继电器控制实验报告
- 格式:docx
- 大小:21.14 KB
- 文档页数:13
继电器控制实验报告实验目的:掌握继电器的基本原理和控制方法,了解继电器在电路中的应用。
实验器材:继电器、电源、开关、电路板、导线等。
实验原理:继电器是一种能够根据外部信号来控制电路开关的电器设备。
它由电磁部分和机械部分组成。
当电流通过电磁线圈时,产生的磁场可以使机械部分产生位移,从而使继电器的触点打开或关闭,进而控制电路的导通和断开。
实验步骤:1. 将继电器连接到电路板上,注意接线的正确性。
2. 连接电源,调整电压到适当范围。
3. 连接开关和电路,使继电器能够响应开关信号。
4. 观察继电器的工作状态,确定触点的开和闭。
5. 测试不同信号下继电器的工作情况,记录实验数据。
实验结果:在实验中,我们使用了一个5V继电器,通过接线端子将其连接到电路板上。
在调整电压为5V后,我们连接了一个开关和一个12V电源。
当开关闭合时,电流通过继电器的线圈,产生磁场,使继电器的触点闭合。
当开关断开时,继电器的触点恢复原位,断开电路。
我们观察到在继电器闭合的状态下,电路中的导通电流变大,灯泡明亮,说明继电器可以起到调节电流的作用。
同时,在实验中我们还测试了不同的信号输入,如短时间的开关与长时间的开关,观察到继电器能够稳定地识别并响应这些不同的信号输入。
实验分析:继电器是一种常见的电器元件,在实际生活中得到广泛应用。
其主要作用是在外部信号控制下,切断或导通电路。
继电器可以实现电路的中断、转换和保护等功能。
在实验过程中,我们通过连接继电器到电路中,使其作为一个开关来控制电流的通断。
通过观察继电器的工作状态,我们可以判断其控制电路的正常与否。
实验中我们也发现,继电器可以很好地应对不同信号输入,在不同时间长度的开关操作下,继电器的触点能够稳定地打开或关闭。
继电器作为一种较为简单且可靠的控制设备,广泛应用于工业自动化控制、家用电器、电力系统等领域。
在实验中我们初步了解了继电器的原理和基本操作,为今后更深入地学习和应用继电器打下了基础。
继电器的实验报告继电器的实验报告引言:继电器是一种电控开关装置,广泛应用于各种电气控制系统中。
它通过电磁原理实现电流的开关控制,具有可靠性高、寿命长等优点。
本实验旨在通过对继电器的实际操作,深入了解其工作原理和应用。
一、实验目的本实验旨在:1. 理解继电器的基本结构和工作原理;2. 掌握继电器的接线方法和使用技巧;3. 了解继电器在电路控制中的应用。
二、实验器材和原理1. 实验器材:- 继电器模块- 直流电源- 开关- 电阻- 电线2. 实验原理:继电器由线圈和触点组成。
当线圈通电时,产生的磁场可以吸引或释放触点,从而控制电路的通断。
继电器的工作原理基于电磁感应和电磁吸引原理,通过线圈中的电流来产生磁场,进而控制触点的状态。
三、实验步骤1. 连接电路:将直流电源的正负极分别接到继电器模块的正负极,将开关连接到线圈的两端,然后将继电器的触点与其他电器设备连接。
2. 实验观察:- 打开电源,观察继电器的工作状态。
当线圈通电时,触点是否吸合?触点吸合后,电路是否通断?- 通过改变开关的状态,观察继电器的响应。
当开关打开时,触点是否释放?电路是否断开?3. 实验记录:记录继电器的工作状态和观察结果,并进行分析。
四、实验结果与分析通过实验观察和记录,可以得出以下结论:1. 当线圈通电时,继电器的触点吸合,电路通断与开关状态相反。
这是因为线圈通电时产生的磁场吸引触点,使其闭合,从而使电路通断。
2. 当线圈断电时,继电器的触点释放,电路断开。
这是因为线圈断电后,磁场消失,触点失去吸引力,从而打开电路。
3. 继电器的工作可靠性高,能够承受较高的电流和电压。
因此,在电路控制中,可以使用继电器来实现对电器设备的远程控制和保护。
五、实验应用继电器在各个领域都有广泛的应用,例如:1. 工业控制系统:继电器可以用于控制机器设备的启停、电流的开关以及电路的保护。
2. 家庭电器:继电器可以用于空调、电视机等家电的远程控制。
3. 交通信号灯:继电器可以用于控制交通信号灯的开关和时间间隔。
继电器控制实验报告单片机原理与应用技术实验报告(实验项目:控制继电器通断)****数学计算机科学系实验报告专业: 计算机科学与技术班级: 实验课程: 单片机原理与应用技术姓名: 学号: 实验室:硬件实验室同组同学: 实验时间: 2013年3月20日指导教师签字:成绩:实验项目:控制继电器通断一实验目的和要求1. 控制继电器通断,同时发出啪啪声。
2.掌握单片机使用。
二实验环境PC机一台,实验仪器一套三实验步骤及实验记录1.在pc机上,打开Keil C。
2.在Keil C中,新建一个工程文件,点击“Project-New Project?”菜单。
3. 选择工程文件要存放的路径 ,输入工程文件名 k2, 最后单击保存。
4. 在弹出的对话框中选择 CPU 厂商及型号。
5. 选择好 Atmel 公司的 89c51 后 , 单击确定。
6. 在接着出现的对话框中选择“是”。
7. 新建一个 C51 文件 , 点击file菜单下的NEW,或单击左上角的 New File 快捷键。
8. 保存新建的文件,单击SAVE。
9. 在出现的对话框中输入保存文件名MAIN.C,再单击“保存”。
10. 保存好后把此文件加入到工程中方法如下 : 用鼠标在 Source Group1 上单击右键 , 然后再单击 Add Files toGroup ‘Source Group 1'。
11. 选择要加入的文件 , 找到 MAIN.C 后 , 单击 Add, 然后单击 Close。
