1-1算法的概念练习题及答案
- 格式:doc
- 大小:43.50 KB
- 文档页数:5
计算方法试题及答案在计算方法的学习过程中,练习解答试题是非常重要的一部分。
下面,将提供一些计算方法试题及答案,以供学习和练习之用。
请按照正确的格式阅读和完成题目。
一、选择题1. 下列哪个选项是计算方法的基本思想?A. 运算过程B. 程序设计C. 算法和分析D. 数据采集答案:C. 算法和分析2. 当使用二分法求解函数 f(x) = x^2 - 4 = 0 的根时,若初始区间 [a,b] 为 [0, 5],则最终结果为:A. x = 2.0B. x = 2.2C. x = 2.4D. x = 2.5答案:C. x = 2.4二、填空题1. 约化消元法是一种求解方程组的方法,其基本思想是__________。
答案:逐行约化,得到简化方程组。
2. 在数值计算中,利用级数展开的方法求函数近似值的过程称之为__________。
答案:泰勒展开。
三、计算题1. 求解下列方程组的解:2x + y - z = 1x - y + 3z = 93x + 4y - 5z = -5答案:x = -2, y = 3, z = 42. 使用拉格朗日插值法,已知函数 f(x) 在点 x = 0, x = 1, x = 4 处的值分别为 1, 5, 7,求 f(2) 的近似值。
答案:f(2) 的近似值为 3.通过以上试题,希望能够帮助学习者巩固和加深对计算方法的理解,并提供一定的练习机会。
在学习过程中,建议理解每道题目的解题思路和方法,灵活运用所学知识,加强实际问题的应用。
希望大家能够通过不断的练习和学习提升计算方法的能力。
一、填空题(本题10分,每空1分)1、算法的复杂性是的度量,是评价算法优劣的重要依据。
2、设n为正整数,利用大“O(·)”记号,将下列程序段的执行时间表示为n的函数,则下面程序段的时间复杂度为。
i=1; k=0;while(i<n) { k=k+10*i;i++; }3、计算机的资源最重要的是和资源。
因而,算法的复杂性有和之分。
4、f(n)= 6×2n+n2,f(n)的渐进性态f(n)= O( )5、递归是指函数或者通过一些语句调用自身。
6、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相且和原问题相同。
二、选择题(本题20分,每小题2分)1、分支限界法和回溯法都是在问题的解空间树T上搜索问题的解,二者( )。
A.求解目标不同,搜索方式相同B.求解目标不同,搜索方式也不同C.求解目标相同,搜索方式不同D.求解目标相同,搜索方式也相同2、回溯法在解空间树T上的搜索方式是( )。
A.深度优先B.广度优先C.最小耗费优先D.活结点优先3、在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( )。
A.回溯法B.分支限界法C.回溯法和分支限界法D.回溯法求解子集树问题4、以下关于判定问题难易处理的叙述中正确的是( )。
A.可以由多项式时间算法求解的问题是难处理的B.需要超过多项式时间算法求解的问题是易处理的C.可以由多项式时间算法求解的问题是易处理的D.需要超过多项式时间算法求解的问题是不能处理的5、设f(N),g(N)是定义在正数集上的正函数,如果存在正的常数C和自然数N0,使得当N≥N0时有f(N)≤Cg(N),则称函数f(N)当N充分大时有上界g(N),记作f(N)=O(g(N)),即f(N)的阶( )g(N)的阶。
A.不高于B.不低于C.等价于D.逼近6、对于含有n个元素的子集树问题,最坏情况下其解空间的叶结点数目为( )。
《算法分析与设计》课程复习资料一、名词解释:1.算法2.程序3.递归函数4.子问题的重叠性质5.队列式分支限界法6.多机调度问题7.最小生成树 二、简答题:1.备忘录方法和动态规划算法相比有何异同?简述之。
2.简述回溯法解题的主要步骤。
3.简述动态规划算法求解的基本要素。
4.简述回溯法的基本思想。
5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
6.简要分析分支限界法与回溯法的异同。
7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面? 8.贪心算法求解的问题主要具有哪些性质?简述之。
9.分治法的基本思想是什么?合并排序的基本思想是什么?请分别简述之。
10.简述分析贪心算法与动态规划算法的异同。
三、算法编写及算法应用分析题:1.已知有3个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。
2.按要求完成以下关于排序和查找的问题。
①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。
②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。
③给出上述算法的递归算法。
④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。
3.已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序(要求给出计算步骤)。
4.根据分枝限界算法基本过程,求解0-1背包问题。
已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。
算法设计与分析第二版课后习题及解答算法设计与分析基础课后练习答案习题1.14.设计一个计算的算法,n是任意正整数。
除了赋值和比较运算,该算法只能用到基本的四则运算操作。
算法求 //输入:一个正整数n2//输出:。
step1:a1; step2:若a*an 转step 3,否则输出a; step3:aa+1转step 2;5. a.用欧几里德算法求gcd(31415,14142)。
b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。
a. gcd31415, 14142 gcd14142, 3131 gcd3131, 1618 gcd1618, 1513 gcd1513, 105 gcd1513, 105 gcd105, 43 gcd43, 19 gcd19, 5 gcd5, 4 gcd4, 1 gcd1, 0 1.b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。
