有理数单元测试题
- 格式:doc
- 大小:108.50 KB
- 文档页数:3
第一部分有理数单元测试1.下列说法错误的是( )A.零是非负数B.零是整数C.零的相反数是零D.零的倒数是零2.下列说法正确的是( )A.绝对值等于3的数是-3B.绝对值小于113的整数是1和-1C.绝对值最小的有理数是1D.3的绝对值是33.下列判断正确的是( )A.12004的相反数是2004; B.12004的相反数是-2004;C.12004的相反数是-12004; D.12004的相反数是12004-4.下列四组有理数大小的比较正确的是( )A.1123->-;B. 11-->-+;C.1123<;D.1123->-5.有理数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b>a>cB.b>-a>cC.a>c>bD.│b│>-a>-c6.数-216不是( )A.有理数B.整数C.负有理数D.自然数7.下列说法正确的是( )A.正整数和负整数统称为整数B.零表示不存在,所以零不是有理数C.非负有理数就是正有理数D.整数和分数统称为有理数8.下列说法错误的个数是( )①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等A.3个B.2个C.1个D.0个9.下列说法正确的是( ).①在+5与-6之间没有正数②在-1与0之间没有负数③在+5与+6之间有无数个正分数④在-1与0之间没有正分数A.仅④正确B.仅③正确C.仅③④正确D.①②④正确10.数a的相反数是-a,那么a表示( )A.负有理数B.正有理数C.正分数D.任意一个数二、填空1.在有理数集合中,最小的正整数是______,最大的负整数是______.2.绝对值最小的有理数是_______.3.相反数最小的负整数是______,相反数最大的正整数是______.4.2.5的相反数是_______,倒数是_____,绝对值是______.5.如果a表示一个有理数,那么-a表示a的______,│a│表示a的_______.6.自行车车轮向顺时针方向旋转200圈记做+200圈, 那么向逆时针方向旋转150圈应记做_________.7. π-的相反数是_____,-a的相反数是________.8.若│y+5│=14,那么y=________.9.在数轴上,离开原点的距离是5的数是__________.10.在数轴上,离开表示数2的点距离是3的点表示的数是_______.三、解答1.写出所有绝对值不大于4的负整数,并在数轴上表示出来.2.若│x-3│+│y+4│+│z-5│=0,求代数式z2-y2+x的值.3.某检修小组乘汽车检修供电线路。
a 10第一章 有理数单元测试一、选择题(每小题4分,共32分)1.下列说法正确的是( ) A.所有的整数都是正数 B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数 2.12的相反数的绝对值是( ) A.-12 B.2 C.-2 D.12 3.有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( )A.a>bB.a<bC.ab>0D.0a b> 4.在数轴上,原点及原点右边的点表示的数是( )A.正数B.负数C.非正数D.非负数5.下列各组数中,不是互为相反意义的量的是( )A.收入200元与支出20元B.上升10米和下降7米C.超过0.05mm 与不足0.03mD.增大2岁与减少2升6.如果一个数的平方等于它的倒数,那么这个数一定是( )A.0B.1C.-1D.±17.4604608取近似值,保留三个有效数字,结果是( )A.4.60×106B.4600000C.4.61×106D.4.605×1068.下列运算正确的是( ) A.-22÷(-2)2=1 B. 31128327⎛⎫-=- ⎪⎝⎭C.1352535-÷⨯=- D. 133( 3.25)6 3.2532.544⨯--⨯=- 二、填空题(每小题3分,共24分) 9.在数+8.3, 4-,8.0-, 51-, 0, 90, 334-,|24|--中,________________是正数,__________________是负数, 整数.10.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃, 这时气温是__.11.一个数的相反数的倒数是113-,这个数是________.12.数轴上到原点的距离是3个单位长度的点表示的数是______.13.