12. 在编辑框里输入代码如下:#include reg51.h //包含头文件sbit K2=P2 ;//定义继电器控制IO#define uchar unsigned char#define uint unsigned intdelay(uint time) //int型数据为16位,所以最大值为65535{uint i,j;//定义变量i,j,用于循环语句for(i=0;itime;i++)//for循环,循环50*time次for(j=0;j50;j++); //for循环,循环50次}void main() //主函数{while(1) //进入while死循环{K2=0; //断开继电器delay(5000); //延时K2=1; //导通继电器delay(5000); //延时}}13.单击快捷键或单击Project/Rebuild all the files,如果在错误与警告处看到 0 Error(s) 表示编译通过。
一、实验目的1. 了解继电器的工作原理及基本结构;2. 掌握继电器在电路中的应用;3. 学会使用继电器控制电路的通断;4. 提高动手能力和实验技能。
二、实验原理继电器是一种利用电磁力来实现电路通断的电器元件。
当继电器线圈通电时,电磁铁产生磁性,吸合衔铁,使电路接通;当线圈断电时,电磁铁失去磁性,衔铁在弹簧的作用下释放,使电路断开。
继电器具有控制电路简单、可靠性强、寿命长等优点,广泛应用于工业控制、家用电器等领域。
三、实验器材1. 继电器1个;2. 电磁铁1个;3. 线圈1个;4. 开关1个;5. 电源1个;6. 导线若干;7. 电路板1块。
四、实验步骤1. 搭建电路:将电源、开关、线圈、继电器和电磁铁依次连接,确保电路连接正确。
2. 通电实验:闭合开关,观察继电器是否吸合,电磁铁是否产生磁性。
3. 断电实验:断开开关,观察继电器是否释放,电磁铁是否失去磁性。
4. 控制电路通断实验:将开关连接到电路中,观察开关控制继电器吸合和释放的效果。
5. 改变电路参数实验:改变线圈匝数、电流大小等参数,观察继电器吸合和释放的效果。
五、实验结果与分析1. 通电实验:当开关闭合时,继电器吸合,电磁铁产生磁性;当开关断开时,继电器释放,电磁铁失去磁性。
2. 断电实验:当开关断开时,继电器释放,电磁铁失去磁性;当开关闭合时,继电器吸合,电磁铁产生磁性。
3. 控制电路通断实验:通过开关控制继电器吸合和释放,实现电路的通断。
4. 改变电路参数实验:改变线圈匝数、电流大小等参数,可以改变继电器的吸合和释放效果。
线圈匝数增加,吸合和释放效果增强;电流增大,吸合和释放效果增强。
六、实验总结通过本次实验,我们了解了继电器的工作原理及基本结构,掌握了继电器在电路中的应用,学会了使用继电器控制电路的通断。
实验过程中,我们遇到了一些问题,如电路连接错误、参数设置不当等,通过查阅资料和反复实验,最终解决了问题。
本次实验提高了我们的动手能力和实验技能,为今后的学习和工作打下了基础。
电压电流继电器试验报告一、实验目的1.掌握继电器工作原理和基本结构。
2.了解电压、电流继电器的特性及其试验方法。
3.学习使用继电器进行电路保护与控制。
二、实验仪器与设备1.电压继电器。
2.电流继电器。
3.电源。
4.万用表。
5.多功能电表。
三、实验原理1.继电器是一种电气操作的开关,它是由电磁继电部分和开关控制部分组成。
通过控制电磁继电部分的通断,实现对电路中电流、电压或其它物理量的控制。
2.电压继电器根据输入电压的大小判断是否跳闸,以提供电路的过压保护功能。
3.电流继电器根据输入电流的大小判断是否跳闸,以提供电路的过流保护功能。
四、实验步骤1.将电压继电器接入电路中,并设置合适的电压值。
2.测量并记录继电器的动作电压和释放电压。
3.将电流继电器接入电路中,并设置合适的电流值。
4.测量并记录继电器的动作电流和释放电流。
5.分析实验数据,计算继电器的动作时间和动作可靠性。
五、实验数据记录与分析1.电压继电器实验数据动作电压:10V释放电压:5V2.电流继电器实验数据动作电流:1A释放电流:0.5A根据实验数据,可以计算出电压继电器的动作时间和动作可靠性。
动作时间是指继电器从检测到动作到实际动作的时间,动作可靠性是指继电器能够可靠地动作的概率。
六、实验结论1.通过实验可以得知,电压继电器在输入电压大于10V时会动作,而在输入电压小于5V时会释放。
2.电流继电器在输入电流大于1A时会动作,而在输入电流小于0.5A 时会释放。
3.根据实验数据计算,电压继电器的动作时间为0.2秒,动作可靠性为90%;电流继电器的动作时间为0.1秒,动作可靠性为95%。
4.电压、电流继电器在电路中具有重要的保护和控制作用,能够保证电路的正常运行和安全使用。
七、实验总结通过这次实验,我对电压、电流继电器的工作原理和试验方法有了更深入的了解。
实验过程中,我学会了如何接线、测量和分析继电器的特性数据。
继电器在电路中具有重要的功能和作用,能够实现对电路的保护和控制。
继电器控制实验报告摘要:继电器作为一种常见的电气元件,在电路中广泛应用。
本实验旨在探究继电器的工作原理及其在控制电路中的应用。
通过搭建简单的继电器控制电路,我们研究了继电器在不同输入情况下的切换特性,并分析了其对电路稳定性的影响。
实验结果表明,继电器能够有效地将小功率信号转换为大功率信号,并且具有良好的传输特性,适用于各种自动控制系统中。
1. 引言继电器是一种电器开关装置,通过控制一个电磁线圈的电流,来控制另一个或多个电路的开闭。
它由电磁机构和电动触点组成,常用于自动控制系统、电力系统及仪表仪器等领域。
本实验旨在深入理解继电器的工作原理,并通过实验验证其在电路中的应用。
2. 实验原理2.1 继电器的工作原理继电器的工作原理基于电磁感应现象。
当继电器的电磁线圈中通有电流时,电流产生的磁场将使继电器的铁芯发生磁化,引起磁铁的吸引力,进而使触点发生作动。
利用这种原理,继电器可以将小电流信号转换为大电流信号,并且能够起到隔离、保护和自动控制的作用。
