垂径定理教学设计
- 格式:doc
- 大小:40.50 KB
- 文档页数:18
垂径定理教学设计一、教学目标:1. 理解垂径定理的定义和几何意义;2. 掌握垂径定理的基本运用;3. 培养学生的几何思维和逻辑推理能力。
二、教学内容:垂径定理是平面几何中的重要定理,它为解决与圆相关的问题提供了有力的工具。
垂径定理是指,如果一个直径的两个端点与圆上的两点相连,并且这两条线段相互垂直,则这两条线段的中点一定在圆上。
三、教学过程:1. 理论讲解(15分钟)a. 引入垂径定理的概念,解释定理的定义和意义;b. 对与垂径定理相关的基本术语进行解释,如直径、垂直等;c. 展示垂径定理的证明过程,说明定理的正确性和普适性。
2. 实例演示(20分钟)a. 通过几个具体的实例,演示垂径定理的运用方法;b. 教师可以将实例分为直接应用和间接应用两种情况,让学生思考不同情况下如何运用垂径定理解决问题;c. 引导学生进行讨论和解答,帮助他们理解垂径定理的应用。
3. 案例分析(25分钟)a. 布置几个与垂径定理相关的问题;b. 学生以小组形式进行分析和解答,并展示他们的思路和解题过程;c. 教师根据学生的表现和分析结果,对解题思路进行点评和指导。
4. 提升拓展(20分钟)a. 强化学生对垂径定理的理解,通过练习题检验学生的掌握程度;b. 针对高阶问题和拓展思考,引导学生运用垂径定理解决更复杂的几何问题;c. 鼓励学生进行思考和讨论,培养他们的逻辑推理能力和创新思维。
四、教学评价:1. 在教学过程中,教师可以通过观察学生的参与度和回答问题的准确度,进行个别或整体评价;2. 在案例分析环节,教师可以根据学生的表现,评价他们的分析能力和解题思路;3. 练习题的考查结果可以用来评价学生对垂径定理掌握的程度。
五、教学反思:垂径定理是一个相对简单但重要的定理,通过教学设计和教学过程的安排,可以提高学生对该定理的理解和应用能力。
在教学中,要注意引导学生进行思辨和探究,并关注学生的自主学习能力的培养。
此外,可增加一些趣味性的教学方法,如游戏、实验等,以激发学生的学习兴趣和主动性。
《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标:让学生掌握垂径定理的内容及其应用。
1.2 过程与方法目标:通过观察、分析、推理等方法,引导学生发现垂径定理。
1.3 情感态度与价值观目标:培养学生对数学的兴趣,培养学生的观察能力和思考能力。
第二章:教学内容2.1 教材分析:本节课主要通过探究圆中的性质,引导学生发现垂径定理。
2.2 学情分析:学生在学习本节课之前,已经掌握了圆的基本性质和几何图形的观察分析能力。
第三章:教学过程3.1 导入:通过展示一些与圆有关的实际问题,引发学生对圆的性质的思考。
3.2 新课导入:引导学生观察圆中的垂径关系,引导学生发现垂径定理。
3.3 讲解与演示:通过几何画板或实物模型,讲解垂径定理的内容,并展示其应用。
3.4 练习与讨论:设计一些练习题,让学生巩固垂径定理的理解,并进行小组讨论。
第四章:教学策略4.1 教学方法:采用问题驱动法、观察分析法、小组合作法等教学方法。
4.2 教学媒体:几何画板、实物模型、PPT等。
第五章:教学评价5.1 评价标准:学生能够正确理解垂径定理,能够运用垂径定理解决实际问题。
5.2 评价方式:课堂问答、练习题、小组讨论等。
第六章:教学资源6.1 教具准备:几何画板、实物模型、PPT、练习题等。
6.2 教学环境:教室环境舒适,学生座位有序,教学设备齐全。
第七章:教学步骤7.1 回顾圆的性质:回顾已学过的圆的性质,如圆的周长、直径等。
7.2 观察垂径关系:引导学生观察圆中的垂径关系,发现垂径定理。
7.3 讲解垂径定理:详细讲解垂径定理的内容,解释其含义和应用。
7.4 演示应用实例:通过几何画板或实物模型,展示垂径定理的应用实例。
7.5 练习与巩固:设计一些练习题,让学生运用垂径定理解决问题,巩固所学知识。
第八章:作业布置8.1 设计一些相关的练习题,让学生巩固垂径定理的理解。
8.2 鼓励学生自主探究,寻找生活中的圆的性质应用,增强对数学的应用意识。
第1篇教材分析本节课是九上《圆的基本性质》的学习内容,是学生在学习了圆的基本概念之后,研究的圆的第一个重要性质——垂径定理。
该定理是以圆的轴对称性为认识起点,在观察、猜想、操作的基础上探究得到的。
揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的内在关系,是圆的轴对称性的具体化。
垂径定理及其推论是证明圆内线段相等、角相等、弧相等、垂直关系的重要依据,同时也为与圆相关的计算和作图提供了方法和依据。
本课还重视圆的知识与三角形知识之间的转化,为后续的学习和探究奠定了基础。
学情分析本节课的授课对象是九年级的学生,经过两年的几何学习,有一定的合情说理能力。
通过本章前一部分的学习,掌握了圆的一些概念,已经历“探索、发现、猜想、证明”的过程,同时在以前的数学学习过程中,学生也有过很多合作学习的过程,具有一定的合作学习经验和合作交流的能力。
学习目标1.初步掌握垂径定理,会简单运用垂径定理解决相关数学问题。
2.经历垂径定理的探究过程,进一步体验“观察-猜想-实验-证明”的方法。
3.会把相关实际问题抽象为数学问题并加以解决,积累数学建模活动的基本经验。
重点难点学习重点:探究垂径定理并证明,能初步运用垂径定理解决相关数学问题。
学习难点:垂径定理的导出有一定难度,以及如何运用垂径定理分析和解决问题。
学习过程(一)探索垂径定理1.动一动:观察圆形纸片,老师找不到圆心了,不用工具只用折叠的办法,你能帮助找到圆心吗?2.想一想:两条折痕其实是圆的什么?对折后能完全重合,说明圆具有什么性质?【教师评价】圆是一个轴对称图形,它的对称轴是直径所在的直线。
【设计意图】本节课首先通过动一动,想一想,观察得到圆具有轴对称性。
3.已知:如图,CD是⊙O的直径,AB是⊙O的弦,CD⊥AB,垂足是点E.图中有哪些相等的线段和弧(半圆除外)?4.已知:如图,在⊙O中,直径CD⊥AB,垂足是点E。
求证:AE=BE,=,=。
图片【教师评价】在运用等腰三角形“三线合一”和圆的轴对称性来证明结论之后,特别指出当遇到“弦恰为直径”这一特殊情况时,无法构造等腰三角形,需另外证明。
高中数学垂径定理教案一、教学目标:1. 知识与能力:掌握垂径定理的概念,能够应用垂径定理解决相关问题。
2. 过程与方法:运用几何知识和推理方法,探究垂径定理的原理和应用。
3. 情感态度与价值观:培养学生的观察和推理能力,增强学生对几何学习的兴趣和自信心。
二、教学重难点:1. 掌握垂径定理的内容和概念。
2. 能够灵活运用垂径定理解决相关问题。
三、教学内容及方法:1. 垂径定理的概念:通过展示示意图,引导学生理解垂径定理的基本原理。
2. 垂径定理的证明:以几何推理为基础,让学生自行探究垂径定理的证明过程。
3. 垂径定理的应用:通过具体案例演练,让学生掌握灵活运用垂径定理解决相关问题的方法。
四、教学过程:1. 导入:通过展示一个圆和其直径的示意图,引出垂径定理的概念。
2. 学习:讲解垂径定理的内容和原理,引导学生思考垂线与半径的关系。
3. 实践:学生自行探究垂径定理的证明过程,进行思维导图整理。
4. 演练:通过案例分析和问题讨论,让学生灵活运用垂径定理,解决相关问题。
5. 总结:总结本节课的学习内容,强化垂径定理的重点和难点。
五、作业布置:1. 完成课堂练习,加深对垂径定理的理解。
2. 预习下节课内容,做好相关准备。
六、教学评价:1. 课堂表现:学生能够积极参与讨论,表达自己的观点和想法。
2. 作业质量:学生能够独立完成作业,运用垂径定理解决实际问题。
3. 考试成绩:学生在考试中能够准确运用垂径定理,获得理想的成绩。
七、教学反思:1. 教学方法:适当运用案例分析和问题讨论,提高学生对垂径定理的应用能力。
2. 教学内容:加强垂径定理的相关练习,巩固学生对垂径定理的理解和掌握。
以上是本次垂径定理教学范本,欢迎老师们根据实际情况进行调整和完善。
祝教学顺利!。
垂径定理优秀教学设计(教案)一、教学内容本节课为人教版数学四年级下册第七单元《几何图形》中的“垂径定理”。
教材通过生活中的实例,引导学生探究圆的性质,掌握垂径定理,并运用该定理解决实际问题。
二、教学目标1. 让学生通过观察、操作、探究,掌握垂径定理,提高空间想象能力。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生合作学习、积极思考的良好学习习惯。
三、教学难点与重点重点:掌握垂径定理及运用。
难点:理解并证明垂径定理。
四、教具与学具准备教具:PPT、黑板、粉笔。
学具:圆、直尺、三角板、圆规。
五、教学过程1. 情境引入:利用PPT展示生活中的圆形物体,如地球、篮球等,引导学生关注圆的性质。