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个.14. 平方等于641 的数是 ,立方等于641 的数是 ,平方等于它本身的数是 .15.绝对值小于5的所有的整数的和_______.16.若│x-1│+(y+2)2=0,则x-y=___________.三、解答题:(共44分)17.计算题(每题5分,共20分)(1)(-12)÷4×(-6)÷2 (2) 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭(3) 111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (4) 232121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭18.(8分)若│a │=2,b=-3,c 是最大的负整数,求a+b-c 的值.19.(8分)检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发, 到收工时,行走记录为(单位:千米):+8,-9,+4,+7,-2,-10,+18,-3,+7,+5回答下列问题:(每题5分,共10分)(1)收工时在A 地的哪边?距A 地多少千米?(2)若每千米耗油0.3升,问从A 地出发到收工时,共耗油多少升?20.(8分)某工厂向银行申请了甲种贷款5105.1⨯元,乙种贷款5100.2⨯元,甲种贷款每年的年利率为7%,乙种贷款每年的年利率为6%,问该厂每年付出的利息是多少元?(用科学记数法表示)参考答案一、选择题(每小题4分,共32分)CDADD BAD二、填空题(每小题3分,共24分) 9. +8.3 90, -4 -0.8 -15 -343 -24-, -4 0 90 -24-;10. -1℃; 11. 34; 12. ±3; 13. 512(即29 = 512); 14. ±18,14,10; 15. 0;16. 3.三、解答题(每小题10分,共30分)17.(1)(-12)÷4×(-6)÷2=(-12)×14×(-6)×12=9. (2)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭ =25160.25(4)(5)(4)1080908-⨯-⨯-⨯-⨯-=--=-. (3)111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ =111311123124244---++ =1111331111230434422444⎛⎫⎛⎫-++--+=-+=- ⎪ ⎪⎝⎭⎝⎭. (4)232121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭ =4412744993⎛⎫-⨯⨯+-⨯- ⎪⎝⎭=.1644033-++=.18.∵│a │=2,∴a=±2.c 是最大的负整数,∴c=-1.当a=2时,a+b-c=2-3-(-1)= 0.当a=-2时a+b-c=-2-3-(-1)=-4.19.(1)∵8-9+4+7-2-10+18-3+7+5=8+4+7+18+7+5-9-10-2-3=25,∴在A 处的东边25米处.(2)∵│8│+│-9│+│4│+│7│+│-2│+│-10│+│18│+│-3│+│7│+│5│=73千米,73×0.3=21.9升,∴从出发到收工共耗油21.9升.20. 1.5×510×7%+2.0×510×6%=2.25×410(元).。
有理数单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 有理数-3和5的和是多少?A. -8B. 2C. -2D. 83. 哪个是有理数的相反数?A. 3B. -3C. 0D. 1/24. 绝对值是5的有理数有几个?A. 1B. 2C. 3D. 45. 下列哪个表达式等于0?A. -3 + 3B. -3 - 5C. -3 × 0D. -3 ÷ 3二、填空题(每题2分,共20分)6. 有理数-7的绝对值是________。
7. 有理数-2和4的差是________。
8. 有理数-6和-3的乘积是________。
9. 有理数-4的倒数是________。
10. 若a是有理数,且a的相反数是-5,则a=________。
三、计算题(每题5分,共30分)11. 计算下列表达式的值:(-3) × (-2) + 4 ÷ (-2)。
12. 解下列方程:3x - 7 = 8。
13. 计算下列各数的绝对值:-12,0,5.5。
14. 求下列数的相反数:-9,3/4,0。
