第6章柴油机燃烧过程与燃烧室
- 格式:pptx
- 大小:660.61 KB
- 文档页数:50
柴油机的工作原理与燃烧室柴油机是一种内燃机,它使用柴油作为燃料进行燃烧来驱动发动机的运转。
与汽油机相比,柴油机的工作原理和燃烧室结构有所不同。
首先是进气过程。
柴油机的进气是通过进气阀(气门)控制的。
当活塞向下运动时,气门打开,气门下方的气缸内产生负压,使空气通过进气门进入气缸。
接下来是压缩过程。
在活塞向上运动的过程中,气门关闭,气缸内的空气被压缩。
柴油机通过提高活塞的压缩比(即气缸内气体体积的最小值与最大值之比)来提高燃料的压力,从而提高其热效率。
然后是燃烧过程。
在活塞接近顶部位置时,柴油喷射器将燃油喷入高温高压的气缸中。
柴油燃料由于压力和温度的升高而迅速蒸发,并与气缸内的空气混合。
然后,通过自燃现象(即空气中的氧气与柴油燃料的混合物发生自发燃烧),使混合物燃烧并释放出巨大的能量。
最后是排气过程。
在燃烧完毕后,活塞再次向下运动,废气通过排气阀(气门)排出气缸。
然后,新的进气过程开始。
柴油机的燃烧室结构与汽油机有所不同。
常见的柴油机燃烧室结构有块式燃烧室、球形燃烧室和梨形燃烧室。
块式燃烧室是最早也是最简单的燃烧室结构。
它与汽油机类似,燃烧室位于活塞顶部。
燃油通过喷嘴喷入燃烧室,并与空气混合并燃烧。
块式燃烧室具有简单、易于制造和维护的特点,但其燃烧效率较低。
球形燃烧室是一种改进的燃烧室结构。
它具有球形的形状,能够使空气与燃油充分混合,并使燃烧产生的高温高压气体扩散均匀,从而提高燃烧效率。
梨形燃烧室是目前柴油机常用的燃烧室结构。
它的形状如同一个倒置的梨,燃油喷入燃烧室的顶部,空气经过预燃室和倒角部位混合并燃烧。
梨形燃烧室具有良好的燃烧效果和低污染排放的特点。
总的来说,柴油机的工作原理是通过进气、压缩、燃烧和排气这四个基本过程来实现。
而不同的柴油机燃烧室结构则影响着燃烧效率和排放性能,因此燃烧室结构的设计对柴油机的性能具有重要影响。
第二章发动机的性能指标1.研究理论循环的目的是什么?理论循环与实际循环相比,主要作了哪些简化?答:目的:1.用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以平均有效压力为代表的动力性的基本途径2.确定循环热效率的理论极限,以判断实际内燃机经济性和工作过程进行的完善程度以及改进潜力3.有利于分析比较发动机不同循环方式的经济性和动力性简化:1.以空气为工质,并视为理想气体,在整个循环中工质的比热容等物理参数为常数,均不随压力、温度等状态参数而变化2.将燃烧过程简化为由外界无数个高温热源向工质进行的等容、等压或混合加热过程,将排气过程即工质的放热视为等容放热过程3.把压缩和膨胀过程简化成理想的绝热等熵过程,忽略工质与外界的热交换及其泄露等的影响4.换气过程简化为在上、下止点瞬间开和关,无节流损失,缸内压力不变的流入流出过程。
2.简述发动机的实际工作循环过程。
四冲程发动机的实际循环由进气、压缩、燃烧、膨胀、排气组成3.排气终了温度偏高的原因可能是什么?有流动阻力,排气压力>大气压力,克服阻力做功,阻力增大排气压力增大,废气温度升高。
负荷增大Tr增大;n升高Tr增大,∈+,膨胀比增大,Tr减小。
4.发动机的实际循环与理论循环相比存在哪些损失?试述各种损失形成的原因。
