字电路各章知识点第1章逻辑代数基础⼀、数制和码制1.⼆进制和⼗进制、⼗六进制的相互转换 2.补码的表⽰和计算 3.8421码表⽰⼆、逻辑代数的运算规则1.逻辑代数的三种基本运算:与、或、⾮ 2.逻辑代数的基本公式和常⽤公式逻辑代数的基本公式(P10)逻辑代数常⽤公式:吸收律:A AB A =+消去律:AB B A A =+ A B A AB =+ 多余项定律:C A AB BC C A AB +=++ 反演定律:B A AB += B A B A ?=+ B A AB B A B A +=+ 三、逻辑函数的三种表⽰⽅法及其互相转换★逻辑函数的三种表⽰⽅法为:真值表、函数式、逻辑图会从这三种中任⼀种推出其它⼆种,详见例1-6、例1-7 逻辑函数的最⼩项表⽰法四、逻辑函数的化简:★1、利⽤公式法对逻辑函数进⾏化简2、利⽤卡诺图队逻辑函数化简3、具有约束条件的逻辑函数化简例1.1利⽤公式法化简 BD C D A B A C B A ABCD F ++++=)(解:BD C D A B A C B A ABCD F ++++=)(BD C D A B A B A ++++= )(C B A C C B A +=+ BD C D A B +++= )(B B A B A =+ C D A D B +++= )(D B BD B +=+ C D B ++= )(D D A D =+ 例1.2 利⽤卡诺图化简逻辑函数 ∑=)107653()(、、、、m ABCD Y 约束条件为∑8)4210(、、、、m 解:函数Y 的卡诺图如下:00 01 11 1000011110AB CD111×11××××D B A Y +=第2章集成门电路⼀、三极管如开、关状态 1、饱和、截⽌条件:截⽌:beT VV < 饱和:CSBSB Ii Iβ>=2、反相器饱和、截⽌判断⼆、基本门电路及其逻辑符号★与门、或⾮门、⾮门、与⾮门、OC 门、三态门、异或、传输门(详见附表:电⽓图⽤图形符号 P321 )⼆、门电路的外特性★1、电阻特性:对TTL 门电路⽽⾔,输⼊端接电阻时,由于输⼊电流流过该电阻,会在电阻上产⽣压降,当电阻⼤于开门电阻时,相当于逻辑⾼电平。