白光LED封装的基础知识
- 格式:ppt
- 大小:2.76 MB
- 文档页数:9
给文科生的LED知识大全集随着标准化设备的导入,规模化与模块化的产业过程,技术不再是深不可测,工艺优化,设备优化变成主旋律,未来,掌握了LED基本知识,活用这些知识之后,你就会了解,高深的科技理论不过就是我所推广的简单道理。
叶国光LEDinside做LED这个行业这么久了,很多技术与术语我们都会觉得理所当然,很容易理解,但是细细想又很难系统性地道出个所以然,所以这次我试着来写一篇LED 的基本科普文章,希望对想了解LED的人有所帮助,或者就权当是知识的巩固了,看到最后会发现,活用这些基本知识,会比想象中更简单。
◆发光二极管(LED:Light Emitting Diode)原理介绍▲发光二极管的构造1发光二极管(LED)都是使用「化合物半导体」制作,二种以上的元素键结形成的半导体,称为「化合物半导体」。
例如:砷化镓(GaAs)属于三五族化合物半导体(3A族的镓与5A族的砷)、硒化镉(CdSe)属于二六族化合物半导体(2A族的镉与6A族的硒)等固体材料,化合物半导体的发光效率极佳,因此我们大多利用它来制作发光组件,例如:砷化镓(GaAs)是属于「直接能隙(Direct band gap)」,所以砷化镓晶圆所制作的组件会发光,一般都用来制作发光二极管(LED)、激光二极管(LD)等发光组件。
发光二极管(LED)的构造如图一(a)所示,直插的灯珠外观呈椭圆形,尺寸与一颗绿豆差不多,但是真正发光的部分只有图中的「芯片(chip)」而已,芯片的尺寸与海边的一粒砂子差不多,这么小的一个芯片就可以发出很强的光,由于发光二极管的芯片很小,所以一片2吋的砷化镓晶圆就可以制作数万个芯片,切割以后再封装,形成如图一(a)的外观,发光二极管的制程与硅晶圆的制程相似,都是利用光刻微影、掺杂技术、蚀刻技术、薄膜成长制作而成。
1(图一发光二极管(LED)的构造与工作原理)▲发光二极管的基本原理如果我们将二极管的芯片放大,如图一(b)的氮化镓发光二极管所示,有金属电极,中间有N型与P型的氮化镓与电极,当发光二极管与电池连接时,电子由电池的负极流入N型半导体,空穴由电池的正极流入P型半导体,电子与空穴在P型与N型的接面处结合,并且由芯片的上方发光,经过椭圆形的塑料封装外壳,由于椭圆形的塑料封装外壳类似凸透镜,具有聚光的效果,可以使发出来1的光线「比较集中」。
LED特性和白光LED的基础知识与驱动 很多年来,发光二极管(LED)广泛的应用于状态显示与点阵显示板。
现在,不仅可以选择近期刚刚研发出来的蓝光和白光产品(普遍用于便携设备),而且也能在已有的绿光、红光和黄光产品中选择。
例如,白光LED被认为是彩色显示器的理想背光源。
但是,必须注意这些新型LED产品的固有特性,需要为其设计适当的供电电源。
本文描述了新、旧类型LED的特性,以及对驱动电源的性能要求。
标准红光、绿光和黄光LED 使LED工作的最简单的方式是,用一个电压源通过串接一个电阻与LED相连。
只要工作电压(V B)保持恒定,LED就可以发出恒定强度的光(尽管随着环境温度的升高光强会减小)。
通过改变串联电阻的阻值能够将光强调节至所需要的强度。
对于5mm直径的标准LED,图1给出了其正向导通电压(VF)与正向电流(IF)的函数曲线。
[1] 注意LED的正向压降随着正向电流的增大而增加。
假定工作于10mA正向电流的绿光LED应该有5V的恒定工作电压,那么串接电阻RV 等于(5V -VF,10mA)/10mA = 300。
如数据表中所给出的典型工作条件下的曲线图(图2)所示,其正向导通电压为2V。
图1. 标准红光、绿光和黄光LED具有1.4V至2.6V的正向导通电压范围。
当正向电流低于10mA时,正向导通电压仅仅改变几百毫伏。
图2. 串联电阻和稳压源提供了简单的LED驱动方式。
这类商用二极管采用GaAsP (磷砷化镓)制成。
易于控制,并且被绝大多数工程师所熟知,它们具有如下优点: •所产生的色彩(发射波长)在正向电流、工作电压以及环境温度变化时保持相当的稳定性。
标准绿光LED发射大约565nm的波长,容差仅有25nm。