连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1?14142 和 2?14142之间,所以欧几里德算法比此算法快1?14142/11 ≈1300 与2?14142/11 ≈ 2600 倍之间。
6.证明等式gcdm,ngcdn,m mod n对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和rm mod nm-qn;显然,若d能整除n和r,也一定能整除mr+qn和n。
数对m,n和n,r具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcdm,ngcdn,r7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0mn的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcdm,ngcdn,m并且这种交换处理只发生一次.8.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?1次b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?5次gcd5,8习题1.21.农夫过河P?农夫W?狼 G?山羊 C?白菜2.过桥问题1,2,5,10---分别代表4个人, f?手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c0的实根,写出上述算法的伪代码可以假设sqrtx是求平方根的函数算法Quadratica,b,c//求方程ax^2+bx+c0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D0temp←2*ax1←-b+sqrtD/tempx2←-b-sqrtD/tempreturn x1,x2else if D0 return ?b/2*ael se return “no real roots”else //a0if b≠0 return ?c/belse //ab0if c0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Kii0,1,2,商赋给n第二步:如果n0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBinn//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1n]中i1while n!0 doBin[i]n%2;nintn/2;i++;while i!0 doprint Bin[i];i--;9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.算法略对这个算法做尽可能多的改进.算法 MinDistanceA[0..n-1]//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements 习题1.3考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.古老的七桥问题第2章习题2.17.对下列断言进行证明:如果是错误的,请举例a. 如果tn∈Ogn,则gn∈Ωtnb.α0时,Θαgn Θgn解:a这个断言是正确的。
《算法分析与设计》练习题一答案1.程序书写格式应该遵循哪四个原则?参考答案:(1)正确使用缩进:一定要有缩进,否则代码的层次不明显。
(2)在一行内只写一条语句。
(3), '}'位置不可随意放置。
(4)变量和运算符之间最好加1个空格2.什么是算法?参考答案:用计算机解决问题的过程可以分成三个阶段:分析问题、设计算法和实现算法。
算法可以理解为冇基本运算及规定的运算顺序所构成的完整的解题步骤,它是求解问题类的、机械的、统一的方法,它由有限多个步骤组成,对于问题类屮每个给定的具体问题,机械地执行这些步骤就可以得到问题的解答。
或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
3.什么是线性结构?什么是非线性结构?参考答案:线性结构:数据逻辑结构屮的一类。
它的特征是若结构为非空集,则该结构有且只有一个开始结点和一个终端结点,并且所冇结点都冇R只冇一个直接前趋和一个直接后继。
线性表就是一个典型的线性结构。
栈、队列、串等都是线性结构。
非线性结构:数据逻辑结构中的另一大类,它的逻辑特征是一个结点可能有多个直接而趋和直接后继。
数组、广义表、树和图等数据结构都是非线性结构。
4.已知二叉树后序遍丿力序列是DABEC,屮序遍丿力序列是DEBAC,则前序遍历序列是什么?参考答案:前序遍历序列是CEDBA5.什么是数制?参考答案:数制是人们利用符号进行计数的一种科学方法。
数制也称计数制,是用一组固定的符号和统一的规则來表示数值的方法。
6.如果将十进制数106转换为八进制数,结果是多少?参考答案:1527.请问查找算法的效率用什么进行度量?参考答案:平均查找长度ASL:在查找其关键字等于给定值的过程小,需要和给定值进行比较的关键字个数的期望值称为查找成功吋的平均查找长度。
AS厶=£皿/=1其屮,n是结点的个数;是杳找第i个结点的概率,是找到第i个结点所需要的比较次数。
北森题库测试题及答案在现代教育和职业培训中,题库的建立和使用已经成为一个重要的组成部分。
它不仅可以帮助教师和培训师更高效地组织考试和评估,而且可以为学习者提供丰富的练习资源。
以下是一套北森题库的测试题及答案,旨在帮助学习者检验自己的知识水平和理解能力。