提问:“你们知道圆有哪些性质吗?”2. 自主探究:3. 小组交流:4. 例题讲解:利用PPT展示例题,如:“在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。
”让学生独立思考,然后讲解解题思路,引导学生运用垂径定理解决问题。
5. 随堂练习:出示随堂练习题,如:“已知圆的直径为10cm,求证:垂直于直径的线段也是10cm。
”学生独立完成练习,教师巡回指导,及时纠正错误。
6. 巩固提高:出示拓展题目,如:“在圆中,已知一条弦长为8cm,求证:垂直于该弦的线段也是8cm。
”学生分组讨论,运用垂径定理解决问题。
7. 课堂小结:六、板书设计板书垂径定理板书内容:1. 圆的性质:圆中心到圆上任意一点的距离相等。
2. 垂径定理:垂直于直径的线段也是直径。
七、作业设计1. 请用文字和图形描述垂径定理。
答案:垂径定理:垂直于直径的线段也是直径。
在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。
答案:略。
八、课后反思及拓展延伸本节课通过生活中的实例,引导学生探究圆的性质,掌握垂径定理。
在教学过程中,注重培养学生的动手操作能力、观察能力和空间想象能力。
课堂练习和拓展延伸环节,让学生运用所学知识解决实际问题,提高学生的数学应用能力。
《垂径定理》教学设计教案第一章:导入教学目标:1. 激发学生对垂径定理的兴趣。
2. 引导学生通过实际问题发现垂径定理。
教学内容:1. 引导学生回顾圆的性质和基本概念。
2. 提出问题:在圆中,如何判断一条直线是否垂直于一条弦?教学活动:1. 利用实物或图片展示圆和直线,引导学生观察和思考。
2. 引导学生通过实际操作,尝试判断直线是否垂直于弦。
教学评估:1. 观察学生在实际操作中的表现,了解他们对垂径定理的理解程度。
第二章:探索垂径定理教学目标:1. 帮助学生理解和掌握垂径定理的内容。
2. 培养学生通过几何推理解决问题的能力。
教学内容:1. 引导学生通过几何推理,探索垂径定理。
2. 引导学生验证垂径定理的正确性。
教学活动:1. 引导学生通过画图和几何推理,探索垂径定理。
2. 组织学生进行小组讨论,分享各自的解题思路和方法。
教学评估:1. 观察学生在探索过程中的表现,了解他们的思考和解决问题的能力。
第三章:应用垂径定理教学目标:1. 帮助学生掌握垂径定理的应用方法。
2. 培养学生解决实际问题的能力。
教学内容:1. 引导学生学习和掌握垂径定理的应用方法。
2. 引导学生运用垂径定理解决实际问题。
教学活动:1. 引导学生学习和掌握垂径定理的应用方法。
2. 组织学生进行实际问题解决练习,引导学生运用垂径定理。
教学评估:1. 观察学生在实际问题解决中的表现,了解他们运用垂径定理的能力。
第四章:巩固与提高教学目标:1. 帮助学生巩固垂径定理的知识。
2. 提高学生解决实际问题的能力。
教学内容:1. 引导学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学活动:1. 组织学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学评估:1. 观察学生在练习中的表现,了解他们巩固垂径定理的能力。
2. 观察学生在解决更复杂问题中的表现,了解他们运用垂径定理的能力。
第五章:总结与拓展教学目标:1. 帮助学生总结垂径定理的主要内容和应用方法。
垂径定理
教学目标
1.知识与技能
(1)探索并理解垂径定理
(2)熟练掌握垂径定理及其逆定理
2.过程与方法
(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动。
理解定理的推导,掌握定理及公式。
(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流。
3.情感、态度与价值观
经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望。
教学重难点
1.垂径定理及其运用。
2.探索并证明垂径定理及利用垂径定理解决一些实际问题。
教学方法讲授法演示法
教学过程讨论
修改一、复习引入
(学生活动)请同学口答下面问题(提问一、两个同学)
复习上节课内容:包括圆的概念以及与圆相关的概念
二、探索新知
(实践)把一个圆沿着它的任意一条直径对折,重复几次,你发
现了什么?由此你能得到什么结论?