答:1.传热损失,实际循环中缸套内壁面、活塞顶面、气缸盖底面以及活塞环、气门、喷油器等与缸内工质直接接触的表面始终与工质发生着热交换2.换气损失,实际循环中,排气门在膨胀行程接近下止点前提前开启造成自由排气损失、强制排气的活塞推出功损失和自然吸气行程的吸气功损失3.燃烧损失,实际循环中着火燃烧总要持续一段时间,不存在理想等容燃烧,造成时间损失,同时由于供油不及时、混合气准备不充分、燃烧后期氧不足造成后燃损失以及不完全燃烧损失4.涡流和节流损失实际循环中活塞的高速运动使工质在气缸产生涡流造成压力损失。
第六章柴油机的着火过程第一节燃烧化学反应动力学的基础理论一.分子运动和碰撞柴油机的着火过程是复杂的物理化学过程,化学过程是激烈的热——链化学反应,要进行化学反应,必须经过它们分子之间的相互碰撞,并且符合碰撞要求才可实现。
燃烧化学反应中分子运动和碰撞的基本理论归纳如下:A.参加化学反应的物质,分子必须相互碰撞。
B.分子的碰撞是杂乱无章的。
C.合适的方向上碰撞才有可能起化学作用。
D.运动能量超过最低能量。
E.最低能量称为活化能。
F.温度越高,化学反应速度越大。
G.压力与密度越大,碰撞频率越高,反应速度加快。
二.活化络合物理论活化络合物理论(过渡态理论)的基本内容是:进行化学反应时候,分子不仅需要相互撞击,还需要适当能量,在适当的方位上撞击,以便获得形成一个不稳定,过度的,瞬态活化络合物。
活化能E就是把初态反应物提高到络合物所需能量。
反应关系表达为:反应物——活化络合物——终产物三.键能及其在化学反应中的作用。
物质内部相邻原子间或离子间产生的相互结合或相互作用的称为化学键。
可分为离子键,共价键,和金属键等几种类型。
正负离子通过静电引力形成的化学键为离子键。
物质内部相邻原子或者原子团通过共用电子对形成的称为共价键。
由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成金属键。
物质起化学变化时,需要从外界吸收能量,达到破坏原子间或者离子间所必须吸收的能量,这种能量称为键能。
第二节着火前燃料的物理——化学过程(焰前反应)一。
着火的分类和含义按照火源性质,分为压缩自然和外源点火。
按化学反应性质分为热式着火,链式着火,和热—链式着火。
链式着火通过支链反应而自身积累活性中心并积聚能量。
按着火阶段分,有高温单阶段着火和中低温多阶段着火。
多阶段着火指历经冷焰,蓝焰到热焰的几个阶段着火。
二.着火前的物理过程必须先将反应物质(空气和烃类)能互相充分气相混合,并相互撞击,同时,需要一定的初始能量。
这就需要有进气过程,喷射过程,喷注的破碎和雾化过程,以至形成可燃混合气,并达到足够温度和压力的过程。
第二节 汽油机混合气的形成与燃烧一.汽油机混合气的形成1.化油器式汽油机混合气的形成汽油机的不同工况,对混合气成分的要求也不同。
化油器式汽油机的可燃混合气,是在气缸外部由化油器形成的,并通过节气门开度不同控制混合气的量,从而实现混合气的量调节。
1)发动机不同工况对混合气的要求理想的化油器,能够在满足最佳性能要求的前提下,使混合气成分随负荷(或混合气量)的变化而变化,如图3-1所示。
2)化油器的工作原理为满足发动机不同工况对混合气的要求,化油器设有主供油装置、怠速供油装置、加速供油装置、加浓供油装置和起动供油装置等。