测试题1. 计算机科学中,什么是算法?A. 一种编程语言B. 一种数据结构C. 一种解决问题的步骤D. 一种软件工具2. 以下哪项不是操作系统的基本功能?A. 文件管理B. 内存管理C. 进程调度D. 数据加密3. 在网络协议中,TCP和UDP的主要区别是什么?A. TCP是传输层协议,而UDP是应用层协议B. TCP提供可靠的连接服务,而UDP不提供C. TCP和UDP都是传输层协议,但TCP更适用于实时通信D. TCP和UDP都是应用层协议,但TCP更适用于文件传输4. 数据库管理系统(DBMS)的主要功能是什么?A. 存储数据B. 管理数据的存储和访问C. 执行数据加密D. 进行数据分析和挖掘5. 什么是面向对象编程?A. 一种编程语言B. 一种编程范式C. 一种数据存储技术D. 一种网络通信协议答案1. C. 一种解决问题的步骤- 算法是一系列定义明确的计算步骤,用于解决特定的问题。
2. D. 数据加密- 操作系统的基本功能不包括数据加密,这是安全软件的职责。
3. B. TCP提供可靠的连接服务,而UDP不提供- TCP协议提供可靠的数据传输服务,确保数据正确无误地到达目的地,而UDP协议则不保证数据传输的可靠性。
4. B. 管理数据的存储和访问- 数据库管理系统(DBMS)的主要功能是管理数据的存储、检索和更新。
5. B. 一种编程范式- 面向对象编程是一种编程范式,它使用对象和类的概念来模拟现实世界中的实体和它们之间的关系。
结束语通过上述测试题及答案,学习者可以检验自己对计算机科学基础知识的掌握程度。
在准备任何考试或评估时,理解基本概念和原理是非常重要的。
1.1。
1算法的概念明目标、知重点1。
了解算法的含义,体会算法的思想;2。
能够用自然语言叙述算法;3.掌握正确的算法应满足的要求;4。
会写出解线性方程(组)的算法.1.算法的概念及描述(1)算法的定义算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.(2)算法的特征①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当模棱两可.③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一问题的解法不一定是唯一的,对于同一个问题可以有不同的算法.⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.(3)描述算法的方式描述算法可以有不同的方式:自然语言、数学语言(算法语言)、框图语言等.2.算法设计的目的设计算法的目的实际上是寻求一类问题的算法,它可以通过计算机来完成.设计算法的关键是把过程分解成若干个明确的步骤,然后用计算机能够接受的”语言”准确地描述出来,从而达到计算机执行的目的.3.算法设计的要求(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.[情境导学]赵本山和宋丹丹的小品《钟点工》中有这样一个问题:(宋丹丹)要把大象装冰箱,总共分几步?哈哈哈哈,三步.第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门关上.探究点一算法的概念思考1 算法随着时代的发展其含义在不断的变化,阅读教材第3页的上半页,你能说出现代对算法是怎样理解的吗?答算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.思考2 描述算法有怎样的方式?答可以用自然语言和数学语言、数学语言(算法语言)、框图语言等.例1 下列关于算法的说法,正确的个数为()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1 B.2C.3 D.4答案C解析②③④正确,而解决某类问题的算法不一定唯一,从而①错.反思与感悟算法实际上是解决问题的一种程序性方法,它能够解决某一个或一类问题.跟踪训练1 下列语句表达中是算法的是( )①从济南到巴黎可以先乘火车到北京,再坐飞机抵达;②利用公式S =错误!ah计算底为1,高为2的三角形的面积;③错误!x〉2x+4;④求M (1,2)与N(-3,-5)两点连线所在直线的方程,可先求直线MN 的斜率,再利用点斜式方程求得.A.①②③ B.①③④C.①②④ D.②③④答案C解析算法是解决问题的步骤与过程,这个问题并不仅仅限于数学问题,①②④都表达了一种算法.探究点二算法的设计例2 “一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔多少鸡?"思考1 用代数方法如何求解?答设有x只小鸡,y只小兔,则有(Ⅰ) 错误!,将方程组(Ⅰ)中的第一个方程的两边同乘以-2加到第二个方程中去,得到(Ⅱ)错误!解方程组(Ⅱ)中的第二个方程,得y=7,将y代入第一个方程,得x =10。
第一章算法初步1.1算法与程序框图1.1.1算法的概念1.下面的结论正确的是【】A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是【】A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征【】A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指【】A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法【】A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是【】A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n+直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.8.写出1×2×3×4×5×6的一个算法.1.1.2 程序框图1.算法的三种基本结构是【】A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.给出以下四个问题,①输入x, 输出它的相反数;②求面积为6的正方形的周长;③在三个不等实数,,a b c中,求一个数的最大数;④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值。
可编辑修改精选全文完整版3.2.1算法(2)-粤教版(2019)高中信息技术必修一练习学校:___________姓名:___________班级:___________考号:___________一、选择题1.某算法的部分流程图如第7题图所示。
执行这部分流程后,输出s和i的值分别是()A.-3 5B.-4 5C.-3 6D.-2 6【答案】A【解析】【分析】【详解】本题考查流程图。