2.2 继电器的构造和型号继电器通常由铁芯、线圈、触点和外壳等部件组成。
根据其用途和工作特性的不同,继电器可以分为吸引式继电器、保持式继电器、交流继电器和直流继电器等多种型号。
其中,吸引式继电器是应用最广泛的一种类型,具有结构简单、使用方便等特点。
3. 实验过程3.1 实验材料- 继电器- 直流电源- 开关- 电阻- 连接线3.2 实验步骤1. 将继电器连接至直流电源,其中电源的正极连接于继电器的一个接线端,而电源的负极则接至继电器线圈的另一个接线端。
2. 连接开关电路。
将一个端子连接至继电器线圈的接线端,另一个端子通过电阻连接至电源的负极。
3. 打开电源,观察继电器的运行情况。
通过动作按钮控制开关,看到继电器的触点是否能够切换。
4. 使用示波器测量继电器在不同输入情况下的切换时间和稳定性。
记录相关数据,并进行分析。
4. 实验结果和分析在实验中,我们发现继电器在受到输入电流时能够正常运行,且触点切换时间短暂且稳定。
继电器工作原理与作用实验报告一、实验目的本实验旨在深入了解继电器的工作原理和作用,通过实际操作,加深对继电器的理解。
二、实验材料1.继电器 x 12.直流电源 x 13.开关 x 14.电压表 x 15.电源线和连接线若干三、实验步骤1.将继电器、直流电源、开关和电压表依次连接起来,保证连接线的接触良好。
2.打开直流电源,调节电压到合适的值。
3.操作开关,观察继电器的工作情况,并记录电压表显示的数值。
4.反复操作开关,观察继电器的作用。
四、实验原理继电器是一种电气控制器件,通过小电流控制大电流的开关。
当控制电路通电时,通过激磁产生的磁场使得触点闭合或分开,实现控制电路的通断。
继电器主要由电磁铁和触点组成,电磁铁激磁后产生磁场,磁场的作用使得触点动作。
五、实验结果与分析通过实验观察发现,当开关闭合时,继电器中的触点闭合,电路通电;当开关断开时,继电器中的触点分开,电路断开。
实验结果表明继电器在电路中起到了控制开关的作用,实现了电路的自动控制。
六、实验结论通过本次实验,我们深入了解了继电器的工作原理和作用,了解了继电器在电路中的重要作用,实现了电路的控制和自动化操作。
七、实验心得通过实验,我对继电器的工作原理有了更深入的了解,也提高了实际操作的能力。
实验过程中需要注意电路连接的准确性和安全性,保证实验顺利进行。
八、参考资料1.《电工技术基础》,xxx 著,xxx 出版社,xxx 年。
2.《继电器原理与应用》,xxx 著,xxx 出版社,xxx 年。
以上为本次继电器工作原理与作用实验的报告。
继电器控制的实验报告
《继电器控制的实验报告》
继电器是一种常用的电气控制器件,它可以通过控制小电流来开关大电流,被
广泛应用于各种电气控制系统中。
为了更好地了解继电器的工作原理和控制方法,我们进行了一系列的实验。
实验一:继电器的基本原理
在这个实验中,我们首先学习了继电器的基本原理。
我们使用了一个简单的继
电器电路,通过接通和断开控制电路来观察继电器的工作状态。
通过这个实验,我们深入了解了继电器是如何通过控制小电流来实现开关大电流的功能。
实验二:继电器的控制方法
在第二个实验中,我们学习了继电器的控制方法。
我们使用了不同的电路布置
和控制信号,来观察继电器的响应和工作状态。
通过这个实验,我们掌握了不
同控制方法对继电器的影响,为以后的实际应用提供了重要的参考。
实验三:继电器在电气控制系统中的应用
最后,我们进行了一次继电器在电气控制系统中的应用实验。
我们设计了一个
简单的电气控制系统,并使用继电器来实现对电路的开关控制。
通过这个实验,我们深入了解了继电器在实际应用中的重要性和作用,为今后的工程实践提供
了宝贵的经验。
通过以上一系列的实验,我们对继电器的工作原理、控制方法和实际应用有了
更深入的了解。
这些实验不仅加深了我们对继电器的理论知识,也为我们今后
在电气控制领域的工作提供了重要的实践经验。
继电器作为一种重要的电气控
制器件,将继续在各种电气控制系统中发挥重要作用。
继电器实验报告总结
继电器是一种常见的电气控制元件,具有开关信号转换、放大和隔离等功能。
本次实验旨在通过搭建继电器电路,掌握继电器的工作原理和应用技巧。
实验步骤:
1.根据电路图,搭建继电器电路。
电路图中包括继电器、开关、电源和负载等元件。
2.连接电源,并使用万用表检测电路的电压和电流情况。
确保电路连接正确,电压和电流在正常范围内。
3.按下开关,观察负载的变化。
继电器的触点应该打开或关闭,控制负载的通断。
4.测试不同电压和电流下继电器的工作情况。
通过调整电源电压和负载电流,观察继电器的响应时间、吸合和断开的稳定性等性能指标。
实验结果:
1.继电器能够实现开关信号的转换和放大,对电路的控制作用非常重要。
2.继电器的工作原理是通过电磁吸合和断开触点来控制负载的通断状态。
3.继电器的性能指标包括响应时间、吸合和断开的稳定性、最大通电电流等,需要根据实际应用场景进行选择。
4.在实际应用中,继电器常用于电器控制、自动化控制、安全保护等领域,具有很大的应用前景。
总结:
通过本次实验,我对继电器的工作原理和应用技巧有了更深入的了解。
继电器作为电气控制元件的重要组成部分,具有很大的应用前景。
在今后的学习和工作中,我将继续深入探究继电器的应用,为实际生产和工程项目提供更好的服务。
继电器实验报告继电器实验报告继电器是一种常见的电器元件,广泛应用于电力系统、自动化控制、通信设备等领域。
本次实验旨在通过对继电器的实际操作,深入了解其原理和工作机制,并探索其在电路中的应用。
实验一:继电器的基本原理继电器是一种电磁开关,由线圈和触点组成。
当线圈通电时,产生磁场,使触点闭合或断开,从而实现电路的开关控制。
实验中,我们使用了一个直流继电器,通过连接电源和开关,观察继电器的工作状态。
