2013年中考数学压轴题专项练习
- 格式:doc
- 大小:114.89 KB
- 文档页数:6
2013年中考数学冲刺必备压轴题汇编安徽10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A .10B .54C . 10或54D .10或172解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的.解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯14.如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论: ①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3 ③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上其中正确的结论的序号是_____________解析:过点P 分别向AD 、BC 作垂线段,两个三角形的面积之和42S S +等于矩形面积的一半,同理,过点P 分别向AB 、CD 作垂线段,两个三角形的面积之和31S S +等于矩形面积的一半. 31S S +=42S S +,又因为21S S =,则32S S +=ABCD S S S 2141=+,所以④一定成立 安徽22.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,△BDG 与四边形ACDG 的周长相等,设BC =a 、AC =b 、AB =c .(1)求线段BG 的长;(2)求证:DG 平分∠EDF ;(3)连接CG ,如图2,若△BDG 与△DFG 相似,求证:BG ⊥CG . 解(1)∵D 、C 、F 分别是△ABC 三边中点 ∴DE ∥21AB ,DF ∥21AC , 又∵△BDG 与四边形ACDG 周长相等 即BD +DG +BG =AC +CD +DG +AG∴BG =AC +AG ∵BG =AB -AG ∴BG =2AC AB +=2cb +(2)证明:BG =2c b +,FG =BG -BF =2c b +-22bc = ∴FG =DF ,∴∠FDG =∠FGD 又∵DE ∥AB∴∠EDG =∠FGD ∠FDG =∠EDG ∴DG 平分∠EDF (3)在△DFG 中,∠FDG =∠FGD , △DFG 是等腰三角形,∵△BDG 与△DFG 相似,∴△BDG 是等腰三角形,∴∠B =∠BGD ,∴BD =DG , 则CD = BD =DG ,∴B 、CG 、三点共圆, ∴∠BGC =90°,∴BG ⊥CG23.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x -6)2+h .已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m 。
1、如图12,已知直线12y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线(0)ky k x =>上一点C 的纵坐标为8,求A O C △的面积;(3)过原点O 的另一条直线l 交双曲线(0)ky k x =>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.解:(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2 .∴ 点A 的坐标为( 4,2 ).∵ 点A 是直线 与双曲线 (k>0)的交点 , ∴ k = 4 ×2 = 8 .(2) 解法一:如图12-1,∵ 点C 在双曲线上,y = 8时,x = 1∴ 点C 的坐标为 ( 1, 8 ) .过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON .S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 .S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 .解法二:如图12-2,过点 C 、A 分别做x 轴的垂线,垂足为E 、F ,∵ 点C 在双曲线8y x =上,当y = 8时,x = 1 .∴ 点C 的坐标为 ( 1, 8 ).图12O x A y B x y 21x y 8=∵ 点C 、A 都在双曲线8y x =上 ,∴ S △COE = S △AOF = 4 。
∴ S △COE + S 梯形CEFA = S △COA + S △AOF .∴ S △COA = S 梯形CEFA .∵ S 梯形CEFA = 12×(2+8)×3 = 15 ,∴ S △COA = 15 .(3)∵ 反比例函数图象是关于原点O 的中心对称图形 ,∴ OP=OQ ,OA=OB .∴ 四边形APBQ 是平行四边形 .∴ S △POA = S 平行四边形APBQ = ×24 = 6 .设点P 的横坐标为m (m > 0且4m ≠),得P ( m , ) .过点P 、A 分别做x 轴的垂线,垂足为E 、F ,∵ 点P 、A 在双曲线上,∴S △POE = S △AOF = 4 .若0<m <4,如图12-3,∵ S △POE + S 梯形PEFA = S △POA + S △AOF ,∴ S 梯形PEFA = S △POA = 6 .∴ 18(2)(4)62m m +⋅-=.4141m8解得m = 2,m = - 8(舍去) .∴ P (2,4).若 m > 4,如图12-4,∵ S △AOF + S 梯形AFEP = S △AOP + S △POE ,∴ S 梯形PEFA = S △POA = 6 .∴18(2)(4)62m m +⋅-=,解得m = 8,m = - 2 (舍去) .∴ P (8,1).∴ 点P 的坐标是P (2,4)或P (8,1).2、如图,抛物线212y x mx n =++交x 轴于A 、B 两点,交y 轴于点C ,点P 是它的顶点,点A的横坐标是-3,点B 的横坐标是1.(1)求m 、n 的值;(2)求直线PC 的解析式;(3)请探究以点A 为圆心、直径为5的圆与直线 PC 的位置关系,并说明理由.(参考数:2 1.41≈,3 1.73≈,5 2.24≈) 解: (1)由已知条件可知: 抛物线212y x mx n =++经过A (-3,0)、B (1,0)两点. ∴ 903,210.2m n m n ⎧=-+⎪⎪⎨⎪=++⎪⎩ ……………………………………2分解得 31,2m n ==-. ………………………3分 (2) ∵21322yx x =+-, ∴ P (-1,-2),C 3(0,)2-. …………………4分设直线PC 的解析式是y kx b =+,则2,3.2k b b -=-+⎧⎪⎨=-⎪⎩ 解得13,22k b ==-. ∴ 直线PC 的解析式是1322yx =-. …………………………6分 说明:只要求对1322k b ==-,,不写最后一步,不扣分.(3) 如图,过点A 作AE ⊥PC ,垂足为E .设直线PC 与x 轴交于点D ,则点D 的坐标为(3,0). ………………………7分 在Rt△O CD 中,∵ O C =32,3O D =, ∴ 2233()3522C D =+=. …………8分∵ O A =3,3O D =,∴AD =6. (9)分 ∵ ∠C O D =∠AED =90o ,∠CD O 公用,∴ △C O D ∽△AED . ……………10分 ∴ OCC D AEAD =, 即335226AE =. ∴ 655AE =. …………………11分 ∵ 65 2.688 2.55> ,∴ 以点A 为圆心、直径为5的圆与直线PC 相离. …………12分。
1.如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B .(1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似?若存在,求出N 点的坐标;若不存在,说明理由.解:(1)由题意,可设抛物线的解析式为y =a (x -2)2+1.∵抛物线经过原点,∴a (0-2)2+1=0,∴a =-41. ∴抛物线的解析式为y =-41(x -2)2+1=-41x 2+x . ························· 3分 (2)△AOB 和所求△MOB 同底不等高,若S △MOB =3S △AOB ,则△MOB 的高是△AOB 高的3倍,即M 点的纵坐标是-3. ············································································· 5分∴-41x 2+x =-3,整理得x 2-4x -12=0,解得x 1=6,x 2=-2. ∴满足条件的点有两个:M 1(6,-3),M 2(-2,-3) ····························· 7分(3)不存在. ········································································································ 8分理由如下:由抛物线的对称性,知AO =AB ,∠AOB =∠ABO .若△OBN ∽△OAB ,则∠BON =∠BOA =∠BNO .设ON 交抛物线的对称轴于A ′ 点,则A ′ (2,-1).∴直线ON 的解析式为y =-21x .由21x =-41x 2+x ,得x 1=0,x 2=6. ∴N (6,-3).过点N 作NC ⊥x 轴于C .在Rt △BCN 中,BC =6-4=2,NC =3∴NB =2232+=13.∵OB =4,∴NB ≠OB ,∴∠BON ≠∠BNO ,∴△OBN 与△OAB 不相似. 同理,在对称轴左边的抛物线上也不存在符合条件的N 点.∴在x 轴下方的抛物线上不存在点N ,使△OBN 与△OAB 相似. ····· 10分2.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.(1)如图1,过点B 作BM ⊥x 轴于M .由旋转性质知OB =OA =2.∵∠AOB =120°,∴∠BOM =60°.∴OM =OB ·cos60°=2×21=1,BM =OB ·sin60°=2×23=3. ∴点B 的坐标为(1,3). ··········································· 1分(2)设经过A 、O 、B 三点的抛物线的解析式为y =ax 2+bx +c∵抛物线过原点,∴c =0. ∴⎪⎩⎪⎨⎧=+=-3024b a b a 解得⎪⎪⎩⎪⎪⎨⎧==33233b a ∴所求抛物线的解析式为y =33x 2+332x . ······································ 3分 (3)存在. ·········································································································· 4分如图2,连接AB ,交抛物线的对称轴于点C ,连接OC .∵OB 的长为定值,∴要使△BOC 的周长最小,必须BC +OC 的长最小. ∵点A 与点O 关于抛物线的对称轴对称,∴OC =AC .∴BC +OC =BC +AC =AB .由“两点之间,线段最短”的原理可知:此时BC +OC 最小,点C 的位置即为所求.设直线AB 的解析式为y =kx +m ,将A (-2,0),B (1,3)代入,得⎪⎩⎪⎨⎧=+=+-302m k m k 解得⎪⎪⎩⎪⎪⎨⎧==33233m k∴直线AB 的解析式为y =33x +332. 抛物线的对称轴为直线x =332332⨯-=-1,即x =-1. 将x =-1代入直线AB 的解析式,得y =33×(-1)+332=33. ∴点C 的坐标为(-1,33). ································································· 6分 (4)△PAB 有最大面积. ·················································································· 7分如图3,过点P 作y 轴的平行线交AB 于点D .∵S △PAB =S △PAD +S △PBD=21(y D -y P )(x B -x A ) =21[(33x +332)-(33x 2+332x )](1+2) =-23x 2-23x +3 =-23(x +21)2+839 ∴当x =-21时,△PAB 的面积有最大值,最大值为839.··············· 8分 此时y P =33×(-21)2+332×(-21)=-43. ∴此时P 点的坐标为(-21,-43). ···················································· 9分。