由于色彩差异非常小,在同时并联驱动几个这样的LED时不会出现问题(如图3所示)。
正向导通电压的正常变化会使光强产生微弱的差异,但这是次要的。
通常可以忽略同一厂商、同一批次的LED之间的差异。
白光LED封装的基础知识白光LED (Light-Emitting Diode) 是一种能够发射出白光的半导体光源。
它是一种高效能、长寿命、无污染、低电压操作和小尺寸的光源,因此在照明、显示、室内和室外装饰等领域得到了广泛应用。
下面是关于白光LED封装的基础知识。
1.白光LED的构成:2.LED芯片:3.封装材料:封装材料是保护LED芯片并对光进行聚焦和散射的重要组成部分。
通常使用的材料有环氧树脂、硅胶、聚合物等,其中环氧树脂是最常见的一种。
封装材料的选择可以影响到LED的耐热性、耐湿性和耐光性等特性。
4.封装类型:常见的白光LED封装类型包括:二氧化硅模制封装(DIP)、瓷制封装、表面贴装(SMT)封装等。
每种封装类型都有不同的优缺点,适用于不同的应用场景。
5.色温和色彩指数:白光LED的发光颜色可以通过不同的荧光或磷光材料来调节,以满足不同的照明需求。
色温是用来描述白光颜色的参数,单位为开尔文(K)。
常见的色温有暖白色(2700-3500K)、自然白色(4000-5000K)、冷白色(5500-6000K)等。
色彩指数(CRI)则用来评估光源显示颜色的准确程度,数值越大代表颜色越自然。
6.光通量和光效:光通量是描述光源总发光量的参数,单位为流明 (lm)。
光效是指光源单位功率所产生的光输出效果,单位为流明/瓦特 (lm/W)。
光通量和光效是评价白光LED性能的重要指标,对于照明应用来说尤为重要。
7.热管理:由于LED的工作过程会产生热量,良好的热管理是确保LED长寿命和稳定性能的关键。
常用的热管理方式包括散热片、散热胶和金属基板等。
8.应用领域:白光LED在照明、显示、室内和室外装饰等领域有广泛应用。
在照明方面,它可以代替传统的白炽灯、荧光灯等光源,用于家庭照明、商业照明、道路照明等;在显示方面,它被广泛应用于电视、显示屏、手机、平板电脑等产品;在室内和室外装饰方面,它被用于灯带、灯泡、车辆装饰等。
白光LED封装由于高辉度蓝光LED的问世,因此利用荧光体与蓝光LED的组合,就可轻易获得白光LED。
目前白光LED已成为可携式信息产品的主要背光照明光源,未来甚至可成为一般家用照明光源。
此外最近几年出现高功率近紫外LED,同样的可利用荧光体变成白光LED,LED的特点是小型、低耗电量、寿命长,若与具备色彩设计自由度、稳定、容易处理等特点的荧光体组合时,就可成为全新的照明光源。
通常LED与荧光体组合时,典型方法是将荧光体设于LED附近,主要原因是希望荧光体能高效率的将LED产生的光线作波长转换,而将荧光体设于光线放射密度较高的区域,对波长转换而言是最简易的方法。
此外荧光体封装方法决定白光LED的发光效率与色调,因此接着将根据白光化的观点,深入探讨LED与荧光体的封装技术。
蓝色LED+YAG荧光体的白光化封装图1是目前已商品化白光LED,具体而言它是将可产生黄光的YAG:Ce荧光体分散于透明的环氧树脂内,再用设于碗杯内的蓝色LED产生的光线激发转换成白光,这种方式的白光发光机制是利用LED产生蓝色光线,其中部份蓝光会激发YAG荧光体变成黄色发光,剩余的蓝光则直在外部进行蓝光与黄光混色进而变成白光,这种方式的特点是结构简单,只需在LED的制作过成中追加荧光体涂布工程即可,因此可以大幅抑制制作成本,此外另一特点是色度调整非常单纯。
图1 蓝光LED+YAG荧光体图2是改变树脂内YAG荧光体浓度之后,LED色坐标plot的结果,由图可知只要色坐标是在LED与YAG荧光体两色坐标形成的直线范围内,就可任意调整色调,依此可知YAG荧光体浓度较低时,蓝色穿透光的比率较多,整体就会呈蓝色基调白光;相对的如果YAG荧光体浓度较高时,黄色转换光的比率较多,整体呈黄色基调白光。
如上所述将部份蓝色LED当作互补色的方式,不需要高密度(与树脂的百分比)的荧光体涂布,因此可以有效降低荧光体的使用量。
一般而言荧光体与树脂的百分比,虽然会随着YAG荧光体的转换效率,与碗杯的形状而改变,不过10~20wt%左右低配合比就能获得白光。