Int(X)求不大于X 的最大整数,Int(s/10)=-3,故本题选A。
2.某算法的部分流程图如图所示,执行这部分流程后,变量s的值是()A.26B.30C.14D.10【答案】C【解析】【详解】本题考查流程图。
最终可得s=14,故本题选C。
试卷第2页,总15页3.以下哪个是算法的描述方法?()A.流程图描述法B.枚举法C.顺序法D.列表法【答案】A【解析】【详解】本题考查算法相关知识。
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。
不同的算法可能用不同的时间、空间或效率来完成同样的任务。
一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法的描述有流程图,自然语言和计算机语言。
故本题选A。
4.关于算法的描述,下列选项中正确的是()A.算法本身就是一种程序设计语言B.算法必须有输入C.算法的步骤可以是无穷的D.算法的每一步骤必须有确切的含义【答案】D【解析】【详解】本题考查的是算法相关知识。
所谓算法就是解题方法的精确描述,由有限个步骤组成,故选项A错误;有0 个或多个输入,故选项B错误;算法的步骤是有穷的,故选项C错误;算法具有确定性,指算法的每一步骤必须有确切的含义,故选项D正确。
5.以下不属于算法基本特征的是()A.可执行性B.确定性C.有穷性D.无限性【答案】D【解析】【详解】本题考查的是算法的特征。
§1.1算法与程序框图1.1.1算法的概念学习目标1.了解算法的含义和特征.2.会用自然语言描述简单的具体问题的算法.知识点一算法的概念知识点二算法的特征算法的五个特征(1)有限性:一个算法的步骤是有限的,它应在有限步操作之后停止.(2)确定性:算法中的每一步应该是确定的,并且能有效地执行且得到确定的结果,而不是模棱两可的.(3)逻辑性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有完成前一步,才能进行下一步,而且每一步都是正确无误的,从而组成具有很强逻辑性的步骤序列.(4)普遍性:一个确定的算法,应该能够解决一类问题.(5)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同的算法.特别提醒:判断一个问题是不是算法,关键是明确算法的含义及算法的特征.知识点三算法的设计1.设计算法的目的设计算法的目的实际上是寻求一类问题的解决方法,它可以通过计算机来完成.设计算法的关键是把过程分解成若干个明确的步骤,然后用计算机能够接受的“语言”准确地描述出来,从而达到让计算机执行的目的.2.设计算法的要求①写出的算法必须能解决一类问题.②要使算法尽量简单、步骤尽量少.③要保证算法步骤有效,且计算机能够执行.1.算法是解决一个问题的方法.(×)2.一个算法可以产生不确定的结果.(×)3.算法的步骤必须是明确的、有限的.(√)4.求解一类问题的算法是唯一的.(×)题型一对算法概念的理解例1下列说法正确的是()A.算法就是某个问题的解题过程B.算法执行后可以产生不同的结果C.解决某一个具体问题算法不同,则结果不同D.算法执行步骤的次数不可以很多,否则无法实施★答案★ B解析选项B正确,例如:判断一个整数是否为偶数,结果为“是偶数”和“不是偶数”两种;选项A,算法不能等同于解法;选项C,解决某一个具体问题算法不同,但结果应相同;选项D,算法可以为很多次,但不可以为无限次.反思感悟算法实际上是解决问题的一种程序性方法,它通常解决某一个或一类问题,用算法解决问题,体现了从特殊到一般的数学思想.跟踪训练1下列描述不是解决问题的算法的是()A.从中山到北京先坐汽车,再坐火车B.解可化为一元一次方程的分式方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2-4x+3=0有两个不相等的实根D.解不等式ax+3>0时,第一步移项,第二步讨论★答案★ C解析A选项,从中山到北京,先坐汽车,再坐火车,解决了怎样去的问题;B选项,解可化为一元一次方程的分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1,解决了怎样解一元一次方程的问题;D选项,解不等式ax+3>0时,第一步移项,将不等式化为ax>-3,第二步讨论a的符号,进而根据不等式的基本性质,求出不等式的解集,解决了怎样求不等式解集的问题; 选项C 只是一个真命题,没有解决什么问题,因此不是算法.题型二 算法的设计命题角度1 直接应用数学公式设计算法例2 有一个底面半径为3,母线长为5的圆锥,写出求该圆锥体积的算法.解 如图,先给r ,l 赋值,计算h ,再根据圆锥体积公式V =13πr 2h 计算V ,然后输出结果.第一步,令r =3,l =5. 第二步,计算h =l 2-r 2. 第三步,计算V =13πr 2h .第四步,输出运算结果.反思感悟 利用公式解决问题时,必须先求出公式中的各个量,在设计算法时,应优先考虑未知量的求法.跟踪训练2 已知一个等边三角形的周长为a ,求这个三角形的面积.设计一个算法解决这个问题.解 第一步,输入a 的值. 第二步,计算l =a3的值.第三步,计算S =34×l 2的值. 第四步,输出S 的值.命题角度2 非数值性问题的算法例3所谓正整数p为素数是指:p的所有约数只有1和p.例如,35不是素数,因为35的约数除了1,35外,还有5与7;29是素数,因为29的约数就只有1和29.试设计一个能够判断一个任意正整数n(n>1)是否为素数的算法.解算法如下:第一步,给出任意一个正整数n(n>1).第二步,若n=2,则输出“2是素数”,判断结束.第三步,令m=1.第四步,将m的值增加1,仍用m表示.第五步,如果m≥n,则输出“n是素数”,判断结束.第六步,判断m能否整除n,①如果能整除,则输出“n不是素数”,判断结束;②如果不能整除,则转第四步.反思感悟设计一个具体问题的算法,通常按以下步骤(1)认真分析问题,找出解决该问题的一般数学方法.(2)借助有关变量或参数对算法加以表述.(3)将解决问题的过程划分为若干步骤.(4)用简练的语言将这个步骤表示出来.跟踪训练3判断一个大于2的整数是否为质数的算法步骤如何设计?解第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.