四、解答题(每题10分,共30分)15. 某商店在一天内卖出了价值为-500元的商品(亏损),同时又购入了价值为300元的商品。
请问这一天商店的净亏损是多少?16. 某工厂在一个月内生产了200件产品,每件产品的成本是5元,销售价格是10元。
请问工厂这个月的纯利润是多少?17. 某学生在一次数学测验中得了85分,第二次测验得了90分,第三次测验得了75分。
请问该学生这三次测验的平均分是多少?答案一、选择题1. D2. C3. B4. B5. A二、填空题6. 77. -68. 189. -1/410. 5三、计算题11. 412. x = 513. 12,0,5.514. 9,-3/4,0四、解答题15. 净亏损200元16. 纯利润1000元17. 平均分81.67分(保留两位小数)结束语本测试题旨在检验学生对有理数的基本概念、运算规则和实际应用的理解。
《有理数》单元测试卷基础部分一、选择题(本大题共10小题,共40分):1、在–1,–2,1,2四个数中,最大的一个数是( ) (A )–1 (B )–2 (C )1 (D )22、有理数31的相反数是( )(A )31 (B )31- (C )3 (D ) –33、有理数–3的倒数是( ) (A )–3 (B )31-(C )3 (D )31 4、计算:(+1)+(–2)等于( )(A )–l (B ) 1 (C )–3 (D )35、我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是( )(A )4101678⨯千瓦(B )61078.16⨯千瓦(C )710678.1⨯千瓦(D )8101678.0⨯千瓦6、下列说法中,正确的是( )(A)相反数等于它本身的有理数只有0; (B)倒数等于它本身的有理数只有1 (C)绝对值等于它本身的有理数只有0; (D)平方结果等于它本身的有理数只有17、大于–3.5,小于2.5的整数共有( )个。
(A )6 (B )5 (C )4 (D )38、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( ) (A )2 (B )–2 (C )1 (D )–1 9、如果a a =||,那么a 是( )(A )0 (B )0和1 (C )正数 (D )非负数10、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大 二、填空题:(本大题共4小题,共20分)11、如果向银行存入人民币20元记作+20元,那么从银行取出人民币32.2元记作________。
12、比较大小:–π________–3.14(填=,>,<号=。
初一数学有理数单元测试题一、选择题(每题2分,共20分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 如果a和b是有理数,且a + b = 0,那么a和b的关系是:A. 相等B. 互为相反数C. 互为倒数D. 互为倍数3. 以下哪个表达式的结果不是有理数?A. √4B. 2^3C. √9D. 3.14154. 两个有理数相除,结果为:A. 一定为有理数B. 可能是无理数C. 一定是无理数D. 可能是有理数,也可能是无理数5. 下列哪个数的绝对值最小?A. -5B. 3C. 0D. 7二、填空题(每题2分,共20分)6. 若|a| = 5,且a > 0,则a = _______。
7. 将-23.5转化为分数形式为 _______。
8. 两个数的和为-6,其中一个数为-3,另一个数为 _______。
9. 计算(-7) × (-8) = _______。
10. 若a = -4,b = 2,则a + b = _______。
三、计算题(每题5分,共30分)11. 计算下列各题,并写出计算过程:(1) 3.5 + (-2.1)(2) (-3) × 412. 计算下列各题,并写出计算过程:(1) |-12| - 5(2) (-1)^3 + 2^213. 计算下列各题,并写出计算过程:(1) (-7) ÷ (-2)(2) (-5) × (-3) + 414. 解下列方程,并写出解题过程:(1) 2x + 5 = 11(2) 3y - 7 = 8四、解答题(每题10分,共30分)15. 某商店在一天内卖出了100件商品,每件商品的售价为20元。
如果每件商品的成本为15元,求商店这一天的纯利润。
16. 某工厂计划在一个月内生产500个零件,每个零件的成本为10元,计划每个零件的售价为15元。
如果实际生产了480个零件,并且每个零件的售价为12元,求工厂这个月的纯利润。