2013年中考数学压轴题真题分类汇编:三角形六、三角形 1.(北京)在△ABC 中,BA =BC ,∠BAC =α,M 是AC 的中点,P 是线段BM 上的动点,将线段P A 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60°且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图2中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.2.(北京模拟)已知,点P 是∠MON 的平分线OT 上的一动点,射线P A 交直线OM 于点A ,将射线P A 绕点P 逆时针旋转交射线ON 于点B ,且使∠APB +∠MON =180°. (1)求证:P A =PB ;(2)若点C 是直线AB 与直线OP 的交点,当S △POB=3S △PCB时,求PBPC的值; (3)若∠MON =60°,OB =2,直线P A 交射线ON 于点D ,且满足∠PBD =∠ABO ,求OP 的长.3.(北京模拟)已知△ABC 和△DEC 都是等腰直角三角形,C 为它们的公共直角顶点,连接AD 、BE ,F 为线段AD 的中点,连接CF .(1)如图1,当点D 在BC 边上时,BE 与CF 的数量关系是____________,位置关系是____________,请证明;(2)如图2,把△DEC 绕点C 顺时针旋转α角(0°<α<90°),其他条件不变,问(1)中的关系是否仍然成立?若成立,请证明;若不成立,请写出相应的正确的结论并加以证明;图1 A B C Q M (P ) 图2 ABC Q PM M T N O M T N O 备用图 MTNO备用图(3)如图3,把△DEC 绕点C 顺时针旋转45°,BE 、CD 交于点G .若∠DCF =30°,求BGCG及ACDC的值.4.(上海模拟)如图,∠ACB =90°,CD 是∠ACB 的平分线,点P 在CD 上,CP =2.将三角板的直角顶点放置在点P 处,绕着点P 旋转,三角板的一条直角边与射线CB 交于点E ,另一条直角边与直线CA 、直线CB 分别交于点F 、点G . (1)当点F 在射线CA 上时 ①求证:PF =PE .②设CF =x ,EG =y ,求y 与x 的函数解析式并写出函数的定义域. (2)连接EF ,当△CEF 与△EGP 相似时,求EG 的长.5.(上海模拟)已知△ABC 中,AB =AC ,BC =6,sin B =45.点P 从点B 出发沿射线BA 移动,同时点Q 从点C 出发沿线段AC 的延长线移动,点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线,垂足为E ,当点P 、Q 在移动的过程中,线段BE 、DE 、CD 中是否存在长度保持不变的线段?请说明理由; (3)如图③,当PQ 经过△ABC 的重心G 时,求BP 的长.6.(上海模拟)如图,三角形纸片ABC 中,∠C =90°,AC =4,BC =3.将纸片折叠,使点B 落在AC 边上的点D 处,折痕与BC 、AB 分别交于点E 、F .A CB F P D G E AC BP D备用图A D CB P Q 图② E A DC B P Q 图① AD CB PQ图③ G AB C D EF图1 A B C DEF图2 A B C D EF图3 G(1)设BE =x ,DC =y ,求y 关于x 的函数关系式,并确定自变量x 的取值范围; (2)当△ADF 是直角三角形时,求BE 的长; (3)当△ADF 是等腰三角形时,求BE 的长(4)过C 、D 、E 三点的圆能否与AB 边相切?若能,求BE 的长;若不能,说明理由.7.(上海模拟)如图,在Rt △ABC 中,∠BAC =90°,AB =6,AC =8,AD ⊥BC 于D ,点E 、F 分别是AB 边和AC 边上的动点,且∠EDF =90°,连接EF . (1)求DEDF的值; (2)设AE 的长为x ,△DEF 的面积为S ,求S 关于x 的函数关系式;(3)设直线DF 与直线AB 相交于点G ,△EFG 能否成为等腰三角形?若能,求AE 的长;若不能,请说明理由.8.(上海模拟)如图,在Rt △ABC 中,∠C =90°,AC =4,BC =5,D 是BC 边上一点,CD =3,P 是AC 边上一动点(不与A 、C 重合),过点P 作PE ∥BC 交AD 于点E . (1)设AP =x ,DE =y ,求y 关于x 的函数关系式;(2)以PE 为半径的⊙E 与以DB 为半径的⊙D 能否相切?若能,求tan ∠DPE 的值;若不能,请说明理由;(3)将△ABD 沿直线AD 翻折,得到△AB ′D ,连接B ′C ,当∠ACE =∠BCB ′时,求AP 的长.9.(上海模拟)已知Rt △ABC 中,∠ACB =90°,点P 是边AB 上的一个动点,连接CP ,过AB C DE F A B C C B A D EFC B AD 备用图 CB AD 备用图 AD C B 备用图 A D C B P E点B 作BD ⊥CP ,垂足为点D .(1)如图1,当CP 经过△ABC 的重心时,求证:△BCD ∽△ABC ;(2)如图2,若BC =2厘米,cot A =2,点P 从点A 向点B 运动(不与点A 、B 重合),点P 的速度是5厘米/秒,设点P 运动的时间为t 秒,△BCD 的面积为S 平方厘米,求S 关于t 的函数解析式,并写出自变量t 的取值范围;(3)在(2)的条件下,若△PBC 是以CP 为腰的等腰三角形,求△BCD 的面积.10.(上海模拟)如图,在Rt △ABC 中,∠ACB =90°,CE 是斜边AB 上的中线,AB =10,tan A =43.点P 是CE 延长线上的一动点,过点P 作PQ ⊥CB ,交CB 延长线于点Q .设EP =x ,BQ =y .(1)求y 关于x 的函数关系式及定义域;(2)连接PB ,当PB 平分∠CPQ 时,求∠PE 的长;(3)过点B 作BF ⊥AB 交PQ 于F ,当△BEF 和△QBF 相似时,求x 的值.11.(上海模拟)如图1,在Rt △AOC 中,AO ⊥OC ,点B 在OC 边上,OB =6,BC =12,∠ABO +∠C =90°,动点M 和N 分别在线段AB 和AC 边上. (1)求证:△AOB ∽△COA ,并求cos C 的值;(2)当AM =4时,△AMN 与△ABC 相似,求△AMN 与△ABC 的面积之比; (3)如图2,当MN ∥BC 时,以MN 所在直线为对称轴将△AMN 作轴对称变换得△EMN .设MN =x ,△EMN 与四边形BCNM 重叠部分的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围.C A P BD 图1 C A PB D图2 C AB备用图 AB PC Q E A B C E 备用图 AB C E 备用图 A O NC B M 图1 AO N EC B M 图212.(上海模拟)把两块边长为4的等边三角板ABC 和DE 如图1放置,使三角板DEF 的顶点D 与三角板ABC 的AC 边的中点重合,DF 经过点B ,射线DE 与射线AB 相交于点M .把三角板ABC 固定不动,将三角板DEF 绕点D 按逆时针方向旋转,设旋转角为α,其中0°<α<90°,射线DF 与线段BC 相交于点Q (如图2). (1)当0°<α<60°时,求AM ·CN 的值; (2)当0°<α<60°时,设AM =x ,两块三角板重叠部分的面积为y ,求y 与x 的函数关系式并确定自变量x 的取值范围;(3)当BM =2时,求两块三角板重叠部分的面积.13.(上海模拟)如图,在△ABC 中,∠ACB =90°,∠A =60°,AC =2,CD ⊥AB ,垂足为点D ,点E 、F 分别在边AC 、BC 上,且∠EDF =60°.设AE =x ,BF =y . (1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)△BDF 能否成为等腰三角形?如果能,请求出x 的值,如果不能,请说明理由.14.(上海模拟)如图,P 是线段AB 上任意一点(不与点A 、B 重合),分别以AP 、BP 为边,在AB 的同侧作等边△APD 和等边△BPC ,连接BD 与PC 交于点E ,连接CD . (1)当BC ⊥CD 时,试求∠DBC 的正切值;(2)若线段CD 是线段DE 和DB 的比例中项,试求此时APPB的值; (3)记四边形ABCD 的面积为S ,当P 在线段AB 上运动时,S 与BD 2是否成正比例?若成正比例,试求出比例系数;若不成正比例,请说明理由.A B C DE F M图1 AB C D E FM 图2 N A B C备用图AFBC DE D AC B PED AC BP E备用图15.(上海模拟)如图,在△ABC中,AB=AC=5,BC=6,D是AC边的中点,E是BC边上一动点(不与端点重合),EF∥BD交AC于F,交AB延长线于G,H是BC延长线上的点,且CH=BE,连接FH.设BE=x,CF=y.(1)求y关于x的函数关系式;(2)连接AE,当以GE为半径的⊙G和以FH为半径的⊙F相切时,求tan∠BAE的值;(3)当△BEG与△FCH相似时,求BE的长.16.(上海模拟)如图,△ABC中,∠ABC=90°,AB=BC=4,点O为AB边的中点,点M 是BC边上一动点(不与点B、C重合),AD⊥AB,垂足为点A.连接MO,将△BOM沿直线MO翻折,点B落在点B1处,直线MB1与AC、AD分别交于点F、N.(1)当∠CMF=120°时,求BM的长;(2)设BM=x,y=△CMF的周长△ANF的周长,求y关于x的函数关系式。