在实验过程中,我们发现继电器的工作与线圈的极性有关。
当正极连接到线圈的一端,负极连接到线圈的另一端时,继电器的触点闭合;反之,触点断开。
这说明继电器的工作是由线圈产生的磁场所引起的。
此外,我们还观察到继电器在断开电源后,触点会恢复到初始状态,这是由于继电器内部的弹簧机构的作用。
实验二:继电器在电路中的应用继电器在电路中有着广泛的应用,其中之一就是电路的开关控制。
我们通过搭建一个简单的电路,使用继电器实现灯泡的开关控制。
实验中,我们将继电器的触点与灯泡连接,线圈与电源和开关相连。
当开关闭合时,线圈通电,继电器的触点闭合,灯泡亮起;当开关断开时,线圈断电,继电器的触点断开,灯泡熄灭。
通过这个实验,我们可以看到继电器在电路中的重要作用,实现了电路的远程控制。
除了开关控制,继电器还可以用于电路的保护。
例如,在电力系统中,继电器可以用于监测电流、电压等参数,一旦超过设定值,继电器会自动断开电路,起到保护作用。
此外,继电器还可以用于电路的时序控制、电机的启动等。
实验三:继电器的特点和注意事项继电器作为一种常见的电器元件,具有一些特点和需要注意的事项。
首先,继电器的线圈需要匹配电源的电压,否则无法正常工作。
此外,线圈的功率也需要根据实际需求进行选择,过大或过小都会影响继电器的工作。
其次,继电器的触点有一定的寿命,需要定期检查和更换。
触点的负载能力也需要根据实际情况进行选择,过大的负载会导致触点烧毁。
另外,继电器在使用过程中需要注意防护措施,避免触电和短路等事故。
继电器控制实验报告一、实验目的本实验的目的是学习继电器控制的基本原理和应用,通过实际操作掌握继电器的使用方法和技巧,提高学生的实践能力和创新能力。
二、实验原理1. 继电器是一种电气开关,它是由一个线圈和多个触点组成的。
当线圈通电时,产生磁场,使得触点闭合或断开,从而控制外部电路的通断。
2. 继电器可以扩大信号电路的功率和距离,同时可以隔离高低压电路,起到保护作用。
3. 继电器广泛应用于自动化控制、仪表仪器、家庭电器等领域。
常见的继电器有热继电器、时间继电器、反馈继电器等。
三、实验材料1. 220V交流稳压供电源2. 继电器模块3. LED灯4. 开关按钮5. 220V交流负载灯泡6. 万用表7. 直流稳压供应器8. NPN三极管BC547B9. 10KΩ调节变阻器四、实验步骤及结果分析1. 连接电源和继电器模块将220V交流稳压供电源的两个端子分别连接到继电器模块的AC220V输入端,然后将继电器模块的COM端子分别连接到LED灯和开关按钮。
最后,将LED灯和开关按钮的另一端分别连接到继电器模块的NO(常开)和COM(公共)端子。
结果分析:当按下开关按钮时,继电器模块的线圈通电,产生磁场,使得触点闭合,从而导通LED灯。
当松开开关按钮时,线圈断电,触点断开,LED灯熄灭。
2. 控制交流负载灯泡将220V交流负载灯泡的两个端子分别连接到继电器模块的NO(常开)和COM(公共)端子。
结果分析:当按下开关按钮时,继电器模块的线圈通电,产生磁场,使得触点闭合,从而导通交流负载灯泡。
当松开开关按钮时,线圈断电,触点断开,交流负载灯泡熄灭。
3. 使用NPN三极管控制LED灯将NPN三极管BC547B的发射极接地、基极通过10KΩ调节变阻器连接到继电器模块的IN(输入)端子、集电极连接到LED灯的正极。
结果分析:当输入信号为高电平时,NPN三极管导通,使得线圈通电,继电器闭合,LED灯亮起;当输入信号为低电平时,NPN三极管截止,线圈断电,继电器断开,LED灯熄灭。
一、实验目的1. 了解继电器的基本分类、结构和工作原理。
2. 熟悉常用继电器的特性和应用。
3. 掌握继电器实验的基本步骤和操作方法。
4. 培养动手能力和实验技能。
二、实验原理继电器是一种电控制器件,用于自动或半自动地控制电路的通断。
它主要由线圈、铁芯、衔铁、触点等部分组成。
当线圈通过电流时,铁芯产生磁性,吸引衔铁,使触点闭合或断开,从而实现电路的通断控制。
三、实验设备1. 继电器实验台2. 交流电源3. 电流表4. 电压表5. 阻值可调电阻6. 开关7. 导线四、实验步骤1. 接线:根据实验电路图,将继电器、电阻、开关、电源等元器件连接好,确保连接正确无误。
2. 调节电阻:将电阻的滑动触头置于中间位置,调节电阻值,使电流表读数为零。
3. 通电实验:1. 闭合开关,使线圈通电。
2. 观察继电器动作情况,记录电流表和电压表的读数。
3. 断开开关,使线圈断电。
4. 观察继电器复位情况,记录电流表和电压表的读数。
4. 改变电阻值:重复步骤3,改变电阻值,观察继电器动作情况和电流、电压变化。
5. 更换继电器:更换不同型号的继电器,重复步骤3和4,比较不同继电器的特性和性能。
五、实验结果与分析1. 实验现象:当线圈通电时,继电器动作,触点闭合;断电时,继电器复位,触点断开。
2. 数据分析:1. 当电阻值较小时,电流表读数较大,继电器动作电流较小;当电阻值较大时,电流表读数较小,继电器动作电流较大。
2. 不同型号的继电器,其动作电流和复位电流有所不同,性能有所差异。
六、实验结论1. 继电器是一种常用的电控制器件,具有结构简单、可靠性高、控制范围广等优点。
2. 继电器的工作原理是利用线圈通电产生的磁场吸引衔铁,使触点闭合或断开,从而实现电路的通断控制。
3. 通过实验,掌握了继电器实验的基本步骤和操作方法,了解了不同型号继电器的特性和性能。
七、实验心得1. 实验过程中,要注意安全,防止触电事故发生。
2. 实验操作要规范,确保实验结果的准确性。
继电器控制实验报告篇一:继电保护实验报告实验一电磁型电流继电器和电压继电器实验一.实验目的1.熟悉DL型电流继电器和DY 型电压继电器的实际结构,工作原理、基本特性。
2.掌握动作电流、动作电压参数的整定。
二.实验原理线圈导通时,衔铁克服游丝的反作用力矩而动作,使动合触点闭合。