有理数单元测试及答案有理数单元检测试题一、填空题(本题共有9个小题,每小题2分,共18分)1、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么惯上将2楼记为1;地下第一层记作-1;数-2的实际意义为地下第三层,数+9的实际意义为地面上的第十层。
2、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为-5.3、某数的绝对值是5,那么这个数是-5或5.(保留四个有效数字)4、(4/3)²=16/9,(-4/3)²=16/9.5、数轴上和原点的距离等于3的点表示的有理数是-3或3.6、计算:(-1)+(-1)=-2.7、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m=-1.8、(+5.7)的相反数与(-7.1)的绝对值的和是12.8.9、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配12辆汽车。
二、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)10、下列说法正确的是(C)。
A。
整数就是正整数和负整数B。
负整数的相反数就是非负整数C。
有理数中不是负数就是正数D。
零是自然数,但不是正整数11、下列各对数中,数值相等的是(A)。
A。
-2与(-2)B。
-3与(-3)C。
-3×2与-3×2D。
-( -3)与-( -2)12、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是(D)。
A。
-12B。
-9C。
-0.01D。
-213、如果一个数的平方与这个数的差等于1,那么这个数只能是(B)。
A。
-1B。
1C。
0D。
或114、绝对值大于或等于1,而小于4的所有的正整数的和是(C)。
A。
8B。
7C。
6D。
515、计算:(-2)+(-2)的是(D)。
A。
2B。
-1C。
-2D。
有理数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是有理数?A. πB. √2C. 1/3D. 0.33333(无限循环)答案:C2. 如果a和b都是有理数,且a > b,那么下列哪个选项是正确的?A. a + b > 0B. a - b > 0C. a × b > 0D. a ÷ b > 0答案:B3. 两个负有理数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B4. 下列哪个数是无理数?A. 0.5B. √3C. 1/7D. 3.1415答案:B5. 有理数a和b的绝对值相等,且a < b,那么a和b的和是多少?A. aB. bC. 0D. -2a答案:D二、填空题(每题2分,共10分)6. 如果一个有理数的绝对值是5,那么这个数可以是______或______。
答案:5,-57. 两个有理数相除,如果商是正数,那么这两个数的符号必须______。
答案:相同8. 如果一个有理数的平方是9,那么这个数可以是______或______。
答案:3,-39. 有理数的加法运算满足交换律,即a + b = ______ + a。
答案:b10. 有理数的乘法运算满足结合律,即(a × b) × c = a ×(______ × c)。
答案:b三、计算题(每题5分,共15分)11. 计算下列表达式的值:(-3) × 2 + 4 × (-2) - 6。
答案:原式 = -6 - 8 - 6 = -2012. 计算下列表达式的值:(-4)² - 3 × 2 - 5。
答案:原式 = 16 - 6 - 5 = 513. 计算下列表达式的值:(-2)³ + 3 × (-1/3) - 1。
答案:原式 = -8 - 1 - 1 = -10四、解答题(每题10分,共20分)14. 某商店在一天内卖出了10件商品,每件商品的售价为x元,成本为y元。
有理单元测试题及答案一、选择题1. 下列哪个数是有理数?A. πB. √2C. 3.14D. 0.3333...答案:C2. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 都不是答案:C3. 以下哪个运算结果不是有理数?A. 2 + 3B. 4 - 6C. √4D. 2 / 3答案:B二、填空题4. 如果一个数的相反数是-7,那么这个数是________。
答案:75. 绝对值不大于5的所有整数有:-5,-4,-3,-2,-1,0,1,2,3,4,5。