2.电子控制燃油喷射汽油机混合气的形成电子控制的汽油喷射系统,以发动机转速和空气量为依据,由ECU 接受来自各个传感器的信号,如:进气量、曲轴转角、发动机转速、加速减速、冷却水温度、过气温度、节气门开度及排气中氧含量等,经处理后,将控制信号送到喷油器,通过控制喷油器开闭时间的长短,控制供油量,使达到最佳空燃比,以适应发动机运行工况的要求。
常用的多点燃油喷射系统示意图如图3-6所示。
二.汽油机正常燃烧过程当汽油机压缩行程接近终了时,由火花塞跳火形成火焰中心,点燃可燃混合气,火焰以一定速度传播到整个燃烧室,燃烧混合气。
1. 正常燃烧进行情况在混合气的燃烧过程中,火焰的传播速度及火焰前锋的形状均没有急剧变化,这种燃烧现象称为正常燃烧。
根据高速摄影摄取的燃烧图,或激光吸收光谱仪来分析燃烧过程。
如图3-7所示,为汽油机燃烧过程的展开示功图,它以发动机曲轴转角为横坐标,气缸内气体压力为纵坐标。
图中虚线表示只压缩不点火的压缩线。
燃烧过程的进行是连续的,为分析方便,按其压力变化的特征,可人为地将汽油机的燃烧过程分为着火延迟期、明显燃烧期和补燃期三个阶段,分别用Ⅰ、Ⅱ、Ⅲ表示。
1)着火延迟期从火花塞跳火开始到形成火焰中心为止的这段时间,称为着火延迟期。
如图3-7中I 阶段所示。
从火花塞跳火开始到上止点的曲轴转角,称为点火提前角,用θig 表示。
第六章柴油机燃烧由于能源短缺和人类对环境保护的日益关切,使得内燃机技术工作者对柴油机燃烧、经济性以及排放产生极大的兴趣。
然而,柴油机的燃烧过程是相当复杂的,它的详细机理还不十分清楚。
柴油与空气的可燃混合气在燃烧室内若干部位产生自燃,而与此同时,一些其他地方燃油可能仍处于液态。
许多发动机在运行条件下,着火开始而燃油仍在继续向燃烧室内喷射。
此时燃烧室内的燃油同全部喷射油量之比对燃烧过程有相当大的影响。
而燃油在燃烧室内的分布规律对燃烧的组织及其形态、对排放的形成都有重要影响。
本章就柴油机燃烧的基本内容及其目前发展做一分析论述。
§ 1 燃料的喷射与蒸发1.1 喷射油束的形态燃料在高压下经喷油器孔口射入燃烧室内,随着时间进展,燃料油束向前伸展和扩张。
为了解喷雾发展过程,人们通过等容模型燃烧室对单个油束的观察,得到有关喷射特性的认识。
1.高压、室温条件下喷射的油束日本学者藤本等人用高压等容模型燃烧室在室温条件下做试验。
燃烧室内压力为p0=0.098~9.91MPa,喷孔直径为0.27mm,喷油量取0.09g,喷油器开启压力p j=33.7MPa。
试验表明,从喷射开始后约0.5ms 至喷射结束时,油束形态有类似模式,如图6-1所示。
一个充分发展的油束,可将其分成各具特征的若干部分。
主流区:位于油束核心部分,单位体积内油滴量多,粒度大,流速大,动量大,为高密度的主流部分。
混流区:燃料油滴数量少,粒度也小,流速低,在油滴间卷吸入大量空气形成浓度减小的混合流域,它处于主流区的周围。
初始部分l s:油束刚离喷口具有较明显的圆锥形部分的长度。
混合部分l c:从初始部分末端至油束边界成湍流状态部分的长度。
穿透部分l p:为l s+l c,即基本保持圆锥形部分的长度。
稀释部分l d:油束的顶端,燃油稀疏部分。
通过观察和测量得知,喷射油束卷吸周围空气进入穿透部分。
而油束顶端在向前伸展中一方面排开周围空气,同时也卷吸进一些空气形成不断增长的逐渐稀薄的可燃混合气。