解方程组的算法设计典例 写出解方程组⎩⎪⎨⎪⎧2x +y =7,①4x +5y =11②的一个算法.解 方法一 (代入消元法) 第一步,由①得y =7-2x .③ 第二步,将③代入②,得4x +5(7-2x )=11.④ 第三步,解④得x =4.第四步,将x =4代入③,得y =-1.第五步,得到方程组的解为⎩⎪⎨⎪⎧x =4,y =-1.方法二 (加减消元法)第一步,①×5-②得,(2×5-4)x =7×5-11.⑤ 第二步,解⑤得x =4.第三步,①×2-②,得(1×2-5)y =7×2-11.⑥ 第四步,解⑥得y =-1.第五步,得到方程组的解为⎩⎪⎨⎪⎧x =4,y =-1.[素养评析] (1)设计算法时,经常遇到解方程组的算法问题,一般是按照数学上解方程组的方法进行设计,但应注意全面考虑方程组解的情况,即先确定方程组是否有解,有解时有几个解,然后依据求解步骤设计算法步骤.(2)从对运算方法的选择,运算程序的设计,到最后求得运算结果,整个过程就是典型的数学运算素养的体现.1.下列关于算法的说法正确的是()A.一个算法的步骤是可逆的B.描述算法可以有不同的方式C.算法可以看成是按照要求设计好的、有限的、确切的计算序列,并且这样的步骤或序列只能解决当前问题D.算法只能用一种方式显示★答案★ B解析由算法的定义知A,C,D错.2.下列叙述中:①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100;③从青岛乘火车到济南,再从济南乘飞机到广州;④3x>x+1;⑤求所有能被3整除的正数,即3,6,9,12,….能称为算法的个数为()A.2B.3C.4D.5★答案★ B解析根据算法的含义和特征知,①②③都是算法;④⑤不是算法.其中④只是一个问题,而没有解决问题,不能称为算法;⑤的步骤是无穷的,与算法的有限性矛盾.3.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:(1)计算c=a2+b2;(2)输入直角三角形两直角边长a,b的值;(3)输出斜边长c的值.其中正确的顺序是________. ★答案★ (2)(1)(3)解析 算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.4.下面是解决一个问题的算法: 第一步:输入x .第二步:若x ≥4,转到第三步;否则转到第四步. 第三步:输出2x -1. 第四步:输出x 2-2x +3.当输入x 的值为________时,输出的数值最小值为________. ★答案★ 1 2解析 所给算法解决的问题是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≥4,x 2-2x +3,x <4的函数值问题,当x ≥4时,f (x )=2x -1≥2×4-1=7;当x <4时,f (x )=x 2-2x +3=(x -1)2+2≥2,所以f (x )min =2,此时x =1.即输入x 的值为1时,输出的数值最小,最小值为2. 5.下面算法要解决的问题是____________________________. 第一步,输入三个数,并分别用a ,b ,c 表示.第二步,比较a 与b 的大小,如果a <b ,则交换a 与b 的值. 第三步,比较a 与c 的大小,如果a <c ,则交换a 与c 的值. 第四步,比较b 与c 的大小,如果b <c ,则交换b 与c 的值. 第五步,输出a ,b ,c .★答案★ 输入三个数a ,b ,c ,并按从大到小的顺序输出 解析 第一步是给a ,b ,c 赋值. 第二步运行后a >b . 第三步运行后a >c .第四步运行后b >c ,所以a >b >c .第五步运行后,显示a ,b ,c 的值,且从大到小排列.6.写出解二元一次方程组⎩⎪⎨⎪⎧3x -2y =-1,①2x +y =1 ②的算法.解 第一步,①+2×②得7x =1.③ 第二步,解③得x =17.第三步,②×3-①×2得7y =5.④ 第四步,解④得y =57.第五步,得到方程组的解为⎩⎨⎧x =17,y =57.1.算法的特点:有限性、确定性、逻辑性、普遍性、不唯一性. 2.算法设计的要求:(1)写出的算法必须能够解决一类问题(如判断一个整数是否为质数,求任意一个方程的近似解等),并且能够重复使用.(2)要使算法尽量简单,步骤尽量少.(3)要保证算法正确,且算法步骤能够一步一步执行,每步执行的操作必须确切,不能含混不清,而且在有限步后能得到结果.一、选择题1.下列可以看成算法的是( )A .学习数学时,课前预习,课上认真听讲并记好笔记,课下先复习再做作业,之后做适当的练习题B .今天餐厅的饭真好吃C .这道数学题难做D .方程2x 2-x +1=0无实数根★答案★ A解析 A 是学习数学的一个步骤,所以是算法.2.在用二分法求方程零点的算法中,下列说法正确的是( )A .这个算法可以求所有的零点B .这个算法可以求任何方程的零点C .这个算法能求所有零点的近似解D .这个算法可以求变号零点的近似解★答案★ D解析 二分法的理论依据是函数的零点存在性定理.它解决的是求变号零点的问题,并不能求所有零点的近似值.3.如下算法:第一步,输入x 的值.第二步,若x ≥0,则y =x .第三步,否则,y =x 2.第四步,输出y 的值.若输出的y 值为9,则x 的值为( )A .3B .-3C .3或-3D .-3或9 ★答案★ D解析 根据题意可知,此为分段函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的算法, 当x ≥0时,x =9;当x <0时,x 2=9,所以x =-3.综上所述,x 的值是-3或9.4.对于算法:第一步,输入n .第二步,判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行第三步.第三步,依次从2到(n -1)检测能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则结束算法.第四步,输出n.满足条件的n是()A.质数B.奇数C.偶数D.合数★答案★ A解析此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n-1)一一验证,看是否有其他约数,来判断其是否为质数.5.