26. (2010彬州市)如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标; (2)当b =0时(如图(2)),ABE 与ACE 的面积大小关系如何?当4b >-时,上述关系还成立吗,为什么?(3)是否存在这样的b ,使得BOC 是以BC 为斜边的直角三角形,若存在,求出b ;若不存在,说明理由.26. (1)将x =0,代入抛物线解析式,得点A 的坐标为(0,-4)…………………..2分(2)当b =0时,直线为y x =,由24y x y x x =⎧⎨=+-⎩解得1122x y =⎧⎨=⎩,2222x y =-⎧⎨=-⎩ 所以B 、C 的坐标分别为(-2,-2),(2,2)14242ABE S =⨯⨯= ,14242ACE S =⨯⨯=所以ABE ACE S S = (利用同底等高说明面积相等亦可) …………………..4分 当4b >-时,仍有ABE ACE S S = 成立. 理由如下由24y x b y x x =+⎧⎨=+-⎩,解得1144x b y b b ⎧=+⎪⎨=++⎪⎩,2244x b y b b⎧=-+⎪⎨=-++⎪⎩ 所以B 、C 的坐标分别为(-4b +,-4b ++b ),(4b +,4b ++b ), 作BF y ⊥轴,CG y ⊥轴,垂足分别为F 、G ,则4BF CG b ==+,y xCBAOE y xCBAOE 第26题图(1) 图(2)GFyBCQO R而ABE 和ACE 是同底的两个三角形,所以ABE ACE S S = . …………………..6分 (3)存在这样的b .因为90BF CG,BEF CEG,BFE CGE =∠=∠∠=∠=︒ 所以BEF CEG ≅所以BE CE =,即E 为BC 的中点所以当OE =CE 时,OBC 为直角三角形 …………………..8分 因为44GE b b b b GC =++-=+= 所以 24CE b =⋅+,而OE b = 所以24b b ⋅+=,解得124,2b b ==-,所以当b =4或-2时,ΔOBC 为直角三角形. ………………….10分 25.(常德)如图9,已知抛物线212y x bx c x =++与轴交于点A (-4,0)和B (1,0)两点,与y 轴交于C 点. (1)求此抛物线的解析式;(2)设E 是线段AB 上的动点,作EF ∥AC 交BC 于F ,连接CE ,当CEF 的面积是BEF 面积的2倍时,求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.25.解:(1)由二次函数212y x bx c =++与x 轴交于(4,0)A -、(1,0)B 两点可得: 221(4)4021102b c b c ⎧--+=⎪⎪⎨⎪⋅++=⎪⎩,. 解得: 322b c ⎧=⎪⎨⎪=-⎩,.ABOC 图9yx故所求二次函数的解析式为213222y x x =+-. ………………3分 (2)∵S △CEF =2 S △BEF , ∴1,2BF CF =1.3BF BC =………………4分∵EF //AC , ∴B ,EF BAC BFE BCA ∠=∠∠=∠ ,∴△BEF ~△BAC ,………………5分 ∴1,3BE BF BA BC ==得5,3BE = ………………6分 故E 点的坐标为(23-,0).………………7分(3)解法一:由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2).若设直线AC的解析式为y kx b =+,则有20,04b k b -=+⎧⎨=-+⎩. 解得:1,22k b ⎧=-⎪⎨⎪=-⎩.故直线AC 的解析式为122y x =--.………………8分若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭,又Q 点是过点P 所作y 轴的平行线与直线AC 的交点,则Q 点的坐标为(1,2)2a a --.则有: 2131[(2)](2)222PQ a a a =-+----=2122a a --=()21222a -++即当2a =-时,线段PQ 取大值,此时P 点的坐标为(-2,-3)………10分 解法二:延长PQ 交x 轴于D 点,则PD AB ⊥.要使线段PQ 最长,则只须△APC的面积取大值时即可.………………8分设P 点坐标为(),00y x ,则有:ACO DPCO S APC ADP S S S =+- 梯形 =111()222AD PD PD OC OD OA OC ⋅++⋅-⋅ =()()000001112242222x y y y x --+-+⋅--⨯⨯=0024y x ---=20001322422x x x ⎛⎫-+--- ⎪⎝⎭=2004xx -- =-()22024x ++即02x =-时,△APC 的面积取大值,此时线段PQ 最长,则P 点坐标为(-2,-3)25.(长沙)已知:二次函数22y ax bx =+-的图象经过点(1,0),一次函数图象经过原点和点(1,-b ),其中0a b >>且a 、b 为实数.(1)求一次函数的表达式(用含b 的式子表示); (2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x 1、x 2,求| x 1-x 2 |的范围.25.解:(1)∵一次函数过原点∴设一次函数的解析式为y =kx∵一次函数过(1,-b ) ∴y =-bx ……………………………3分 (2)∵y =ax 2+bx -2过(1,0)即a +b =2 …………………………4分 由2(2)2y bxy b x bx =-⎧⎨=-+-⎩得 ……………………………………5分22(2)20ax a x +--=① ∵△=224(2)84(1)120a a a -+=-+>∴方程①有两个不相等的实数根∴方程组有两组不同的解∴两函数有两个不同的交点. ………………………………………6分 (3)∵两交点的横坐标x 1、x 2分别是方程①的解 ∴122(2)24a a x x a a--+== 122x x a -= ∴2121212()4x x x x x x -=+-=22248164(1)3a a a a-+=-+ 或由求根公式得出 ………………………………………………………8分∵a >b >0,a +b =2 ∴2>a >1令函数24(1)3y a=-+ ∵在1<a <2时y 随a 增大而减小.∴244(1)312a<-+< ……………………………………………9分∴242(1)323a<-+< ∴12223x x <-< ………………10分26.(长春)如图①,在平面直角坐标系中,等腰直角△AOB 的斜边OB 在x 轴上,顶点A的坐标为(3,3),AD 为斜边上的高.抛物线y =ax 2+2x 与直线y = 12x 交于点O 、C ,点C 的横坐标为6.点P 在x 轴的正半轴上,过点P 作PE ∥y 轴,交射线OA 于点E .设点P 的横坐标为m ,以A 、B 、D 、E 为顶点的四边形的面积为S . (1)求OA 所在直线的解析式. (2)求a 的值.(3)当m ≠3时,求S 与m 的函数关系式.(4)如图②,设直线PE 交射线OC 于点R ,交抛物线于点Q .以RQ 为一边,在RQ 的右侧作矩形RQMN ,其中RN = 32.直接写出矩形RQMN 与△AOB 重叠部分为轴对称图形时m 的取值范围.25.(滨州市)(本题满分l0分)如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线c bx ax y ++=2恰好经过x 轴上A 、B 两点.(1)求A 、B 、C 三点的坐标;(2)求过A 、B 、C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D 点,求平移后抛物线的解析式,并指出平移了多少个单位?25.(本题满分l0分)解:①由抛物线的对称性可知AM=BM 在Rt △AOD 和Rt △BMC 中, ∵OD=MC ,AD=BC , ∴△AOD ≌△BMC .∴OA=MB=MA .………………………………………l 分 设菱形的边长为2m , 在Rt △AOD 中,OOA ABB CCP DEQP DN MR Eyyxx 图①图②222)2()3(m m =+解得m=1.∴DC=2,OA=1,OB=3.∴A 、B 、C 三点的坐标分别为(1,0)、(3,0)、(2,3)………………… 4分 ②设抛物线的解析式为y=a (x —2)2+3 代入A 点坐标可得a =—3抛物线的解析式为y=—3(x —2)2+3……………………………………7分 ③设抛物线的解析式为y =—3(x 一2)2+k 代入D (0,3)可得k=53所以平移后的抛物线的解析式为y =—3(x 一2)2+53…………………………9分 平移了53一3=43个单位.…………………………………………………l0 26. (本溪市)如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,53OA OC ==,.(1)在AB 边上取一点D ,将纸片沿OD 翻折,使点A 落在BC 边上的点E 处,求点D ,E 的坐标;(2)若过点D E ,的抛物线与x 轴相交于点(50)F -,,求抛物线的解析式和对称轴方程; (3)若(2)中的抛物线与y 轴交于点H ,在抛物线上是否存在点P ,使PFH △的内心在坐标轴...上?若存在,求出点P 的坐标,若不存在,请说明理由. (4)若(2)中的抛物线与y 轴相交于点H ,点Q 在线段OD 上移动,作直线HQ ,当点Q 移动到什么位置时,O D ,两点到直线HQ 的距离之和最大?请直接写出此时点Q 的坐标及直线HQ 的解析式.BCEy3(第26题)28.(甘肃)(12分) 如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标;(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.28.本小题满分12分解:(1)设该抛物线的解析式为c bx ax y ++=2,由抛物线与y 轴交于点C (0,-3),可知3-=c .即抛物线的解析式为32-+=bx ax y . ………………………1分 把A (-1,0)、B (3,0)代入, 得30,9330.a b a b --=⎧⎨+-=⎩解得2,1-==b a .∴ 抛物线的解析式为y = x 2-2x -3. ……………………………………………3分 ∴ 顶点D 的坐标为()4,1-. ……………………………………………………4分说明:只要学生求对2,1-==b a ,不写“抛物线的解析式为y = x 2-2x -3”不扣分. (2)以B 、C 、D 为顶点的三角形是直角三角形. ……………………………5分 理由如下:过点D 分别作x 轴、y 轴的垂线,垂足分别为E 、F.在Rt △BOC 中,OB=3,OC=3,∴ 182=BC . …………………………6分 在Rt △CDF 中,DF=1,CF=OF-OC=4-3=1,∴ 22=CD . …………………………7分 在Rt △BDE 中,DE=4,BE=OB-OE=3-1=2,∴ 202=BD . …………………………8分 ∴ 222BD CD BC =+, 故△BCD 为直角三角形. …………………………9分 (3)连接AC ,可知Rt △COA ∽ Rt △BCD ,得符合条件的点为O (0,0). ………10分过A 作AP 1⊥AC 交y 轴正半轴于P 1,可知Rt △CAP 1 ∽ Rt △COA ∽ Rt △BCD ,求得符合条件的点为)31,0(1P . …………………………………………11分 过C 作CP 2⊥AC 交x 轴正半轴于P 2,可知Rt △P 2CA ∽ Rt △COA ∽ Rt △BCD , 求得符合条件的点为P 2(9,0). …………………………………………12分∴符合条件的点有三个:O (0,0),)31,0(1P ,P 2(9,0).。