三、简答题6. 请解释什么是有理数,并给出两个例子。
答案:有理数是可以表示为两个整数的比的数,即形式为a/b,其中a和b都是整数,且b≠0。
例如,1/2和3都是有理数。
7. 请解释绝对值的概念,并给出一个绝对值的例子。
答案:绝对值是一个数去掉其符号后的值,表示该数到数轴原点的距离。
例如,|-5|的绝对值是5。
四、计算题8. 计算下列表达式的值:(1) |-7|(2) 3 + (-2)(3) (-1) × 5答案:(1) 7(2) 1(3) -5五、解答题9. 某商店在一天内卖出了价值为-100元的商品(亏损),又卖出了价值为150元的商品(盈利)。
请问该商店当天的总盈利或亏损是多少?答案:该商店当天的总盈利为150 - 100 = 50元。
结束语:通过本单元测试题,我们复习了有理数的基本概念、性质以及相关的运算。
希望同学们能够通过练习加深对有理数的理解,并在实际问题中灵活运用。
有理数单元测试题一、选择题(本大题共10小题,共30分) 1.下列各数表示准确数的是()A. 小明同学买了6支铅笔B. 小亮同学的身高是1.72mC. 教室的面积是60m2D. 小兰在菜市场买了3斤西红柿1.下列说法:①近似数3.45精确到百分位;②近似数0.50精确到百分位,③2019.5精确到个位是2019.其中说法正确的个数有()A. 1个B. 2个C. 3个D. 0个2.关于(−3)4的正确说法是()A. −3是底数,4是幂B. −3是底数,4是指数,−12是幂C. 3是底数,4是指数,81是幂D. −3是底数,4是指数,81是幂3.在算式|5□(−3)|+4中的□所在位置,填入下列哪种运算符号,计算出来的值最大()A. +B. −C. ×D. ÷4.已知xy>0,x+y<0,则()A. x>0,y>0B. x<0,y<0C. x>0,y<0D. x<0,y>05.若a+b<0,ba>0,则下列结论成立的是()A. a>0,b>0B. a<0,b<0C. a>0,b<0D. a<0,b>06.计算1357×316最简便的方法是()A. (13+57)×316B. (14−27)×316C. (10+357)×316D. (16−227)×3167.计算(−1)2017−(−1)2018等于()A. 0B. 2C. −2D. −18.用科学记数法表示136000,其结果是()A. 0.136×106B. 1.36×105C. 136×103D. 136×1069.有理数a、b在数轴上的对应位置如图所示,则a+b的值为()A. 正数B. 负数C. 0D. 非正数二、填空题(本大题共10小题,共30分)10.四舍五入求近似值:0.7951≈__________ (精确到0.01)11.已知2.73×10n是一个7位数,则n=________,原数为________.12.已知a,b互为相反数,c,d互为倒数,m的绝对值等于2.则a+ba+b+c−2cd+m=0的值为________.13.若|m|=7,|n|=4,那么mn=________.14.计算:(−22)×57×(−311)×(−21)=______.15.计算:1+(−2)+3+(−4)+5+(−6)+⋯+99+(−100)=______.16.已知两个数的和为−225,其中一个数为−134,则另一个数是________.17.已知|x|=7,|y|=2,且x<y,则x−y的值为________.18.若a是−[−(−7)]的相反数,则a=________.19.如果2a−5与−7互为相反数,则a=________.三、计算题21、(本大题共1小题,共6×4=24分)(1)(−1)100×5+(−2)4÷4;(2)(−3)3−3×(−13)4;(3)76×(16−13)×314÷35;(4)(−10)3+[(−4)2−(1−32)×2];(5)−23÷49×(−23)2;(6)4+(−2)3×5−(−0.28)÷4.四、解答题(本大题共6小题,共36分)20.已知数轴上有点A,B,A,B两点之间的距离是1个单位长度,点A到原点O的距离是3个单位长度,那么点B对应的数可能是多少?(5分)21.在活动课上,有6名学生用橡皮泥做了6个乒乓球,直径可以有0.02毫米的误差,超过规定直径的毫米数记作正数,不足的记为负数,检查结果如下表:(1)请你指出哪些同学做的乒乓球是合乎要求的?(2)指出合乎要求的乒乓球中哪个同学做的质量最好?哪个同学做的质量较差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名;(4)用学过的绝对值知识来说明以上问题.(1+2+2+1=6分)22.