白光LED封装由于高辉度蓝光LED的问世,因此利用荧光体与蓝光LED的组合,就可轻易获得白光LED。
目前白光LED已成为可携式信息产品的主要背光照明光源,未来甚至可成为一般家用照明光源。
此外最近几年出现高功率近紫外LED,同样的可利用荧光体变成白光LED,LED 的特点是小型、低耗电量、寿命长,若与具备色彩设计自由度、稳定、容易处理等特点的荧光体组合时,就可成为全新的照明光源。
通常LED与荧光体组合时,典型方法是将荧光体设于LED附近,主要原因是希望荧光体能高效率的将LED产生的光线作波长转换,而将荧光体设于光线放射密度较高的区域,对波长转换而言是最简易的方法。
此外荧光体封装方法决定白光LED的发光效率与色调,因此接着将根据白光化的观点,深入探讨LED与荧光体的封装技术。
蓝色LED+YAG荧光体的白光化封装图1是目前已商品化白光LED,具体而言它是将可产生黄光的YAG:Ce荧光体分散于透明的环氧树脂内,再用设于碗杯内的蓝色LED产生的光线激发转换成白光,这种方式的白光发光机制是利用LED产生蓝色光线,其中部份蓝光会激发YAG荧光体变成黄色发光,剩余的蓝光则直在外部进行蓝光与黄光混色进而变成白光,这种方式的特点是结构简单,只需在LED的制作过成中追加荧光体涂布工程即可,因此可以大幅抑制制作成本,此外另一特点是色度调整非常单纯。
图1 蓝光LED+YAG荧光体图2是改变树脂内YAG荧光体浓度之后,LED色坐标plot的结果,由图可知只要色坐标是在LED与YAG荧光体两色坐标形成的直线范围内,就可任意调整色调,依此可知YAG荧光体浓度较低时,蓝色穿透光的比率较多,整体就会呈蓝色基调白光;相对的如果YAG荧光体浓度较高时,黄色转换光的比率较多,整体呈黄色基调白光。
如上所述将部份蓝色LED当作互补色的方式,不需要高密度(与树脂的百分比)的荧光体涂布,因此可以有效降低荧光体的使用量。
一般而言荧光体与树脂的百分比,虽然会随着YAG荧光体的转换效率,与碗杯的形状而改变,不过10~20wt%左右低配合比就能获得白光。
LED入门基础知识:LED发光原理、封装形式、技术指标及注意事项关注机械工业出版社E视界:长按上方二维码,识别,加关注。
点击菜单“技能提升”免费学习专业知识,下载免费资源。
发光二极管(Light Emitting Diode,LED),是一种固态的半导体器件,可以直接把电转化为光。
LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。
半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。
但这两种半导体连接起来的时候,它们之间就形成一个PN结。
当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。
而光的波长也就是光的颜色,是由形成PN结的材料决定的。
发光二极管(LED)是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP (磷化镓)、GaAsP(磷砷化镓)等制成的,其核心是PN结。
因此它具有PN结的单向导电特性,即正向导通、反向截止及击穿特性。
此外,在一定条件下,它还具有发光特性。
在正向偏置电压下,电子由N区注入P区,空穴由P区注入N区。
进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。
图1 LED的发光原理假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。
除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、价带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。
发光的复合量相对于非发光复合量的比例越大,光量子效率越高。
由于复合是在少子扩散区内发光的,所以仅在靠近PN结面数微米以内产生光。
理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg (1-1)式中,Eg的单位为电子伏特(eV)。