2013年中考压轴题精选”“XX专题训练一.解答题(共7小题)1.(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(﹣4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.2.已知抛物线y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)抛物线与x轴的另一个交点坐标;_________;(2)方程ax2+bx+c=0的两个根是_________;(3)不等式ax2+bx+c<0的解是_________;(4)y随x的增大而减小的自变量x的取值范围是_________;(5)求出抛物线的解析式及顶点坐标.3.(2012•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.4.如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC绕原点逆时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+bx+c的图象经过点C′、M、N.解答下列问题:(1)求出该抛物线所表示的函数解析式;(2)将△MON沿直线BB′翻折,点O落在点P处,请你判断点P是否在该抛物线上,并请说明理由;(3)将该抛物线进行一次平移(沿上下或左右方向),使它恰好经过原点O,求出所有符合要求新抛物线的解析式.5.(2009•柳州)如图,已知抛物线y=ax2﹣2ax﹣b(a>0)与x轴的一个交点为B(﹣1,0),与y轴的负半轴交于点C,顶点为D.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;(2)以AD为直径的圆经过点C.①求抛物线的解析式;②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标.6.如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.(1)求m的值和抛物线y=ax2+bx的解析式;(2)如在线段OB上有一点C,满足OC=2CB,在x轴上一点D(10,0),连接DC,且直线DC与y轴交于点E.①求直线DC的解析式;②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)7.(2008•宜宾)已知:如图,抛物线y=﹣x2+bx+c与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣1,0)、B(0,﹣5)、C(5,0).(1)求此抛物线的表达式;(2)若平行于x轴的直线与此抛物线交于E、F两点,以线段EF为直径的圆与x轴相切,求该圆的半径;(3)在点B、点C之间的抛物线上有点D,使△BDC的面积最大,求此时点D的坐标及△BDC的面积.,解得因为抛物线的对称轴为直线解得:解得所以圆的半径为答:该圆的半径是.)代入得:解得:时,,,﹣,,﹣的面积是.。
2013中考压轴试题代数几何综合1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.()求抛物线的解析式;()若直线平分四边形OBDC 的面积,求k 的值.()把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . ()由(1)知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -=假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1, 所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2,把2交(((D (点A(-1,0)、点B 是二次函数y=ax 2-2 的图象与x 轴的交点,a-2=0,a=2. 二次函数的解析式为y=2x 2-2;②点B 与点A(-1,0)关于直线x=0对称,点B 的坐标为(1,0); (2)∠BOC=∠PDB=90º,点P 在直线x=m 上,设点P 的坐标为(m,p ), OB=1, OC=2, DB= m-1 , DP=|p| ,①当△BOC ∽△PDB 时,OB OC = DP DB ,12= |p|m-1 ,p= m-12 或p = 1- m2,点P 的坐标为(m ,m-12 )或(m ,1- m2 );②当△BOC ∽△BDP 时,OB OC = DB DP ,12= m-1|p|,p=2m-2或p=2-2m, 点P 的坐标为(m ,2m-2)或(m ,2-2m );综上所述点P 的坐标为(m ,m-12 )、(m ,1- m2 )、(m ,2m-2)或(m ,2-2m );(3)不存在满足条件的点Q 。
2013年中考数学压轴题精选1. 如图,在平面直角坐标系中,直线112y x =+与抛物线y =ax 2+bx -3交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .(1)求a 、b 及sin ∠ACP 的值;(2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为 9∶10?若存在,直接写出m 的值;若不存在,请说明理由.2. 如图1,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.3.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.图1 图24.如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E 作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.图1 备用图C 5. 如图,在等腰梯形ABCD 中,AB ∥DC ,cm BC AD 5==,AB =12 cm,CD =6cm , 点P 从A 开始沿AB 边向B 以每秒3cm 的速度移动,点Q 从C 开始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。
2012中考数学压轴题及答案1.(2011年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22)2. (11浙江衢州)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.3. (11浙江温州)如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使P Q R △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.4.(11山东省日照市)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?5、(2007浙江金华)如图1,已知双曲线y=xk (k>0)与直线y=k ′x 交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为 ;若点A 的横坐标为m ,则点B 的坐标可表示为 ;(2)如图2,过原点O 作另一条直线l ,交双曲线y=xk (k>0)于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A.P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.8. (2011浙江义乌)如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积;②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.9.(2011山东烟台)如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.10.(2011山东烟台)如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点.(1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.13.(2011山东威海)如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能,求出正方形MEFN 的面积;若不能,请说明理由.16.(2011年浙江省绍兴市)将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒). (1)用含t 的代数式表示OP OQ ,;(2)当1t 时,如图1,将OPQ △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;(4) 连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC能否垂直?若能,求出相应的t 值;若不能,说明理由.17.(2011年辽宁省十二市)如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.18.(2011年沈阳市)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.19.(2011年四川省巴中市) 已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式.(2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?20.(2011年成都市)如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且AB =35,sin ∠OAB=55. (1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积Q NR S ∆,求QMN S ∆∶Q NR S ∆的值.22.(2011年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22).24.(2011年大庆市)如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在AD 上(以下问题的结果均可用a b ,的代数式表示).(1)求DBF S △;(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △;(3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.25. (2011年上海市)已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图13).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.(1)设BE x ,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域;(2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长;(3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.27. (2011年山东省青岛市)已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题:(1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.28.(2011年江苏省南通市)已知双曲线kyx=与直线14y x=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线kyx=上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线kyx=于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.29.(2011年江苏省无锡市)一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)压轴题答案1.