已知a=−212,b=−314,c=413,求下列各式的值.(3+3=6分)(1)a−b+c;(2)a−b−c.23.已知a、b互为相反数,c、d互为倒数,m是绝对值等于2的数,求:a+ba+b+c+m2−cd 的值.(5分)24.观察下面三行数.(2+2+3=7分)−2,4,−8,16,−32,64,…;−4,2,−10,14,−34,62,…;4,−8,16,−32,64,−128,….(1)第一行数按什么规律排列?(2)第二行、第三行和第一行分别有什么关系?(3)取每行的第100个数,计算这三个数的和.25.观察下列等式:(4+3=7分)第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);第4个等式:a4=17×9=12×(17−19);……请解答下列问题:(1)按以上规律列出第5个等式:a5=________=________;(2)用含n的式子表示第n个等式:a n=____________=____________(n为正整数);(3)求a1+a2+a3+a4+⋯+a100的值.有理数测试题答案【答案】1. A2. B3. D4. C5. B6. B7. D8. C9. B10. A11. 0.8012. 6;273000013. 0或−414. ±2815. −9016. −5017. −132018. −9或−519. 720. 621. 解:(1)原式=1×5+16÷4=5+4=9;(2)原式=−27−3×181=−27−1 27=−27127;(3)原式=76×(−16)×314×53=−572;(4)原式=−1000+[16−(−8)×2]=−1000+(16+16)=−1000+16+16 =−968;(5)原式=−8×94×49=−8;(6)原式=4+(−8)×5+0.07=4−40+0.07 =−35.93.22. 解:当点A 表示3时,点B 表示的数是2或4,当点A 表示−3时,点B 表示的数是−2或−4.23. 解:(1)∵绝对值小于0.02的数有−0.017,−0.011,∴张兵、蔡伟做的乒乓球是合乎要求的; (2)∵|−0.011|<|−0.017|,∴蔡伟做的质量最好,张兵做的质量较差;(3)∵|−0.011|<|−0.017|<|−0.021|<|+0.022|<|+0.023|<|+0.031|, ∴从最好到最差排名为:蔡伟、张兵、余佳、赵平、王敏、李明; (4)这是绝对值在实际生活中的应用,对误差来说绝对值越小越好.24. 解:(1)原式=(−212)−(−314)+413=−52+134+133=−30+39+5212=6112;(2)原式=(−212)−(−314)−413=−52+134−133=−30+39−5212=−4312.25. 解:∵a 、b 互为相反数,c 、d 互为倒数,m 是绝对值等于2的数,∴a +b =0,cd =1,m 2=4, ∴a+ba+b+c +m 2−cd =0+4−1=3.26. 解:(1)第一行数的规律是:从第一个数开始,后面一个数是前面一个数乘−2得到的,即−2,(−2)2,(−2)3,(−2)4……, 则第n 个数为(−2)n ;(2)第一行数−2对应得出第二行的数,即(−2)n −2; 第一行数×(−2)对应得出第三行的数,即(−2)n+1; (3)∵第一行的第100个数为(−2)100, 第二行的第100个数为(−2)100−2,;第三行的第100个数为(−2)100×(−2)=(−2)101(−2)100+[(−2)100−2]+(−2)101=(−2)100+(−2)100+(−2)101−2 =(−2)100(1+1−2)−2=−2.27. 解:(1)19×11 12×(19−111);1×(12n−1−12n+1);(3)a1+a2+a3+a4+⋯+a100=12×(1−13)+12×(13−15)+12×(15−17)+12×(17−19)+···+12×(1199−1201) =12×(1−13+13−15+15−17+17−19+···+1199−1201)=1×(1−1)=12×200201=100201.。