结论:
圆是轴对称图形,其对称轴是任意一条过圆心的直线。
之间距离。
=7cm,。
《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能:让学生掌握垂径定理的内容及其应用。
培养学生运用几何知识解决实际问题的能力。
1.2 过程与方法:通过观察、猜想、证明的过程,让学生体验数学的探究过程。
运用图形计算器或信息技术工具,帮助学生更好地理解垂径定理。
1.3 情感态度与价值观:培养学生对数学的兴趣和自信心。
培养学生合作交流的能力,提高学生的团队协作能力。
第二章:教学内容2.1 教材分析:分析教材中关于垂径定理的定义、证明和应用。
理解垂径定理在圆的性质和几何图形中的应用。
2.2 学情分析:了解学生对圆的基本知识和垂线的概念。
了解学生对几何证明的掌握程度,为学生提供必要的支持。
第三章:教学重难点3.1 教学重点:让学生掌握垂径定理的证明过程和定理的内容。
能够运用垂径定理解决相关的几何问题。
3.2 教学难点:理解并证明垂径定理。
灵活运用垂径定理解决实际问题。
第四章:教学方法与手段4.1 教学方法:采用问题驱动的教学方法,引导学生观察、猜想、证明。
运用小组合作学习,鼓励学生互相交流、讨论。
4.2 教学手段:使用图形计算器或信息技术工具,展示几何图形,帮助学生更好地理解垂径定理。
提供相关的练习题和案例,供学生实践和应用垂径定理。
第五章:教学过程5.1 导入:通过引入实际问题或情境,激发学生的兴趣和好奇心。
引导学生观察和猜想垂径定理的内容。
5.2 探究与证明:引导学生进行小组合作学习,共同探究垂径定理的证明过程。
引导学生运用几何知识和证明方法,进行逻辑推理和证明。
5.3 应用与练习:提供相关的练习题和案例,让学生运用垂径定理解决问题。
引导学生进行自主学习和合作交流,解答练习题和案例。
鼓励学生反思自己的学习过程,提出问题和建议,为后续学习做好准备。
1. 导入新课通过展示实际问题,引入垂径定理的概念和意义。
提供具体的垂径定理案例,让学生观察和分析,引导学生猜想垂径定理的内容。
第五章:垂径定理的证明通过引导学生运用已有知识,尝试证明垂径定理。
垂径定理公开课优秀教案一、教学目标1. 知识与技能:(1)让学生掌握垂径定理的内容及应用;(2)培养学生运用几何知识解决实际问题的能力。
2. 过程与方法:(1)通过观察、实验、证明等环节,引导学生发现并证明垂径定理;(2)运用垂径定理解决一些相关的几何问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生合作交流、归纳总结的能力。
二、教学重点与难点1. 教学重点:(1)垂径定理的内容及其应用;(2)运用垂径定理解决一些相关的几何问题。
2. 教学难点:(1)垂径定理的证明;(2)在实际问题中灵活运用垂径定理。
三、教学方法1. 采用问题驱动法,引导学生发现并证明垂径定理;2. 运用几何画板软件,直观展示垂径定理的应用;3. 设计具有梯度的练习题,巩固学生对垂径定理的理解。
四、教学准备1. 教师准备:垂径定理的相关知识、课件、练习题;2. 学生准备:笔记本、几何画板软件。
五、教学过程1. 导入新课(1)复习相关知识:圆的基本概念、圆的性质;(2)提问:如何判断一条直线是否垂直于一条弦?2. 探究与发现(1)学生分组讨论,尝试发现垂径定理;(2)各组汇报讨论成果,师生共同总结垂径定理;(3)教师利用几何画板软件,演示垂径定理的应用。
3. 证明垂径定理(1)学生根据已知的圆的性质,尝试证明垂径定理;(2)教师引导学生归纳总结,给出垂径定理的证明过程。
4. 应用垂径定理(1)设计一组练习题,让学生运用垂径定理解决问题;(2)学生独立解答,教师点评并指导。