英文回答:The LED containment process consists of a number of links, including chip wrapping, strangulation, conductive fog solidification, gold bonding, resin encapsulation, detection and sequencing. The chip sealing is the first step in the process, including chip selection, chip—pumping, welding, adhesion, etc. At the chip segment, the purchased LED chip is carefully screened, the eligible chip is selected on the basis of parameters such as brightness, wavelength, etc., and the disqualified chip is phased out. Then the chip was filmed, and the qualified LED chip was taped with an appropriate amount of taped glue on the frame to protect the normal operation of the LED chip; the LED chip was then welded with the LED chip through welding equipment to form the most basic LED containment structure;and finally, the glue was sequestered so that the LED chip was firmly attached to the frame.LED封装工艺流程包括芯片封装、支架接合、导雾固化、金线键合、树脂灌封、检测与排序等多个环节。
LED 封装材料基础知识LED 封装材料主要有环氧树脂,聚碳酸脂,聚甲基丙烯酸甲脂,玻璃,有机硅材料等高透明材料。
其中聚碳酸脂,聚甲基丙烯酸甲脂,玻璃等用作外层透镜材料;环氧树脂,改性环氧树脂,有机硅材料等,主要作为封装材料,亦可作为透镜材料。
而高性能有机硅材料将成为高端LED 封装材料的封装方向之一。
下面将主要介绍有机硅封装材料。
提高LED 封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。
提高折射率可采用向封装材料中引入硫元素,引入形式多为硫醚键、硫脂键等,以环硫形式将硫元素引入聚合物单体,并以环硫基团为反应基团进行聚合则是一种较新的方法。
最新的研发动态,也有将纳米无机材料与聚合物体系复合制备封装材料,还有将金属络合物引入到封装材料,折射率可以达到1.6-1.8,甚至2.0,这样不仅可以提高折射率与耐紫外辐射性,还可提高封装材料的综合性能。
一、胶水基础特性1.1有机硅化合物--聚硅氧烷简介有机硅封装材料主要成分是有机硅化合物。
有机硅化合物是指含有Si-O 键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。
其中,以硅氧键(-Si-0-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。
1.1.1结构其结构是一类以重复的Si-O 键为主链,硅原子上直接连接有机基团的聚合物,其通式为R ’---(Si R R ’ ---O)n --- R ”,其中,R 、R ’、R ”代表基团,如甲基,苯基,羟基,H ,乙烯基等;n为重复的Si-O 键个数(n 不小于2)。
有机硅材料结构的独特性:(1) Si原子上充足的基团将高能量的聚硅氧烷主链屏蔽起来;(2) C-H无极性,使分子间相互作用力十分微弱;(3) Si-O键长较长,Si-O-Si 键键角大。