解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b =2∴抛物线的线的解析式为223y x x =-++(2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0)设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形 =111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9 (3)相似如图,BD=2222112BG DG +=+= BE=22223332BO OE +=+= DE=22222425DF EF +=+=所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且22AO BO BD BE ==, 所以AOB DBE ∆∆.2. (1) ∵A ,B 两点的坐标分别是A(10,0)和B(8,32),∴381032OAB tan =-=∠, ∴︒=∠60OAB当点A ´在线段AB 上时,∵︒=∠60OAB ,TA=TA ´,∴△A ´TA 是等边三角形,且A T TP '⊥,∴)t 10(2360sin )t 10(T P -=︒-=,)t 10(21AT 21AP P A -===',○2当6t 2<≤时,由图○1,重叠部分的面积EB A TP A S S S '∆'∆-=∵△A ´EB 的高是︒'60sin B A , ∴23)4t 10(21)t 10(83S 22⨯----= 34)2t (83)28t 4t (8322+--=++-=当t=2时,S 的值最大是34;○3当2t 0<<,即当点A ´和点P 都在线段AB 的延长线是(如图○2,其中E 是TA ´与CB 的交点,F 是TP 与CB 的交点),∵ETF FTP EFT ∠=∠=∠,四边形ETAB 是等腰形,∴EF=ET=AB=4, ∴3432421OC EF 21S =⨯⨯=⋅= 综上所述,S 的最大值是34,此时t 的值是2t 0≤<.3. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=. (2)QR AB ∥,90QRC A ∴∠=∠=. C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x -∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===. tan QR BA C CR CA ==, 366528x -+∴=,152x ∴=. 综上所述,当x 为185或6或152时,PQR △为等腰三角形.4.解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴ △AMN ∽ △ABC .∴ AM AN AB AC =,即43x AN =. ∴ AN =43x . ……………2分 ∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN .在Rt △ABC 中,BC =22AB AC +=5.由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC =,即45x MN =. ∴ 54MN x =, ∴ 58OD x =. …………………5分 过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角,∴ △BMQ ∽△BCA .∴ BM QM BC AC=. ∴ 55258324x BM x ⨯==,25424AB BM MA x x =+=+=.∴ x =4996. ∴ 当x =4996时,⊙O 与直线B C 相切.…………………………………7分故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==. ∴ 当x =2时,2332.82y =⨯=最大 ……………………………………8分② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形,∴ PN ∥AM ,PN =AM =x .又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形.∴ FN =BM =4-x .∴ ()424PF x x x =--=-.又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………… 9分 MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分 当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭. ∴ 当83x =时,满足2<x <4,2y =最大. ……………………11分 综上所述,当83x =时,y 值最大,最大值是2. …………………………12分 5. 解:(1)(-4,-2);(-m,-k m) (2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ一定是平行四边形②可能是矩形,mn=k 即可不可能是正方形,因为Op 不能与OA 垂直.解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-,的以直线AB 的解析式为 343y x =-+(2)由旋转知,AP=AD, ∠PAD=60o, ∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=6. 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-, 以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o ,∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=(1)①2AB = ……………………………………………………………………………2分842OA ==,4OC =,S 梯形OABC =12 ……………………………………………2分 ②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t t t t =--⨯-=-+-…………………………………………4分(2) 存在 ……………………………………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P --- …(每个点对各得1分)……5分 对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二: ① 以点D 为直角顶点,作1PP x ⊥轴同理在③二图中分别可得P点的生标为P(-4,4)(与①情形二重合舍去)、P(4,4),E点在A点下方不可能.综上可得P点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-83,4)、P(8,4)、P(4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类): 第一类如上解法⑴中所示图22P DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) 的中点坐标为b (-,b)2,直线DE 的中垂线方程:1()22by b x -=-+,令4y =得3(8,4)2b P -.由已知可得2PE DE =即222232(8)(42)42b b b b ⨯-+-=+化简得2332640b b -+=解得 121883b b P P ==∴=3b,将之代入(-8,4)(4,4)、22(4,4)P -;第二类如上解法②中所示图22E DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PE 的方程:122y x b =-+,令4y =得(48,4)P b -.由已知可得PE DE =即2222(48)(42)4b b b b -+-=+化简得22(28)b b =-解之得 ,123443b b P P ==∴=,将之代入(4b-8,4)(8,4)、48(,4)3P - 第三类如上解法③中所示图22D DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PD 的方程:1()2y x b =-+,令4y =得(8,4)P b --.由已知可得PD DE =即2222844b b +=+解得12544b b P P ==-∴=,将之代入(-b-8,4)(-12,4)、 6(4,4)P -(6(4,4)P -与2P 重合舍去).综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).事实上,我们可以得到更一般的结论:如果得出AB a OC b ==、、OA h =、设b ak h-=,则P 点的情形如下∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分 ∴ EF =21147272105x -=-⨯=<4. ∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫ ⎝⎛=MEFNS 正方形. ∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分 ∴ EF =21147272105x -=-⨯=<4. ∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫ ⎝⎛=MEFN S 正方形.(2)当1t =时,过D 点作1DD OA ⊥,交OA 于1D ,如图1, 则53DQ QO ==,43QC =,1CD ∴=,(13)D ∴,.(3)①PQ 能与AC 平行.若PQ AC ∥,如图2,则OP OAOQ OC=, 即66233t t -=+,149t ∴=,而703t ≤≤, 149t ∴=. ②PE 不能与AC 垂直.若PE AC ⊥,延长QE 交OA 于F ,如图3,则23335t QF OQ QFAC OC +==.253QF t ⎛⎫∴=+ ⎪⎝⎭.EF QF QE QF OQ ∴=-=-22533t t ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭2(51)(51)3t =-+-.又Rt Rt EPF OCA △∽△,PE OCEF OA∴=, 6326(51)3t t -∴=⎛⎫-+ ⎪⎝⎭,3.45t ∴≈,而703t ≤≤,t ∴不存在.17. 解:(1)直线33y x =--与x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(03)C -, ··························································································· 1分 点A C ,都在抛物线上,23033a c c ⎧=++⎪∴⎨⎪-=⎩ 333a c ⎧=⎪∴⎨⎪=-⎩∴抛物线的解析式为2323333y x x =-- ·························································· 3分 ∴顶点4313F ⎛⎫- ⎪ ⎪⎝⎭, ································································································ 4分 (2)存在 ················································································································ 5分 1(03)P -, ·············································································································· 7分2(23)P -, ·············································································································· 9分 (3)存在 ·············································································································· 10分 理由: 解法一:延长BC 到点B ',使BC B C '=,连接B F '交直线AC 于点M ,则点M 就是所求的点.