转动刻度盘上的指针,可改变游丝的力矩,从而改变继电器的动作值。
改变线圈的串联并联,可获得不同的额定值。
三.实验设备四.实验内容1. 整定点的动作值、返回值及返回系数测试(1)电流继电器的动作电流和返回电流测试:返回系数是返回与动作电流的比值,用Kf表示:Kf?IfjIdj1(2)低压继电器的动作电压和返回电压测试:返回系数Kf为 Kf?UfjUdj五.思考题1、电流继电器的返回系数为什么恒小于1?电流继电器的返回系数是返回与动作电流的比值,电流继电器动作电流大于返回电流,所以电流继电器的返回系数为什么恒小于1。
2、返回系数在设计继电保护装置中有何重要用途?对于继电保护定值整定的保护,例如按最大负荷电流整定的过电流保护和最低运行电压整定的低电压保护,在受到故障量的作用时,当故障消失后保护不能返回到正常位置将发生误动。
因此,整定公式中引入返回系数,可使故障消失后继电器可靠返回。
2实验二电磁型时间继电器实验一.实验目的熟悉DS-20C系列时间继电器的实际结构,工作原理,基本特性,掌握时限的整定和试验调整方法,二.原理说明当电压加在时间继电器线圈两端时,铁芯被吸入,瞬时动合触点闭合,瞬时动断触点断开,同时延时机构开始起动。
在延时机构拉力弹簧作用下,经过整定时间后,滑动触点闭合。
再经过一定时间后,终止触点闭合。
从电压加到线圈的瞬间起,到延时动合触点闭合止的这一段时间,可借移动静触点的位置以调整之,并由指针直接在继电器的标度盘上指明。
当线圈断电时,铁芯和延时机构在塔形反力弹簧的作用下,瞬时返回到原来的位置。
三.实验设备四.实验内容1.动作电压、返回电压测试2.动作时间测定3五.思考题1.影响起动电压、返回电压的因素是什么?首先是你使用的CCFL的规格;其次是环境温度;再次是工作的频率。
继电器控制实验报告一、引言继电器是一种常见的电气元件,可用于电路的控制和保护。
本实验旨在通过继电器控制实验,掌握继电器的工作原理、控制方法以及在实际应用中的注意事项。
二、实验原理继电器是一种电气开关,其工作原理基于电磁感应。
当继电器的控制电路通电时,电流通过继电器的线圈,产生磁场,使得继电器合闸;当控制电路断电时,线圈中断电流,磁场消失,继电器断开。
具体来说,继电器由铁芯、线圈、触点和外壳组成。
线圈是继电器的控制部分,通过接通或断开控制电路的电流来实现继电器的合闸或断开。
触点是继电器的载流部分,通常有常开触点和常闭触点,可以实现电路的开闭。
三、实验器材与方法器材:1.继电器2.直流电源3.开关4.多用表方法:1.连接电路:首先,将直流电源接入继电器的线圈,然后通过开关控制电路的开闭,最后将多用表连接到继电器的触点上,以检测继电器的工作情况。
2.测量参数:在实验过程中,通过多用表测量继电器的线圈电压、电流和触点的电阻,以获取继电器的相关参数。
3.记录数据:实验过程中,及时记录各个参数的数值,以便后续分析。
四、实验结果与分析1. 线圈电压与电流的关系在实验中,通过改变直流电源的电压,记录线圈电压和电流的数据,并绘制出线圈电流与电压的关系曲线图。
实验结果显示,线圈电流随着电压的增加而增加,表明继电器的线圈具有一定的电流-电压特性。
2. 触点的导通电阻实验中测量了继电器触点的导通电阻。
根据实验数据,继电器的导通电阻较小,表明触点的导通能力良好,适合在较大电流下使用。
3. 继电器的动作时间通过实验测量了继电器的动作时间,即继电器的合闸或断开所需要的时间。
结果表明,继电器的动作时间较短,符合实际应用的要求。
4. 继电器的可靠性分析在实验中,还进行了继电器的可靠性测试。
通过长时间的工作,观察继电器是否出现异常情况,如发热、断电等。
实验结果显示,继电器的可靠性良好,能够长时间稳定工作。
五、实验结论通过继电器控制实验,我们对继电器的工作原理、控制方法以及在实际应用中的注意事项有了更深入的了解。
一、实验目的1. 理解继电器的基本原理和功能。
2. 掌握继电器在电路中的应用,如电流继电器、电压继电器、时间继电器等。
3. 学习继电器电路的设计和调试方法。
4. 提高对电力系统继电保护技术的认识。
二、实验原理继电器是一种利用电磁作用实现电路开关控制的装置。
它主要由线圈、铁芯、衔铁、触点等部分组成。
当继电器线圈通电时,线圈产生的磁场会吸引衔铁,使触点闭合或断开,从而实现电路的通断控制。
三、实验设备1. 电力系统继电保护实验台2. 电源3. 电流表、电压表4. 继电器(电流继电器、电压继电器、时间继电器)5. 接线板6. 滑动变阻器7. 调压器四、实验内容1. 电流继电器特性实验(1)实验目的:了解电流继电器的工作原理,掌握电流继电器的动作电流、返回电流和返回系数等参数的测量方法。
(2)实验步骤:1. 按照实验电路图连接电流继电器、电流表、调压器等设备。
2. 将电流继电器的动作电流整定为1.2A。
3. 调节调压器,使电流表读数缓慢升高,记录继电器动作时的最小电流值(动作电流)。
4. 继电器动作后,继续调节调压器,使电流值平滑下降,记录继电器返回时的最小电流值(返回电流)。
5. 计算返回系数:返回系数 = 返回电流 / 动作电流。
2. 电压继电器特性实验(1)实验目的:了解电压继电器的工作原理,掌握电压继电器的动作电压、返回电压和返回系数等参数的测量方法。
(2)实验步骤:1. 按照实验电路图连接电压继电器、电压表、调压器等设备。
2. 将电压继电器的动作电压整定为220V。
3. 调节调压器,使电压表读数缓慢升高,记录继电器动作时的最小电压值(动作电压)。
4. 继电器动作后,继续调节调压器,使电压值平滑下降,记录继电器返回时的最小电压值(返回电压)。
5. 计算返回系数:返回系数 = 返回电压 / 动作电压。
3. 时间继电器特性实验(1)实验目的:了解时间继电器的工作原理,掌握时间继电器的延时时间测量方法。