《有 理 数》 单 元 综 合 测 试 题班级 --- 姓名 -------试卷满分 120 分.考试时间 100分钟 .一、选择题(每小题 3分,共 30 分)1.下列说法正确的是()A .任何负数都小于它的相反数B .零除以任何数都等于零22C .若 a b ,则 a 2 b 2D .两个负数比较大小,大的反而小 2.如果一个数的绝对值等于它的相反数,那么这个数()A .必为正数B .必为负数 3.当a 、b 互为相反数时,下列各式一定成立的是()4. 3.14 的计算结果是( )C .一定不是正数D .不能确定正负b A .aB .aC .a b 0D .ab 0A .0B .3.14C . 3.14D . 3.145.a 为有理数,则下列各式成立的是(A.a2 0 B.1 a2 0C.( a) 0 D.a2 1 06.如果一个数的平方与这个数的绝对值相等,那么这个数是 () A.0 B.1 C.-1 D.0,1或-1 7.若 3.0860 是四舍五入得到的近似数,则下列说法中正确的是( )A.它精确到0.00001B.它精确到万分位C.它精确到0.001D.它精确到千分位8.已知a0,1 b 0,则a ,ab ,ab2按从小到大的顺序排列为( )A.a ab ab2B.ab2a ab C.a b a b2a D .a ab2ab 9. 下列各组运算中,其值最小的是( )A.( 3 2)2B.( 3) ( 2)C.( 3)2 ( 2)2D.( 3)2 ( 2)10. 几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是()A .28 B.33 C.45 D.57二、填空题(每小题3分,共24 分)11.绝对值小于 5 的整数共有______________________________ 个。
12.当a b 0时,1__________ 1(填“>”“ =”或“<”)。
有理数单元测试题
一、认真选一选(每题3分,共30分)
1.下列说法正确的是( )
A .有最小的正数
B .有最小的自然数
C .有最大的有理数
D .无最大的负整数
2.下列说法正确的是( )
A .倒数等于它本身的数只有1
B .平方等于它本身的数只有1
C .立方等于它本身的数只有1
D .正数的绝对值是它本身
3.如图 , 那么下列结论正确的是( )
A .a 比b 大
B .b 比a 大
C .a 、b 一样大
D .a 、b 的大小无法确定
4.两个有理数相除,其商是负数,则这两个有理数( )
A .都是负数
B .都是正数
C .一正数一负数
D .有一个是零
5.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交水稻平均亩产820
千克.某地今年计划栽插这种超级杂交水稻3 000亩,预计该地今年收获这种超级杂交水稻的总产量 (用科学记数法表示)是( )
A .2.5×106千克
B .2.5×105千克
C .2.46×106千克
D .2.46×105千克
6.若︱2a ︱=-2a ,则a 一定是( )
A .正数
B .负数
C .正数或零
D .负数或零 7. 如果a 是负数,那么-a ,2a ,a+│a │,||a a
这四个数中是负数的个数 为( )。
A.1个
B.2个
C.3个
D.4个
8.在数轴上,把表示-4的点移动2个单位长度后,所得到的对应点表示的数是( )
A.-1
B.-6
C.-2或-6
D.无法确定
9若X 与3互为相反数,则∣X ∣与3 的和是 ( )
A.-3
B.0
C.3
D.6
10.一个数的立方是它本身,这个数是( )
A.1
B.-1,1
C.0
D.-1,1,0 二、认真填一填(每空2分,共30分)
11. -23
的相反数是 ;倒数是 ;绝对值是 . 12.计算:19972×0= ; 48÷(-6) = ;
-12 ×(-13 ) = ; -1.25÷(-14
) = .
13.计算:(-2)3= ;(-1)10= ;--32= .
14.在近似数6.48中,精确到 位,有 个有效数字.
15.若│-5│=4+m ,则m= ;若│x-21
│+(2y+1)2=0,则x 2+y 3 的值
= 。
16.如果x <0,y >0且x 2=4,y 2 =9,那么x +y =
三、计算下列各题(每小题6分,共24分)
17.(-5)×6+(-125) ÷(-5) 18.312 +(-12 )-(-13 )+223
19.(23 -14 -38 +524 )×48 20. -18÷(-3)2+5×(-12
)3-(-15) ÷5
四、应用题(每题8分,共16分)
21.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)这10名同学中最高分是多少?最低分是多少?
(2)10名同学中,低于80分的所占的百分比是多少?
(3)10名同学的平均成绩是多少?
22.一个病人每天下午需要测量血压,下表为病人周一到周五收缩压的变化情况,该病人上周日的收缩压为160单位.
问:(1)本周哪一天血压最高?哪一天最低?
(2)与上周日相比,病人周五的血压是上升了还是下降了?。