····················································································· 11分在Rt BB H '△中,1232B H BB ''==, 36BH B H '==,3OH ∴=,(323)B '∴--, ·················································· 12分 设直线B F '的解析式为y kx b =+233433k b k b ⎧-=-+⎪∴⎨-=+⎪⎩ 解得36332k b ⎧=⎪⎪⎨⎪=-⎪⎩33362y x ∴=- ································································································· 13分 3333362y x y x ⎧=--⎪∴⎨=-⎪⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩,310377M ⎛⎫∴- ⎪ ⎪⎝⎭,∴在直线AC 上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,. ····· 14分03533k b b =+⎧⎪⎨=-⎪⎩ 解得539533k b ⎧=⎪⎪⎨⎪=-⎪⎩ 553393y ∴=- ································································································· 13分 55339333y x y x ⎧=-⎪∴⎨⎪=--⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩310377M ⎛⎫∴- ⎪ ⎪⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,. 1 18. 解:(1)点E 在y 轴上 ···················································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,3BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ······································································· 3分(2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,32OM = 点D 在第一象限, ∴点D 的坐标为3122⎛⎫ ⎪ ⎪⎝⎭, ························································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A 的坐标为(31)-, ·························································································· 6分 抛物线2y ax bx c =++经过点E ,2c ∴= 由题意,将(31)A -,,3122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得33213312422a b a b ⎧-+=⎪⎨++=⎪⎩ 解得89539a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴所求抛物线表达式为:2853299y x x =--+ ······················································ 9分 (3)存在符合条件的点P ,点Q . ······································································ 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为23.由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ································································································ 11分依题意设点P 的坐标为(2)m , 点P 在抛物线2853299y x x =--+上 28532299m m ∴--+= 解得,10m =,2538m =-1(02)P ∴,,25328P ⎛⎫- ⎪ ⎪⎝⎭,以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,3PQ OB ==,∴当点1P 的坐标为(02),时, 点Q 的坐标分别为1(32)Q -,,2(32)Q ,;当点2P 的坐标为5328⎛⎫- ⎪ ⎪⎝⎭,时,点Q 的坐标分别为313328Q ⎛⎫-⎪ ⎪⎝⎭,,43328Q ⎛⎫ ⎪ ⎪⎝⎭,. ·············································· 14分 (以上答案仅供参考,如有其它做法,可参照给分)19.解:(1)在2334y x =-+中,令0y = 23304x ∴-+=12x ∴=,22x =-(20)A ∴-,,(20)B , ··················································· 1分 又点B 在34y x b =-+上 302b ∴=-+ 32b = BC ∴的解析式为3342y x =-+ ················································································ 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩ 2220x y =⎧⎨=⎩ ······················································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B , 4AB ∴=,94CD = ································································································ 5分 1994242ABC S ∴=⨯⨯=△ ··························································································· 6分 (3)过点N 作NP MB ⊥于点PEO MB ⊥NP EO ∴∥BNP BEO ∴△∽△ ································································································· 7分 BN NP BE EO∴= ··········································································································· 8分 由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭,∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP ∴=,65NP t ∴= ························································································· 9分 16(4)25S t t ∴=- 2312(04)55S t t t =-+<< ······················································································ 10分 2312(2)55S t =--+ ······························································································· 11分 此抛物线开口向下,∴当2t =时,125S =最大 ∴当点M 运动2秒时,MNB △的面积达到最大,最大为125. 20. 解:(1)如图,过点B 作BD ⊥OA 于点D.在Rt △ABD 中,∵∣AB ∣=35,sin ∠OAB=55, ∴∣BD ∣=∣AB ∣·sin ∠OAB =35×55=3. 又由勾股定理,得22A D AB B D =- 22(35)36=-=∴∣OD ∣=∣OA ∣-∣AD ∣=10-6=4.∵点B 在第一象限,∴点B 的坐标为(4,3). ……3分。
2013年中考数学压轴题及解析分类汇编2013年中考数学压轴题及解析分类汇编2013中考数学压轴:相似三角形问题2013中考数学压轴题函数相似三角形问题(一)2013中考数学压轴题函数相似三角形问题(二)2013中考数学压轴题函数相似三角形问题(三)2013中考数学压轴:等腰三角形问题2013中考数学压轴题函数等腰三角形问题(一)2013中考数学压轴题函数等腰三角形问题(二)2013中考数学压轴题函数等腰三角形问题(三)2013中考数学压轴:直角三角形问题2013中考数学压轴题函数直角三角形问题(一)2013中考数学压轴题函数直角三角形问题(二)2013中考数学压轴题函数直角三角形问题(三)2013中考数学压轴:平行四边形问题2013中考数学压轴题函数平行四边形问题(一)2013中考数学压轴题函数平行四边形问题(二)2013中考数学压轴题函数平行四边形问题(三)2013中考数学压轴:梯形问题2013中考数学压轴题函数梯形问题(一)2013中考数学压轴题函数梯形问题(二)2013中考数学压轴题函数梯形问题(三)2013中考数学压轴:面积问题2013中考数学压轴题函数面积问题(一)2013中考数学压轴题函数面积问题(二)2013中考数学压轴题函数面积问题(三)2013中考数学压轴题:函数相似三角形问题(一) 例1直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11闸北25”,拖动点Q在直线BG上运动,可以体验到,△ABQ的两条直角边的比为1∶3共有四种情况,点B上、下各有两种.思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ=90°是解题的前提.4.△ABQ与△COD相似,按照直角边的比分两种情况,每种情况又按照点Q与点B的位置关系分上下两种情形,点Q共有4个.满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°.因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么22(3)10BQ x x x =+=±. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况:①当3BQ BA =时,10310x ±=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --. ②当13BQ BA =时,101310x ±=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是BQ ==.