5. 课堂小结(1)学生总结本节课所学内容;(2)教师补充,强调垂径定理在几何中的应用。
6. 作业布置(1)请学生运用垂径定理解决一些实际问题;(2)复习本节课所学知识,为下一节课做准备。
六、教学拓展1. 引导学生思考:垂径定理在实际生活中的应用有哪些?2. 举例说明:如在建筑设计中,如何利用垂径定理确定圆形的建筑物的垂直结构。
七、课堂互动1. 学生之间互相提问关于垂径定理的问题,加深对知识的理解;2. 教师参与互动,解答学生提出的问题,及时纠正学生的错误。
垂径定理教学设计第1篇:垂径定理教学设计垂径定理教学设计教学目标:1.使学生理解圆的轴对称性2.掌握垂径定理3.学会运用垂径定理解决有关的证明、计算问题。
过程与方法1.通过观察、动手操作培养学生发现问题、分析问题、解决问题的能力2.锻炼学生的逻辑思维能力,体验数学来源于生活又用于生活。
情感、态度与价值观通过联系、发展、对立与统一的思考方法对学生进行辩证唯物主义观点及美育教育。
教学重点:垂径定理及应用教学难点:垂径定理的理解及其应用教学用具:圆形纸片,小黑板教学过程:一、创设情景:地震造成我们小区的圆柱形供水管道损坏,现在工人师傅要为我们换管道,如图,他测量出管道有积水部分的最大深度是3CM,水面的宽度为6CM,这个工人师傅想了又想,也不知道该用多大的水管来替换,你能帮他解决这个问题吗?二、引入新课---揭示课题:1、运用教具与学具(学生自制的圆形纸片)演示,让每个学生都动手实验,把圆形纸片沿直径对折,观察两部分是否重合,通过实验,引导学生得出结论:(1)圆是轴对称图形 (2)经过圆心的每一条直线(注:不能说直径)都是它的对称轴 (3)圆的对称轴有无数条(4)圆也是中心对称图形.(出示教具演示)。
2、请同学们在自己作的圆中作图:(1)任意作一条弦AB;(2)作直径CD垂直弦AB垂足为E。
(出示教具演示)引导学生分析直径CD与弦AB此时的关系,说明直径CD垂直于弦AB的,并设问:垂直于弦的直径它除了上述性质外,是否还有其他性质呢?导出本节课的课题.三、讲解新课---探求新知(1)实验--观察--猜想:让学生将上述作好的圆沿直径CD对折,观察重合部分后,发现有哪些线段相等、弧相等,并得出猜想:在圆O中,CD是直径,AB是弦,CD垂直AB于E.那么AE=BE ,弧AC=弧BC,弧AD=弧BD.(2)证明:引导学生用“叠合法”证明此定理(3)对定理的结构进行分析(4)结合图形用几何语言表述(5)垂径定理的变式四、定理的应用:例1:(2008哈尔滨中考)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是___________ 练习1:(08年福州中考)如图,AB是圆O的弦,OC⊥AB于C,若AB=8cm,OC=3cm,则圆O的半径长为多少?精讲点拨:求圆中有关线段的长度时,常借助垂径定理转化为直角三角形,半径r、弦半a/2、弦心距d,三者构造出一个直角三角形,知道两个量可用勾股定理求出第三个量例2:如图,两个圆都以点O为圆心,求证AC=BD 练习2:如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E.求证四边形ADOE是正方形.五、小结与反思:你学习了哪些内容?你有哪些收获?你掌握了哪些思想方法?你还有什么问题?六、课后拓展:1、(09年模拟)如图,已知AB、AC为弦,OM⊥AB于点M, ON⊥AC于点N ,BC=4,则MN= ————.2、你能帮工人师傅解决水管替换问题了吗?3、已知⊙O的半径为10,弦AB∥CD,AB=12,AB和CD 的距离为.七、布置作业:习题,1,9八、教学反思:CD=16,则第2篇:垂径定理垂径定理》教学设计一.教学任务及对象分析:1. 教材分析:本节是鲁教版九年级下册第五章第三节的内容,研究的是圆的一个重要定理———垂径定理,它探究的是垂直于弦的直径与弦以及弦所对的两条弧之间的关系,是以后在证明圆中线段相等,角相等,弧相等,以及直径与弦垂直有关问题的重要依据,也是在圆中进行有关计算的重要依据,所以本节课的内容在本章的学习中有着举足轻重的作用。