有蓝、黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,现有空墨水瓶若干,解决这一问题最少需要的步骤数为()A.2 B.3C.4 D.5★答案★ B解析第一步,将蓝墨水装到一个空墨水瓶中;第二步,将黑墨水装到黑墨水瓶中;第三步,将蓝墨水装到蓝墨水瓶中,这样就解决了这个问题,故选B.6.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个过程.下列选项中最好的一种算法是()A.第一步,洗脸刷牙.第二步,刷水壶.第三步,烧水.第四步,泡面.第五步,吃饭.第六步,听广播B.第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭.第五步,听广播C.第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭同时听广播D.第一步,吃饭同时听广播.第二步,泡面.第三步,烧水同时洗脸刷牙.第四步,刷水壶★答案★ C解析最好算法的标准是方便、省时、省力.A中共需5+2+8+3+10+8=36(min),B中共需2+8+3+10+8=31(min),C中共需2+8+3+10=23(min),D中共需10+3+8+2=23(min),但算法步骤不合理,最好的算法为C.7.对于求18的正因数,给出下列两种算法:算法1:第一步,1是18的正因数,将1列出.第二步,2是18的正因数,将2列出.第三步,3是18的正因数,将3列出.第四步,4不是18的正因数,将4剔除.……第十八步,18是18的正因数,将18列出.算法2:第一步,18=2×9.第二步,18=2×32.第三步,列出所有的正因数1,2,3,32,2×3,2×32.则这两个算法()A.都正确B.算法1正确,算法2不正确C.算法1不正确,算法2正确D.都不正确★答案★ A解析算法1是用1~18的整数逐一验证,得出正因数.算法2是利用因数分解得到18的正因数.两种算法都正确.故选A.8.一个算法步骤如下:第一步,S取值0,i取值1.第二步,若i≤9,则执行第三步;否则,执行第六步.第三步,计算S+i并用结果代替S.第四步,用i+2的值代替i.第五步,转去执行第二步.第六步,输出S.运行以上算法,则输出的结果S等于()A.16 B.25C.36 D.以上均不对★答案★ B解析解本题关键是读懂算法,本题中的算法功能是求S=1+3+5+7+9=25.9.结合下面的算法:第一步,输入x.第二步,判断x是否小于0,若是,则输出x+2,否则执行第三步.第三步,输出x-1.当输入的x的值为-1,0,1时,输出的结果分别为()A.-1,0,1 B.-1,1,0C.1,-1,0 D.0,-1,1★答案★ C解析 依据算法可知,当x =-1时,满足x <0,则输出x +2=-1+2=1;当x =0时,不满足x <0,则输出x -1=0-1=-1;当x =1时,不满足x <0,则输出x -1=1-1=0.故选C.二、填空题10.下面给出了解决问题的算法:第一步:输入x .第二步:若x ≤1,则y =2x -1,否则y =x 2+3.第三步:输出y .(1)这个算法解决的问题是________;(2)当输入的x 值为________时,输入值与输出值相等.★答案★ (1)求分段函数y =⎩⎪⎨⎪⎧2x -1,x ≤1,x 2+3,x >1的函数值 (2)111.以下是解二元一次方程组⎩⎪⎨⎪⎧2x -y +6=0,①x +y +3=0 ②的一个算法,请将该算法补充完整. 第一步,①②两式相加得3x +9=0.③第二步,由③式可得________.④第三步,将④式代入①式得y =0.第四步,输出方程组的解为________.★答案★ x =-3 ⎩⎪⎨⎪⎧x =-3,y =0 解析 该算法的流程实质是解二元一次方程组的过程,由消元法易得.12.下面是求15和18的最小公倍数的算法,其中不恰当的一步是________.第一步,先将15分解素因数:15=3×5.第二步,然后将18分解素因数:18=32×2.第三步,确定它们的所有素因数:2,3,5.第四步,计算出它们的最小公倍数:2×3×5=30.★答案★ 第四步解析 素因数2,3,5的最高指数是1,2,1,算出它们的最小公倍数为2×32×5=90.三、解答题13.某商场举办优惠促销活动.若购物金额在800元以上(不含800元),打7折;若购物金额在400元以上(不含400元),800元以下(含800元),打8折;否则,不打折.请为商场收银员设计一个算法,要求输入购物金额x ,输出实际交款额y .解 算法步骤如下:第一步,输入购物金额x(x>0).第二步,判断“x>800”是否成立,若是,则y=0.7x,转第四步;否则,执行第三步.第三步,判断“x>400”是否成立,若是,则y=0.8x,转第四步;否则,y=x.第四步,输出y,结束算法.14.下面算法的功能是()第一步,令i=1.第二步,i除以3,得余数r.第三步,若r=0,则输出i;否则,执行第四步.第四步,令i的值增加1.第五步,若i≤1000,则返回第二步;否则,算法结束.A.求3的倍数B.求1至1000中3的倍数C.求i除以3D.求i除以3的余数★答案★ B解析由第二步和第三步可知,输出的是3的倍数,由第四步和第五步可知,输出的是1至1000中3的倍数.15.如图所示,汉诺塔问题是指有3根杆子A,B,C,杆子上有若干碟子,把所有的碟子从B杆移动到A杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面.把B杆上的3个碟子全部移动到A杆上,最少需要移动的次数是________.★答案★7解析直接进行分析,将最小的碟子命名为①,中间的碟子命名为②,最大的碟子命名为③,进行如下移动:①→A,②→C,①→C,③→A,①→B,②→A,①→A,此时按要求全部放好,移动7次.。