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,sin 1∠=cos 1∠=①当3BQ BA=时,BQ =. 在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=.当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --.②当13BQ BA =时,BQ =31(,2)3Q ,41(,0)3Q -.例2Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“11杨浦24”,拖动点A 在x 轴上运动,可以体验到,直线AB 保持斜率不变,n 始终等于m 的2倍,双击按钮“面积BDE =2”,可以看到,点E 正好在BD 的垂直平分线上,FD //x 轴.拖动点P 在射线FD 上运动,可以体验到,△AEO 与△EFP 相似存在两种情况.思路点拨1.探求m 与n 的数量关系,用m 表示点B 、D 、E 的坐标,是解题的突破口.2.第(2)题留给第(3)题的隐含条件是FD //x 轴.3.如果△AEO 与△EFP 相似,因为夹角相等,根据对应边成比例,分两种情况. 满分解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数k y x=的图像上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m . (2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1). 已知△BDE 的面积为2,所以11(1)2222BD EH m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3). 因为点D (4,1)在反比例函数k y x =的图像上,所以k =4.因此反比例函数的解析式为4y x=.设直线AB的解析式为y=kx+b,代入B(4,3)、E(2,2),得34,22.k bk b=+⎧⎨=+⎩解得12k=,1 b=.因此直线AB的函数解析式为112y x=+.图2 图3 图4(3)如图3,因为直线112y x=+与y轴交于点F(0,1),点D的坐标为(4,1),所以FD// x轴,∠EFP=∠EAO.因此△AEO与△EFP相似存在两种情况:①如图3,当EA EFAO FP=时,255=.解得FP=1.此时点P的坐标为(1,1).②如图4,当EA FPAO EF=时,255=.解得FP=5.此时点P的坐标为(5,1).考点伸展本题的题设部分有条件“Rt△ABC在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m与n的数量关系不变.第(2)题反比例函数的解析式为12yx=-,直线AB为172y x=-.第(3)题FD不再与x轴平行,△AEO与△EFP也不可能相似.图52013中考数学压轴题函数相似三角形问题(二) 例3如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2动感体验请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形和图像,可以体验到,x2-x1随S的增大而减小.双击按钮“第(3)题”,拖动点Q在DM上运动,可以体验到,如果∠GAF=∠GQE,那么△GAF与△GQE相似.思路点拨1.第(2)题用含S 的代数式表示x 2-x 1,我们反其道而行之,用x 1,x 2表示S .再注意平移过程中梯形的高保持不变,即y 2-y 1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3). (3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4 考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例4如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1动感体验请打开几何画板文件名“10宝山24”,拖动点A ′向右平移,可以体验到,平移5个单位后,四边形A A ′B ′B 为菱形.再拖动点D 在x 轴上运动,可以体验到,△B ′CD 与△ABC 相似有两种情况.思路点拨1.点A 与点B 的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B ′ 的坐标、AC 和B ′C 的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B′(6,0),可得A B′=45.如图2,由AM//CN,可得''''B N B CB M B A=,即2845=.解得'5B C=.所以35AC=.根据菱形的性质,在△ABC与△B′CD中,∠BAC=∠CB′D.①如图3,当''AB B CAC B D=时,535=,解得'3B D=.此时OD=3,点D的坐标为(3,0).②如图4,当''AB B DAC B C=时,355=,解得5'3B D=.此时OD=133,点D的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B′CD与△AB B′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B′CD与△C B B′相似,这两个三角形有一组公共角∠B,根据对应边成比例,分两种情况计算.2013中考数学压轴题函数相似三角形问题(三) 例5如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1动感体验请打开几何画板文件名“09临沂26”,拖动点P在抛物线上运动,可以体验到,△PAM的形状在变化,分别双击按钮“P在B左侧”、“P在x轴上方”和“P在A右侧”,可以显示△PAM与△OAC相似的三个情景.双击按钮“第(3)题”,拖动点D在x轴上方的抛物线上运动,观察△DCA的形状和面积随D变化的图象,可以体验到,E是AC的中点时,△DCA的面积最大.思路点拨1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意.如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---xx x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---xxx,得0=x.此时点P与点O重合,不合题意.综上所述,符合条件的点P的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为221-=xy.设点D的横坐标为m)41(<<m,那么点D的坐标为)22521,(2-+-mmm,点E的坐标为)221,(-mm.所以)221()22521(2---+-=mmmDE mm2212+-=.因此4)221(212⨯+-=∆mmSDACmm42+-=4)2(2+--=m.当2=m时,△DCA的面积最大,此时点D的坐标为(2,1).图5 图6第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=. 例6如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图动感体验请打开几何画板文件名“09闸北25”,拖动点D 可以在射线BA 上运动.双击按钮“第(2)题”,拖动点D 可以体验到两圆可以外切一次,内切两次.双击按钮“第(3)题”,再分别双击按钮“DE 为腰”和“DE 为底边”,可以体验到,△DEF 为等腰三角形.1.先解读背景图,△ABC是等腰三角形,那么第(3)题中符合条件的△DEF也是等腰三角形.2.用含有x的式子表示BD、DE、MN是解答第(2)题的先决条件,注意点E的位置不同,DE、MN表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.4.第(3)题按照DE为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题.满分解答(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=310 AHAB=,所以AH=32=12AC.所以BH垂直平分AC,△ABC为等腰三角形,AB=CB=5.因为DE//BC,所以AB ACDB EC=,即53y x=.于是得到53y x=,(0x>).(2)如图3,图4,因为DE//BC,所以DE AEBC AC=,MN ANBC AC=,即|3|53DE x-=,1|3|253xMN-=.因此5|3|3xDE-=,圆心距5|6|6xMN-=.图2 图3 图4 在⊙M中,115226Mr BD y x===,在⊙N中,1122Nr CE x==.①当两圆外切时,5162x x +5|6|6x -=.解得3013x =或者10x =-. 如图5,符合题意的解为3013x =,此时5(3)15313x DE -==. ②当两圆内切时,5162x x -5|6|6x -=. 当x <6时,解得307x =,如图6,此时E 在CA 的延长线上,5(3)1537x DE -==; 当x >6时,解得10x =,如图7,此时E 在CA 的延长线上,5(3)3533x DE -==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例 7如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.图1动感体验请打开几何画板文件名“08杭州24”,拖动点A 在y 轴上运动,可以体验到,AQ 与BC 保持平行,OA ∶OB 与OA ∶OB ′保持3∶2.双击按钮“t =3”,“t =0.6”,“t =-0.6”,“t =-3”,抛物线正好经过点B (或B ′).思路点拨1.数形结合思想,把OC OB OA ⋅=2转化为212t x x =⋅.2.如果AQ ∥BC ,那么以OA 、AQ 为邻边的矩形是正方形,数形结合得到t =b . 3.分类讨论tan ∠ABO =23,按照A 、B 、C 的位置关系分为四种情况.A 在y 轴正半轴时,分为B 、C 在y 轴同侧和两侧两种情况;A 在y 轴负半轴时,分为B 、C 在y 轴同侧和两侧两种情况.满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB t b,+=t OC tb . 所以-=⋅t OC OB (|||||tb)( +t t b)|-=2|t 22|OA t tb ==.即22bt t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=. (2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x .①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x +2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2OA ABO OB ∠==,得23OB OA =. ①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5). ②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).2013中考数学压轴题函数等腰三角形问题(一) 例1如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2动感体验请打开几何画板文件名“11湖州24”,拖动点P在OC上运动,可以体验到,△APD的三个顶点有四次机会可以落在对边的垂直平分线上.