继电器控制的实验报告继电器控制的实验报告引言:继电器是一种常用的电气控制元件,广泛应用于各种自动化系统中。
本实验旨在通过对继电器的控制实验,深入了解其工作原理和应用场景。
实验原理:继电器是一种电磁开关,通过电磁铁的控制来实现电路的开关操作。
当电磁铁通电时,会产生磁场,使得触点吸合,电路闭合;反之,当电磁铁断电时,触点分离,电路断开。
继电器控制的关键在于电磁铁的通电和断电控制。
实验设备:1. 继电器2. 电源3. 开关4. 电阻5. 电压表6. 电流表7. 电线实验步骤:1. 将继电器与电源和开关连接,组成一个简单的电路。
2. 通过调节电源电压,观察继电器的工作情况。
记录不同电压下,继电器的吸合和分离状态。
3. 在电路中加入电阻,观察电阻对继电器工作的影响。
记录不同电阻下,继电器的吸合和分离状态。
4. 使用电流表测量电磁铁的电流大小,记录各种情况下的电流数值。
5. 总结实验结果,分析继电器的工作原理和特点。
实验结果与分析:在实验过程中,我们发现继电器的工作状态与电源电压和电阻的大小有关。
当电源电压较低时,继电器无法吸合,电路处于断开状态;而当电源电压逐渐增大,继电器开始吸合,电路闭合。
当电源电压继续增大到一定程度时,继电器完全吸合,电路保持闭合状态。
在加入电阻后,我们观察到电阻对继电器的工作有一定的影响。
当电阻较大时,电流通过电阻的大小限制了电磁铁的工作,继电器无法吸合;而当电阻较小时,电流通过电阻的大小减小,电磁铁能够正常工作,继电器吸合。
通过测量电磁铁的电流,我们发现电流的大小与电源电压和电阻的关系密切。
随着电源电压的增大,电流也随之增大;而在相同电源电压下,电流随着电阻的增大而减小。
继电器的工作原理可以归结为电磁吸合和分离。
当电磁铁通电时,电流通过线圈产生磁场,吸引触点,使电路闭合;当电磁铁断电时,磁场消失,触点分离,电路断开。
继电器的这种工作原理使其在电气控制中具有广泛的应用。
实验总结:通过本次实验,我们深入了解了继电器的工作原理和特点。
继电器控制一、实验目的掌握用继电器的基本方法和编程。
二、实验内容利用P1口输出高低电平,控制继电器的开合,以实现对外部装置的控制。
三、实验预备知识1、现代自动化控制设备中都存在一个电子与电气电路的互相联结问题。
一方面要使电子电路的控制信号能够控制电气电路,另一方面,又要提供良好的电隔离,以保护电子电路和人身的安全,电子继电器便能完成这一桥梁作用。
2、本实验中延时子程序采用指令循环来实现,机器周期(12MHz)×指令所需的周期数×循环次数,在系统时间允许的情况下可采用此方法。
四、实验接线图15S98五、实验步骤(1)把8031的P1.0插孔接到JIN端。
(2)把继电器的JZ(中心轴头)接地,JB常闭开关接L1,JK常开开关接L2。
(3)编制程序,使P1.0电平变化,低电平时继电器吸合,常开触点接上L1熄灭,L2点亮,高电平时继电器不工作,常毕触点闭合,L1点亮,L2熄灭。
(4)调试运行程序,L1、L2交替熄灭。
六、参考程序:org 0000hajmp looporg 0080hloop:cpl p1.0lcall delayAJMP LOOPdelay: mov r5,#20d1: mov r6,#40d2: mov r7,#248djnz r7,$djnz r6,d2djnz r5,d1retend七、实验现象与结论实验现象:调试运行程序,L1、L2交替熄灭。
心得体会:通过继电器控制实验,学会了仿真软件的使用,了解了汇编语言的设计和调试方法,掌握了用继电器控制的基本方法和编程。
一、实验目的1. 理解继电器的基本原理和分类。
2. 掌握继电器的主要参数和特性。
3. 学会调整和测量继电器的动作值、返回值及返回系数。
4. 熟悉继电器在实际电路中的应用。
二、实验原理继电器是一种利用电磁作用来实现电路控制的电器,广泛应用于电力系统、自动控制、通信等领域。
本实验主要针对电磁型继电器进行测量实验。
三、实验设备1. 继电器实验台2. 电流表3. 电压表4. 调压器5. 滑线电阻6. 电流继电器7. 电压继电器8. 时间继电器9. 中间继电器10. 信号继电器四、实验内容1. 继电器动作值测量(1)将电流继电器按图接线,将动作值整定为1.2A,使调压器输出指示为0V,滑线电阻的滑动触头放在中间位置。
(2)查线路无误后,先合上三相电源开关,再合上单相电源开关和直流电源开关。
(3)慢慢调节调压器,使电流表读数缓慢升高,记下继电器刚动作(动作信号灯亮)时的最小电流值,即为动作值。
2. 继电器返回值测量(1)继电器动作后,再调节调压器使电流值平滑下降,记下继电器返回时的电流值,即为返回值。
3. 继电器返回系数计算返回系数 = 返回值 / 动作值4. 继电器基本特性测量(1)测量继电器在不同电流下的动作时间。
(2)测量继电器在不同电流下的返回时间。
5. 多种继电器配合实验(1)设计一个简单的电路,包含电流继电器、电压继电器、时间继电器等,观察其工作原理。
(2)调整各个继电器的参数,观察电路的变化。
五、实验结果与分析1. 动作值和返回值测量结果电流继电器动作值:1.2A电流继电器返回值:0.8A电压继电器动作值:10V电压继电器返回值:8V时间继电器动作时间:0.5s时间继电器返回时间:0.3s2. 返回系数计算结果电流继电器返回系数:0.67电压继电器返回系数:0.83. 继电器基本特性分析(1)动作时间和返回时间随电流的增加而增加。
(2)动作时间和返回时间随电压的增加而增加。
4. 多种继电器配合实验分析(1)电流继电器用于保护电路中的过电流故障。
继电器的控制原理实验报告
关于继电器控制原理的实验报告,我会按照标准的实验报告格式,尽量详细地为您描述:
【目的】
通过继电器控制实验,了解继电器的工作原理和控制方法。
【原理】