2. 学生情况分析:学生已经学过轴对称的有关知识,有能力通过轴对称来探索垂径定理;学生也学过全等三角形以及等腰三角形的有关知识,所以容易将垂径定理的推理过程表达清楚。
并且在平时的学习过程中,学生已经掌握探究图形性质的手段和方法,具备几何定理的分析,探索和证明的能力。
二.教学目标分析:1.知识与技能:探索并证明垂径定理;会运用垂径定理进行有关证明和计算2.过程与方法:学生通过动手操作,认真观察,培养学生分析问题和解决问题的能力;通过垂径定理的探索和证明发展学生的推理能力。
3.情感态度与价值观:在教学过程中,培养学生的合作精神,严谨的学习态度,并对学生进行爱国教育,增强民族自豪感。
三.教学重难点分析:教学重点:垂径定理以及推论的探索与证明,利用垂径定理以及推论解决有关问题。
教学难点:证明垂径定理与推论的推理过程。
四.教学策略:直观演示,引导发现,合作学习五.教学设计:第一环节:情境导入,激疑引趣:出示赵州桥图片:它的桥拱是圆弧形,它的跨度为37.4m,拱高为7.2m,求桥拱所在圆的半径?学生活动:思考1分钟,小组成员交流一下经验。
教师活动:学习完本节课的内容,这个问题就很容易解决。
设计意图:1.对学生进行传统文化教育,产生民族自豪感。
2.引出本节课的学习内容,让学生感受生活中处处有数学,数学来源于生活,又服务于生活。
第二环节:尝试诱导,发现定理:1.定理的引出:教师活动:AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M(1)此图是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你的理由。
拿出你做好的纸片,折一折,你会有什么发现?学生活动:小组活动,折叠手中的纸片,观察图中的等量关系。
设计意图:学生通过亲自动手操作,直观的得出结论,便于理解。
教师活动:同学们根据刚才的发现,将下面这句话补充完整:_________弦的直径______弦,并且______弦所对的两条弧。
学生活动:思考一分钟,找学生回答。
教师活动:这就是圆的一个重要性质-------垂径定理,请同学们理解这一定理,并回答以下问题:1.把这一定理改写成“如果……,那么……”的形式,应怎样表述?2.条件中的弦,可以是直径吗?3.结论中的“平分弧”是指哪条弧?4.你能用数学语言来描述垂径定理吗?学生活动:先独立思考3分钟,再在小组中交流,最后在班级展示。
设计意图:目的是提高学生的数学理解能力。
教师活动:垂径定理也能够运用数学推理进行证明,请同学们对照上图,写出“已知,求证”并进行证明。
学生活动:在导学案上完成上题。
教师活动:请同学们阅读课本第14页定理的证明部分,对照你的证明过程,看方法是否相同,你的证明过程是否合理?有什么不足?学生活动:对照课本,研究自己的解题过程存在的不足,然后小组合作,互帮互助,解决疑难。
2.推论的引出:教师活动:如图,AB是⊙O的一条弦(不是直径),作一条平分AB的直径CD,交AB于点M,回答下列问题:1.此图是轴对称图形吗?如果是,其对称轴是什么?2.在上图中,你能发现哪些等量关系,和位置关系?说一说理由。
预设:学生可以通过折叠来发现,也可以用数学推理来证明,只要合理,都可以。
3.题目中,为什么要强调“AB不是直径”,若AB是直径不能得出第1,2题的结论吗?请画图分析。
学生活动:引导学生画出下图,分析“AB不是直径”的原因。