双击按钮“第(3)题”,拖动点P由O向C运动,可以体验到,点H在以OM为直径的圆上运动.双击按钮“第(2)题”可以切换.思路点拨1.用含m的代数式表示表示△APD的三边长,为解等腰三角形做好准备.2.探求△APD是等腰三角形,分三种情况列方程求解.3.猜想点H的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt△OHM的斜边长OM是定值,以OM为直径的圆过点H、C.满分解答(1)因为PC //DB ,所以1CP PM MC BD DM MB ===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 5. 考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单: ①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当PA =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =. 第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O—C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11盐城28”,拖动点R由B向O运动,从图像中可以看到,△APR的面积有一个时刻等于8.观察△APQ,可以体验到,P在OC上时,只存在AP=AQ的情况;P在CA上时,有三个时刻,△APQ是等腰三角形.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.满分解答(1)解方程组7, 4,3y xy x=-+⎧⎪⎨=⎪⎩得3,4.xy=⎧⎨=⎩所以点A的坐标是(3,4).令70y x=-+=,得7x=.所以点B的坐标是(7,0).(2)①如图2,当P在OC上运动时,0≤t<4.由8APR ACP PORCORAS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t-⨯-⨯⨯--⨯-=(.整理,得28120t t-+=.解得t=2或t=6(舍去).如图3,当P在CA上运动时,△APR的最大面积为6.因此,当t=2时,以A、P、R为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B . 如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1.我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =. 如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.2013中考数学压轴题函数等腰三角形问题(二) 例3如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1动感体验请打开几何画板文件名“10闸北25”,拖动点M在CA上运动,可以看到△BNP 与△MNA的形状随M的运动而改变.双击按钮“△BNP∽△MNA”,可以体验到,此刻两个三角形都是直角三角形.分别双击按钮“BP=BN,N在AB上”、“NB=NP”和“BP=BN,N在AB的延长线上”,可以准确显示等腰三角形BNP的三种情况.思路点拨1.第(1)题求证MN∶NP的值要根据点N的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N 的位置分类,再按照顶角的顶点分类.注意当N 在AB 的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP ,N 在AB 上时,∠B 是确定的,把夹∠B 的两边的长先表示出来,再分类计算.满分解答(1)如图2,图3,作NQ ⊥x 轴,垂足为Q .设点M 、N 的运动时间为t 秒. 在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3.在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-.(Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=. (Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?图1动感体验请打开几何画板文件名“10南通27”,拖动点E在BC上运动,观察y随x变化的函数图像,可以体验到,y是x的二次函数,抛物线的开口向下.对照图形和图像,可以看到,当E是BC的中点时,y取得最大值.双击按钮“m=8”,拖动E到BC的中点,可以体验到,点F是AB的四等分点.拖动点A可以改变m的值,再拖动图像中标签为“y随x”的点到射线y=x上,从图形中可以看到,此时△DCE≌△EBF.思路点拨1.证明△DCE∽△EBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF为等腰三角形,那么得到x=y;一段是计算,化简消去m,得到关于x的一元二次方程,解出x的值;第三段是把前两段结合,代入求出对应的m的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m =-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m =,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.2013中考数学压轴题函数相似三角形问题(三)例5已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1动感体验请打开几何画板文件名“09重庆26”,拖动点G 在OC 上运动,可以体验到,△DCG 与△DEF 保持全等,双击按钮“M 的横坐标为1.2”,可以看到,EF =2,GO =1.拖动点P 在AB 上运动的过程中,可以体验到,存在三个时刻,△PCG 可以成为等腰三角形.。
2013年中考数学压轴题专项练习
1,观察下列一组等式: 1
1×2=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,….
解答下列问题:
将以上三个等式两边分别相加得: 1
1×2+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
.
(1)对于任意的正整数n:
1
n(n+1)
=.
【证】
(2)计算: 1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012
=.
【解】
(3)已知m为正整数化简: 1
1×3+
1
3×5
+
1
5×7
+…+
1
(2m-1)(2m+1)
=.
2、在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧
..作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.
(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE=.
(2)设∠BAC=α,∠DCE=β:
①如图1,当点D在线段BC的延长线上移动时,α与β之间有何的数量关系?请说
明理由;
②当点D在直线BC上(不与B、C重合)移动时,α与β之间有何的数量关系?请直
接写出你的结论.
A
B C D E
B C B C
A A
备用图备用图
3、某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).
根据图象提供的信息解答下面问题:
(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)
(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;
(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?
若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?
4、阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;
这个结论可以推广为表示在数轴上,对应点之间的距离;
例1:解方程,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2
例2:解不等式▏x-1▏>2,如图,在数轴上找出▏x-1▏=2的解,即到1的距离为2的点对应的数为-1、3,则▏x-1▏>2的解为x<-1或x>3
例3:解方程。
由绝对值的几何意义知,该方程表示求在数轴上与1
和-2的距离之和为5的点对应的x 的值。
在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x=2或x=-3
参考阅读材料,解答下列问题: (1)方程的解为
(2)解不等式≥9;
(3)若
≤a 对任意的x 都成立,求a 的取值范围.
5、某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储
藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:
销售方式 批发 零售 储藏后销售
售价(元/吨)
3000
4500
5500
成本(元/吨) 700 1000 1200
若经过一段时间,蒜薹按计划全部售出获得的总利润为y (元),蒜薹零售x (吨),且零售量是批发量的
3
1.
(1)求y 与x 之间的函数关系式;
(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完
蒜薹获得的最大利润.
O
x y
6、已知二次函数的图象与x 轴只有一个交点A (-2,0)、与y 轴的交点为B (0,4),且其对称轴与y 轴平行.
(1)求该二次函数的解析式,并在所给坐标系中画出它的大致图象;
(2)在二次函数位于A 、B 两点之间的图象上取一点M ,过点M 分别作x 轴、y 轴的垂线,
垂足分别为点C 、D .求矩形MCOD 的周长的最小值和此时的点M 的坐标.
7、在直角梯形ABCD 中,∠B =90°,AD =1,AB =3,BC =4,M 、N 分别是底边BC 和腰CD
上的两个动点,当点M 在BC 上运动时,始终保持AM ⊥MN 、NP ⊥BC .
(1)证明:△CNP 为等腰直角三角形;
(2)设NP =x ,当△ABM ≌△MPN 时,求x 的值; (3)设四边形ABPN 的面积为y ,求y 与x 之间的函数
关系式,并指出x 取何值时,四边形ABPN 的面
积最大,最大面积是多少.
A
B
M
P
C
D
N
8、以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=(0°<<90°),
①试用含的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.
1
1
1
C B A C
B
A
9、三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC 中,已知:
AB =AC ,且∠A =36°. (1)在图1中,用尺规作AB 的垂直平分线交AC 于D ,并连接BD (保留作图痕迹,不写
作法);
(2)△BCD 是不是黄金三角形,如果是,请给出证明;如果不是,请说明理由; (3)设
k AC
BC ,试求k 的值;
(4)如图2,在△A 1B 1C 1中,已知A 1B 1=A 1C 1,∠A 1=108°,且A 1B 1=AB ,请直接写出
1
1C B BC 的值.
图1 图2 第23题图。