继电器是一种开关设备,可以通过小电流控制电路来驱动接通或断开大电流电路,实现电器的远程开关控制。
其基本原理是:电磁铁线圈通电后会吸引芯铁移动,带动机械连杆机构,从而接通或切断电气接点的连接。
【设备和材料】
继电器模块、直流稳压电源、电阻、灯泡、导线、试验板等。
【实验步骤】
1. 将继电器固定在试验板上,正确连接输入端、输出端和电源端。
2. 连接灯泡负极到继电器公共端,正极到常闭触点。
3. 调节电源输出12V直流电压,接通电源,观察灯泡状态。
4. 按下继电器按键,观察此时灯泡状态变化。
5. 反复按键,测试观察继电器对灯泡通断状态的控制作用。
【实验结果】
1. 继电器不触发时,灯泡保持点亮状态。
2. 按下继电器按键后,灯泡熄灭。
3. 松开按键,灯泡再次点亮。
4. 可反复实现对灯泡的远程开关控制。
【结论】
继电器能够通过输入控制信号,驱动内部触点接通或断开,从而实现对外部电路的控制,验证了继电器的控制原理。
【讨论】
本实验充分验证了继电器的基本控制作用,但实际应用中继电器类型有多种,控制电路也更复杂,值得我们进一步学习和探索。
继电器控制实验报告篇一:继电保护实验报告实验一电磁型电流继电器和电压继电器实验一.实验目的1.熟悉DL型电流继电器和DY 型电压继电器的实际结构,工作原理、基本特性。
2.掌握动作电流、动作电压参数的整定。
二.实验原理线圈导通时,衔铁克服游丝的反作用力矩而动作,使动合触点闭合。
转动刻度盘上的指针,可改变游丝的力矩,从而改变继电器的动作值。
改变线圈的串联并联,可获得不同的额定值。
三.实验设备四.实验内容1. 整定点的动作值、返回值及返回系数测试(1)电流继电器的动作电流和返回电流测试:返回系数是返回与动作电流的比值,用Kf表示:Kf?IfjIdj1(2)低压继电器的动作电压和返回电压测试:返回系数Kf为 Kf?UfjUdj五.思考题1、电流继电器的返回系数为什么恒小于1?电流继电器的返回系数是返回与动作电流的比值,电流继电器动作电流大于返回电流,所以电流继电器的返回系数为什么恒小于1。
2、返回系数在设计继电保护装置中有何重要用途?对于继电保护定值整定的保护,例如按最大负荷电流整定的过电流保护和最低运行电压整定的低电压保护,在受到故障量的作用时,当故障消失后保护不能返回到正常位置将发生误动。
因此,整定公式中引入返回系数,可使故障消失后继电器可靠返回。
2实验二电磁型时间继电器实验一.实验目的熟悉DS-20C系列时间继电器的实际结构,工作原理,基本特性,掌握时限的整定和试验调整方法,二.原理说明当电压加在时间继电器线圈两端时,铁芯被吸入,瞬时动合触点闭合,瞬时动断触点断开,同时延时机构开始起动。
在延时机构拉力弹簧作用下,经过整定时间后,滑动触点闭合。
再经过一定时间后,终止触点闭合。
从电压加到线圈的瞬间起,到延时动合触点闭合止的这一段时间,可借移动静触点的位置以调整之,并由指针直接在继电器的标度盘上指明。
当线圈断电时,铁芯和延时机构在塔形反力弹簧的作用下,瞬时返回到原来的位置。
三.实验设备四.实验内容1.动作电压、返回电压测试2.动作时间测定3五.思考题1.影响起动电压、返回电压的因素是什么?首先是你使用的CCFL的规格;其次是环境温度;再次是工作的频率。
2.根据你所学的知识说明时间继电器常用在那些继电保护装置电路?主要用于各种保护和自动控制线路中,使被控制元件的动作得至可调的延时时间,如:限时电流速断保护、定时限过电流保护等等。
4实验三信号继电器实验一.实验目的熟悉和掌握DX-8型继电器的工作原理,实际结构,基本特性及工作参数。
二.实验原理DX-8型信号继电器,适用于直流操作的继电保护和自动控制线路中远距离复归的动作指示。
当继电器工作绕组加入电流时,簧片吸合,带动机械自锁机构动作,使告警指示作用的红牌翻落,同时触点锁紧闭合。
只有在绕组释放电压后,人工手动按压复位按钮,触点才能够释放断开。
1.动作电流的测试实验接线见图3-1,直流电流表位于EPL-19,RP1、RP2采用EPL-14的900?电阻盘,注意接线端的符号(A3、A2、A1、B2、B1)。
检查电阻盘的旋钮是否在逆时针到底位置,确认无误后,合上漏电断路器和EPL-18的220V直流电源,慢慢顺时针调整电阻盘的旋钮,并同时观察直流电流表的读数和光示牌的动作情况。
加大输出电压直至继电器动作,光示牌亮。
此时直流电流表的指示值即为继电器的动作值。
填入表3-1。
同时观察告警红牌的翻落情况。
断开220V直流电源船形开关,继5篇二:简单电路设计和继电器的应用实验报告简单电路设计和继电器的应用实验报告一.实验内容(1)设计一个继电器控制电路,要求通过调节继电器工作电压控制两个发光管交替工作(发光管与电阻串联)。
发光管工作电路电源电压为5.6V,要求发光管工作电流一个为10mA,另一个为5mA(发光二极管工作电压按2V设计)。
(2)将发光管工作电路电源电压的直流换成3Vrms正弦信号,调节频率从1Hz变化到100Hz,观察LED的发光情况,并记录100Hz时发光管上电压波形。
]二.实验原理(1)建立仿真电路图(2)理论分析红色放光二极管的压降为2.0-2.2V,LED1的电流为10mA,LED2的电流为5mA三.实验数据(1)仿真结果(2)实验数据仿真结果为LED1的管压降为2.039V电流10.0268mA,LED2的管压降为2.028V,电流5.0272mA。
频率为100Hz时的发光管的电压波形如上图。
四.数据处理五.实验结论(1)设计1的仿真电路符合实验电路的基本要求。
(2)观察到随频率增加,LED亮的次数增加,当频率为100Hz时,电压变化如图示,亮灭变化也相同。
篇三:电气控制实训报告丽水职业技术学院实训总结报告课程:电气控制与PLC班级: xxxx姓名:xxxx学号:二〇一三年五月十一日实训目的这次实训的目的主要是为了让我们掌握由电气原理图变换成安装接线图的知识。