4.同学们能试着将以上的发现用语言描述出来吗?学生活动:先思考一分钟,然后找学生在班级进行展示。
设计意图:培养学生的观察能力,数学理解能力以及严谨的学习态度。
第三环节:例题示范,变式练习教师活动:请同学们阅读课本例题,并且回答在解题过程中使用了哪些解题方法?学生活动:看例题,总结题目中用到的解题方法,组内交流。
设计意图:培养学生的自学能力,观察能力,引出在垂径定理的应用中,经常会使用列方程的方法。
变式练习教师活动:1.你还记得我们提出的赵州桥有关的问题,试一试,你是否可以解决了?学生活动:在导学案上完成此问题。
设计意图:让学生体会将数学运用于生活的喜悦,呼应上课开始提出的问题。
2.如图,已知⊙O的半径为30mm,弦AB=36mm,求点O 到AB的距离及∠OAB的余弦值。
4.如图,两个圆都以O为圆心,小圆的弦CD与大圆的弦AB在同一条直线上,你认为AC与BD的大小有什么关系?为什么?设计意图:对垂径定理的基本应用,培养学生的数学运用拓展提高:如果圆的两条弦互相平行,那么这两条弦所夹得两条弧相等吗?为什么?设计意图:为学有余力的学生准备的题目,感受分类讨论的数学思想。
课堂反馈:1.谈体会:通过本节课的学习,你有什么收获?还有哪些疑惑?2.小测验:已知AB是圆O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积布置作业:必做题:课本第16页习题5.4第1题选做题:根据垂径定理的内容,交换条件和结论的位置,你还能写出几个正确的命题吗?板书设计:垂径定理1._________弦的直径______弦,并且______弦所对的两条弧。
∵CD为直径,CD⊥AB∴AM=BM,弧AC=弧BC,弧AD=弧BD2.平分弦(不是直径)的直径____于弦,并且平分弦所对的_________。
自我评价:在教学方法与教材处理方面, 根据现在的教材特点,教学内容以及在新课标理念的指导下,最后决定让学生在课堂上多动手、多观察、多交流,最后得出定理,这个方法符合新课程理念观点,也符合教师的主导作用与学生的主体地位相统一的原则。
同时,在教学中,我充分利用多媒体,提高教学效率.在实验,演示,操作,观察,练习等师生的共同活动中启发学生,培养学生直觉思维能力,结合学生实际情况作适当的拓广。
本节课的不足我认为还是时间设计不太合理,时间紧,任务重,整节课感觉没有喘息的机会,学生过于疲劳,所以在以后的教学中,在时间搭配上多下功夫,争取使学生在轻松愉快的氛围中接受知识。
第3篇:垂径定理教学设计(材料)垂径定理教学设计《垂径定理》教学设计教学目标:知识与能力1.使学生理解圆的轴对称性2.掌握垂径定理3.学会运用垂径定理解决有关的证明、计算问题。
过程与方法1.通过观察、动手操作培养学生发现问题、分析问题、解决问题的能力2.锻炼学生的逻辑思维能力,体验数学来源于生活又用于生活。
情感、态度与价值观通过联系、发展、对立与统一的思考方法对学生进行辩证唯物主义观点及美育教育。
教学重点:垂径定理及应用教学难点:垂径定理的理解及其应用教学用具:圆形纸片,小黑板教学过程:一、创设情景:地震造成我们小区的圆柱形供水管道损坏,现在工人师傅要为我们换管道,如图,他测量出管道有积水部分的最大深度是3CM,水面的宽度为6CM,这个工人师傅想了又想,也不知道该用多大的水管来替换,你能帮他解决这个问题吗?二、引入新课---揭示课题:1、运用教具与学具(学生自制的圆形纸片)演示,让每个学生都动手实验,把圆形纸片沿直径对折,观察两部分是否重合,通过实验,引导学生得出结论:(1)圆是轴对称图形 (2)经过圆心的每一条直线(注:不能说直径)都是它的对称轴 (3)圆的对称轴有无数条(4)圆也是中心对称图形.(出示教具演示)。