算法的概念及描述学校:姓名:班级:考号:一、选择题1.某小区开通了刷脸进门方式:其算法中验证对象是否正确的代码如下所示,则以下流程图与内容匹配的是()刷脸结果:识别为1,否则为其他if(face==1):Prim("面部识别成功,门已开”)else:Prim("面部识别错误,无法开门“)A.face=1?jB.C./fad I?/D.facc=1?2.某算法的部分流程图如右图所示,执行这部分流程,输出的S值为()A.28B.162C.280D.9453.以下哪个流程图表示了Python中的分支结构()4 .某算法的部分流程图如下图所示,执行流程图后,变量SUm 和i 的值分别是() D.以上都不是B.175C.174D.144A.A.1455.某算法的)部分流程图如图所示,下列说法正确的是(A.若输入n的值为10,则输出k的值为6B.若输入n的值为16,则、力?”执行4次C.若输入n的值为5,则输出k的值为2D.该算法中只存在分支结构和循环结构6.如下是计算圆的周长与面积的算法,其描述方式是()①输入半径r②求周长c=211r③求面积s三11r2④输出周长和面积A.流程图B.自然语言C.程序代码D.项目式7.算法的“有穷性”是指()A.解决问题的用时越少越好B.算法执行的任何计算都是有效的C.算法的运算必须是可以实现的D.算法执行有限步后必须能结束8.某算法的部分流程图如图所示。
执行这部分流程后,下列说法正确的是()A.输出ans的结果为(HoIB.条件“a>0?”共判断5次C.虚线框内的语句等价为“t-a%2+b%2”D.该算法使用的控制结构有顺序、分支和循环结构9.下图是求两实数a、b较大数的流程图,在①处应填写的正确表达式是()A.循环结构B.复合结构C.上下结构 13 .用流程图描述算法时,表示“输入/输出”的图形是()A.JB.C.14 .下列有关算法概念与特征的描述,正确的是()A.算法就是数学公式A,可读性B.可行性 C.确定性 D.有穷性12.阅读下图所示的算法,该算法的主要程序结构是()D.分支结构C.a<bD.a>b11.算法每个步骤的运算都有明确定义,且计算结果是唯一的。
算法初步练习题一、选择题:1.阅读下面的程序框图,则输出的S =A .14B .20C .30D .552.阅读图2所示的程序框图,运行相应的程序,输出的结果是A .1 B. 2 C. 3 D. 43.阅读右图所示的程序框图,运行相应的程序,输出的结果是A .2B .4C .8D .164.某程序框图如图所示,该程序运行后输出的k 的值是A .4B .5C .6D .75.执行右面的程序框图,输出的S 是3题 2题1题4题A .378-B .378C .418-D .4186.如图的程序框图表示的算法的功能是A .计算小于100的奇数的连乘积B .计算从1开始的连续奇数的连乘积C .从1开始的连续奇数的连乘积,当乘积大于100时,计算奇数的个数D .计算100531≥⨯⋅⋅⋅⨯⨯⨯n 时的最小的n 值.7.右图是把二进制数)2(11111化为十进制数的一个程序框图,判断框内应填入的 条件是 A .4i > B .4i ≤ C .5i > D .5i ≤8.某程序框图如图所示,则该程序运行后输出的B 等于 A .15 B .29 C .31 D .635题6题9.如果执行右边的程序框图,输入2,0.5x h =-=,那么输出的各个数的和等于 A .3 B .3.5 C .4 D .4.510.某店一个月的收入和支出总共记录了N 个数据1a ,2,,N a a ⋅⋅⋅,其中 收入记为 正数,支出记为负数。
该店用右边的程序框图计算月总收入S 和月 净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中 的A .0,A V S T >=-B .0,A V S T <=-C .0,A V S T >=+D .0,A V S T <=+ 11. 如图1所示,是关于闰年的流程,则 以下年份是闰年的为A .1996年B .1998年C .2010年D .2100年12. 某流程如右上图所示,现输入如下四个函数,则可以输出的函数是11题A .2)(x x f =B .xx f 1)(=C .62ln )(-+=x x x fD .x x f sin )(=二、填空题:13.程序框图(即算法流程图)如图所示,其输出结果是_______. 14.执行右边的程序框图,输出的T = .14题12题13题15.下面的程序框图表示的算法的结果是 1616.阅读右上面的流程图,若输入6,1a b ==,则输出的结果是 217右面的程序框图,如果输入三个实数a ,b ,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的 ①c x > ②x c > ③C .c b > ④b c >15题三、解答题:18.已知数列{a n }的各项均为正数,观察程序框图,若10,5==k k 时,分别有2110115==S S 和 (1)试求数列{a n }的通项; (2)令m a n b b b b n +++=...,221求的值.参考答案1.C .【解读与点评】当1=i 时, S =1;当i =2时, S =5;循环下去,当i =3时, S =14; 当i =4时,S =30;本试题考查了程序框图的运用.2.D 【解读与点评】本题考查是算法的重新框图与算法的语句识别.易错点是 不懂得运行顺序.当1,2n S ==代入程序中运行第一次是1S =-,然后赋值此时2n =;返回运 行第二次可得111(1)2S ==--,然后赋值3n =; 再返回运行第三次可得12112S ==-,然后赋值4n =,判断可知此时2S =,故输出4n =.故选D .3.C 【解读与点评】本题考查是算法的重新框图与算法的语句识别.考查学生 运算求解能力.本题的易错点是要注意是先赋值再输出.当1,2n S ==代入程序中运行第一次是1S =-,然后赋值此时2n =;返回运 行第二次可得111(1)2S ==--,然后赋值4n =; 再返回运行第三次可得12112S ==-,然后赋值8n =,判断可知此时2S =,故输出8n =.4.A .【解读与点评】对于0,1,k s ==1k ∴=.对于1,3,2k s k ==∴=,则2,38,3k s k ==+∴=,后面是113,382,4k s k ==++∴=,不符合条件时输出 的4k =.此题是新课程新增内容,考查了程序语言的概念和基本的应用,通 过对程序语言的考查,充分体现了数学程序语言中循环语言的关键. 9.B .【解读与点评】循环9次,对应输出值如下表。
[当堂达标]
1.我们已学过的算法有一元二次方程的求根公式、加减消元法求二元一次方程组的解、二分法求函数零点等,对算法的描述有:
①对一类问题都有效;
②对个别问题有效;
③计算可以一步一步进行,每一步都有唯一结果;
④是一种通法,只要按部就班地做,总能得到结果.