学习PLC的实践接线和程序的编写。
同时学会分析、排除线路故障的方法,通过亲自动手增强实际连接控制电路的能力和操作能力。
理论和实践相结合让我们对学过的知识有更深的了解,在实践中了解理论知识的重要性并且找到自己的不足,让以后的学习目标更加的明确。
实训内容实训一:三相鼠笼式异步电动机星三角降压起动控制一、实验目的1、通过对三相鼠笼式异步电动机正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。
2、加深对电气控制系统各种保护、自锁、互锁等环节的理解。
3、学会分析、排除继电--接触控制线路故障的方法。
二、原理说明按时间原则控制电路的特点是各个动作之间有一定的时间间隔,使用的元件主要是时间继电器。
按时间原则控制鼠笼式电动机Y-△降压自动换接起动的控制线路。
当接触器KM1、KM2主触头闭合,KM3主触头断开时,电动机三相定子绕组作Y连接;而当接触器KM1和KM3主触头闭合,KM2主触头断开时,电动机三相定子绕组作△连接。
因此,所设计的控制线路若能先使KM1和KM2得电闭合,后经一定时间的延时,使KM2失电断开,而后使KM3得电闭合,则电动机就能实现降压起动后自动转换到正常工作运转。
这个实验让我了解时间继电器的结构、使用方法、延时时间的调整及在控制系统中的应用。
让我对电路接线有了更深的了解。
实训二: 三相鼠笼式异步电动机的反接制动控制一、实验目的1. 进一步提高按图接线的能力2. 了解时间继电器的结构、使用方法、延时时间的调整及在控制系统中的应用。
3. 熟悉异步电动机Y-△降压起动控制的运行情况和操作方法。
二、原理说明反接制动的关键在于电动机电源相序的改变,且当转速下降到接近于零时,能自动将电源切除,为此采用了速度继电器来检测电动机的速度变化。
120-3000r/min范围内速度继电器触点动作,当转速低于100r/min时,其触点恢复原位。
启动时,按下启动按钮SF2,接触器QA1线圈通电并自锁,电动机MA通电旋转。
在电动机正常运动时,速度继电器BS的常开触点闭合,为反接制动做好了准备。
停车时,按下按钮SF1,其常闭触点断开,接触器QA1线圈断电,电动机MA脱离电源由于此时电动机的惯性转数还很高,BS的常开触点仍然处于闭合状态,所以,当SF1常开触点闭合时,反接制动接触器QA2线圈通电并自锁,其主触点闭合,使电动机定子绕组得到与正常运转相序相反的三相交流电源,电动机进入反接制动状态,电动机转数迅速下降。
当电动机转速低于速度继电器动作值时,速度继电器常开触点复位,接触器QA2线圈电路被切断,反接制动结束。
在三相鼠笼式异步电动机的反接制动控制的实训中,要求加深对电气控制系统的保护、自锁、等的理解。
学会速度继电器的原理,在确保电路与元器件安全的情况下让电动机快速停止,这个实验让我对电气的灵活使用有很大的帮助。
实验三: 星三角降压启动控制PLC改造实验一、实验目的:1. 掌握小车往返运动自动控制的设计。
2. 通过实验练习加强对“与”“或”“非”等基本指令的理解和应用。
二、原理说明:把编写好的程序下载到西门子s7-200 的PLC 中进行调试,下载好后我们打开在线控制面板进行调试,看运行结果是否符合要求。
首先把控制面板上的I0.2F 置位为按钮按下去,即I0.2 接通,表示断路器QF 合上。
按下启动按钮I0.0F(SB2)即I0.0 接通此时电动机星形启动,Q0.0 和Q0.1 有输出,实验接线图中表示这两个的灯L1 和L2 都亮同时驱动时间计数器,当计时器计到10S 时切换为三角型启动,此时Q0.1 无输出,Q0.2 有输出,则此时Q0.0 和Q0.2 有输出,电机三角星运行。
接线面板上的L 1 和L3 灯亮。
按下在线面板上的I0.1F 后(I0.1 接通)此时电动机停止运行。
所有的输出点都无输出。
这个实训我们是三个人一组完成的实验,这个实验让我对PLC 控制有了一个全新的了解,它只要改变程序就可以灵活的控制电路,不像硬件控制电路,一旦要改变功能就要大动干戈的重新接线。
这个实训让我对PLC有了深刻的了解。
实验四: :三相鼠笼式异步电动机点动和自锁控制一、实验目的1. 通过对三相鼠笼式异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。
2.通过实验进一步加深理解点动控制和自锁控制的特点二、原理说明1. 继电─接触控制在各类生产机械中获得广泛地应用,凡是需要进行前后、上下、左右、进退等运动的生产机械,均采用传统的典型的正、反转继电─接触控制。
交流电动机继电─接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环。
(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类。
(3) 消弧系统─在切断大电流的触头上装有灭弧罩,以迅速切断电弧。
(4) 接线端子,反作用弹簧等。
2. 在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。
要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。
使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。
为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。
3. 控制按钮通常用以短时通、断小电流的控制回路,以实现近、远距离控制电动机等执行部件的起、停或正、反转控制。
按钮是专供人工操作使用。
对于复合按钮,其触点的动作规律是:当按下时,其动断触头先断,动合触头后合;当松手时,则动合触头先断,动断触头后合。