以上描述正确的有( )
A .1个
B .2个
C .3个
D .4个
答案:C 解析:设计的算法应该是对一类问题都有效,而不是只对个别问题有效.所以①对,②不对.由算法的确定性、有限性、顺序性易知③④都是正确的,故描述正确的有3个.
;
2.下列所给问题中,不能设计一个算法求解的是( )
A .用二分法求方程x 2-3=0的近似解(精确到
B .解方程组⎩⎪⎨⎪⎧
x +y +5=0,x -y +3=0 C .求半径为2的球的体积
D .判断y =x 2在R 上是否具有单调性
答案:D 解析:选项A ,B ,C 中的问题都可以设计算法求解,而D 项中的问题则不能设计算法求解.
3.“已知直角三角形两直角边长为a ,b ,求斜边长c ”的一个算法分下列三步:
①计算c =a 2+b 2;
②输入直角三角形两直角边长a ,b 的值;
③输出斜边长c 的值.
:
其中正确的顺序是________.
答案:②①③ 解析:根据运算顺序,易知算法顺序应是②①③.
4.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99,求它的总分和平均分的一个算法如下,请将其补充完整:
第一步:取A =89,B =96,C =99.
第二步,_____________________________________________. 第三步,_____________________________________________. 第四步,输出计算结果.
答案:计算总分D =A +B +C
计算平均分E =D 3
5.已知函数y =⎩⎪⎨⎪⎧ -x 2-1x ≤-1,x 3x >-1,试设计一个算法,输入x
的值,求对应的函数值.
^
解:算法如下:
第一步,输入x 的值;
第二步,当x ≤-1时,计算y =-x 2-1,否则执行第三步; 第三步,计算y =x 3;
第四步,输出y .
[课堂小结]
1.算法的特点:有限性、确定性、逻辑性、不唯一性、普遍性.
2.算法设计的要求:
(1)写出的算法必须能够解决一类问题(如判断一个整数是否为质数,求任意一个方程的近似解等),并且能够重复使用.
(2)要使算法尽量简单,步骤尽量少.
$
(3)要保证算法正确,且算法步骤能够一步一步执行,每一步执行的操作必须确切,不能含混不清,而且在有限步后能得到结果.
教材习题答案
第一章算法初步
1.1算法与程序框图
1.算法的概念
[教材习题答案与解析]
[练习]
1.解:第一步,输入任意正实数r.
第二步,计算S=πr2.
-
第三步,输出圆的面积S.
2.解:根据因数的定义,可设计出下面的一个算法:
第一步,判断n是否等于2.若n=2,则n的因数为1,n;若n>2,则执行第二步.
第二步,依次从1到n检验是不是能整除n.若能整除n,则是n 的因数;若不能整除n,则不是n的因数.
第三步,输出n的所有因数.
[易错误区] 对算法含义及特征理解不清致误
[典例] 计算下列各式中S 的值,能设计算法求解的是( )
①S =12+14+18+ (12100)
$
②S =12+14+18+…+12100+…;
③S =12+14+18+…+12n (n ≥1且n ∈N *).
A .①②
B .①③
C .②③
D .①②③
[答案] B
[解析] 算法是用来求解一类问题的,在实际算法中n 的值是具体确定的,算法会根据具体确定的n 来求值计算,所以①③是正确的,而算法的步骤是有限的,即执行有限步骤后一定能解决问题,而②显然不符合有限性,所以②不正确.
[常见误区] 错解
错因剖析 选D
对算法的含义不理解,不明确算法的相关特征,特别是忽略算法的有限性而误选D
[防范措施]
明确算法的含义
(1)算法是为解决某一类问题而设计的一系列可操作或可计算的步骤,通过这些步骤能够有效地解决问题.
(2)算法具有有限性、确定性、有序性和不唯一性的特征,在解题中要灵活应用,如本例中主要考查算法的有限性.
[类题试解]
给出下列说法:
①从北京到上海先乘出租车到火车站,再坐高铁到上海;
②解方程2x+1=0的过程是先移项再把x的系数化为1;
③利用公式C=2πr计算半径为2的圆的周长为2π×2;
④解不等式x2+x-1>0.
其中是算法的是________.
答案:①②③解析:①②给出了解决问题的方法和步骤,是算法;③利用公式计算属于算法;④没有给出解决问题的方法,不是算法.。