第一章-金属材料电学性能
- 格式:ppt
- 大小:3.86 MB
- 文档页数:18
材料物理性能及测试一、课程说明课程编号:060308Z10课程名称(中英文对照):材料物理性能及测试/ Physical Properties and Measurement of Materials课程类别:选修/学科专业基础课程学时/学分:24/1.5先修课程:物理化学、晶体学基础、固体物理、近代物理基础适用专业:材料科学与工程专业本科生教材、教学参考书:(1)龙毅主编,材料物理性能,XX大学出版社,2009年(2)田莳等编,材料物理性能,北京航空航天大学出版社,2008年(3)邱成军等编,材料物理性能,哈尔滨工业大学出版社,2003年二、课程设置的目的意义材料物理性能课程是材料科学与工程专业的四年制本科生选修的一门专业基础课。
通过本课程的学习,使学生掌握金属材料的各种性能及其影响因素,培养学生测定各种性能的动手能力,及研制新材料、开发新产品、改善生产工艺技术、提高材料性能的能力。
三、课程的基本要求材料物理性能是材料科学与工程专业的一门重要的基础课程,课程的基本要求是:(1)要求学生能够掌握表征材料物理性能的各类本征参数的物理意义和单位,以及这些参数在解决实际问题中所处的地位;能够运用所学到试验操作知识分析材料组成-结构-性能及其相互关系,并能运用相关的数学、自然科学知识对实验结果进行分析,得到合理有效的参数与结论。
(2)要求学生能够明确各类材料的性能与组成和结构的关系,掌握这些性能参数的规律;能够根据所学的专业知识对实验结果做出科学的解释,并能够对实验结果中的问题设计合理的解决方案。
四、教学内容、重点难点及教学设计本课程由金属材料的电学性能、热学性能及磁学性能构成。
主要内容为:概述,金属电阻及其影响因素,半导体,超导体,电性能的测试方法;材料的热熔、热膨胀;材料的导热性;材料的热电性、热稳定性;材料热导率的测量方法;磁性物理概述,原子和离子固有的磁矩,物质的抗磁性和顺磁性,铁磁性的分子场理论,亚铁磁性的分子场理论,铁磁体中的磁晶各向异性、磁致伸缩,磁畴与磁五、实践教学内容和基本要求本课程是一门工程性很强的学科基础课程。
《工程材料及机械制造基础》习题答案齐乐华主编第一章材料的种类与性能(P7)1、金属材料的使用性能包括哪些?力学性能、物理性能、化学性能等。
2、什么是金属的力学性能?它包括那些主要力学指标?金属材料的力学性能:金属材料在外力作用下所表现出来的与弹性和非弹性反应相关或涉及力与应变关系的性能。
主要包括:弹性、塑性、强度、硬度、冲击韧性等。
3、一根直径10mm的钢棒,在拉伸断裂时直径变为8.5mm,此钢的抗拉强度为450Mpa,问此棒能承受的最大载荷为多少?断面收缩率是多少?F=35325N ψ=27.75%4、简述洛氏硬度的测试原理。
以压头压入金属材料的压痕深度来表征材料的硬度。
5、什么是蠕变和应力松弛?蠕变:金属在长时间恒温、恒应力作用下,发生缓慢塑性变形的现象。
应力松弛:承受弹性变形的零件,在工作过程中总变形量不变,但随时间的延长,工作应力逐渐衰减的现象。
6、金属腐蚀的方式主要有哪几种?金属防腐的方法有哪些?主要有化学腐蚀和电化学腐蚀。
防腐方法:1)改变金属的化学成分;2)通过覆盖法将金属同腐蚀介质隔离;3)改善腐蚀环境;4)阴极保护法。
第二章材料的组织结构(P26)1、简述金属三种典型结构的特点。
体心立方晶格:晶格属于立方晶系,在晶胞的中心和每个顶角各有一个原子。
每个体心立方晶格的原子数为:2个。
塑性较好。
面心立方晶格:晶格属于立方晶系,在晶胞的8个顶角和6个面的中心各有一个原子。
每个面心立方晶格的原子数为:4个。
塑性优于体心立方晶格的金属。
密排六方晶格:晶格属于六方棱柱体,在六棱柱晶胞的12个项角上各有一个原子,两个端面的中心各有一个原子,晶胞内部有三个原子。
每个密排六方晶胞原子数为:6个,较脆2、金属的实际晶体中存在哪些晶体缺陷?它们对性能有什么影响?存在点缺陷、线缺陷和面缺陷。
使金属抵抗塑性变形的能力提高,从而使金属强度、硬度提高,但防腐蚀能力下降。
3、合金元素在金属中存在的形式有哪几种?各具备什么特性?存在的形式有固溶体和金属化合物两种。
热处理对金属材料的电学性能的影响热处理是一种通过改变金属材料的结构和组织来改善其性能的方法。
在金属材料的制备和加工过程中,热处理是非常重要的一部分。
与此同时,金属材料的电学性能也是工程应用中需要考虑的关键因素之一。
本文将探讨热处理对金属材料电学性能的影响。
1. 电导率:电导率是指物质导电性能的一个重要指标。
金属材料的电导率与其晶体结构和电子迁移能力有关。
通过热处理可以改变金属材料内部的晶格结构,从而影响电子在材料中的移动行为。
例如,在固溶处理过程中,通过高温加热和淬火处理,可以使金属材料的晶格结构更加均匀,晶粒尺寸更小,从而增加金属材料的电导率。
2. 导电性能:除了电导率,导电性能也是评估金属材料电学性能的指标之一。
导电性能取决于材料中存在的自由电子数量以及电子在材料中传递的能力。
热处理可以通过晶界结构的调控来影响材料的导电性能。
晶界是晶格结构之间的边界,它对材料的电子传输起到重要的影响。
热处理可以提高晶界的稳定性和连续性,从而提高金属材料的导电性能。
3. 电阻率:电阻率是电学性能的重要指标之一。
与电导率相反,电阻率指的是材料对电流的阻碍能力。
通过热处理可以调控金属材料的晶界和晶粒大小,影响材料内部电子的传递行为。
通过合理的热处理过程,可以使金属材料的晶体结构更加致密,电子在材料中传递的路径更加复杂,从而增加金属材料的电阻率。
4. 电化学性能:金属材料的电化学性能是评估其在电解质中的电子传递和反应能力的指标。
热处理可以改变金属材料的表面性质,如晶粒的尺寸和形状,表面缺陷的状态等,从而影响金属材料的电化学性能。
例如,在热处理过程中,可以通过调控材料的渗碳层厚度和形成态结构来提高材料的耐蚀性能,降低材料的电极化速率。
综上所述,热处理对金属材料的电学性能有着重要的影响。
通过调控金属材料的晶粒结构、晶界结构和表面性质,可以改善金属材料的电导率、导电性能、电阻率以及电化学性能。
而实际工程应用中,根据具体的材料和电学性能需求,可以采取相应的热处理工艺,以满足不同工程应用对金属材料电学性能的要求。
金属材料的性能决定着材料的适用范围及应用的合理性。
金属材料的性能主要分为四个方面,即:机械性能、化学性能、物理性能、工艺性能。
一.机械性能(一)应力的概念物体内部单位截面积上承受的力称为应力。
由外力作用引起的应力称为工作应力,在无外力作用条件下平衡于物体内部的应力称为内应力(例如组织应力、热应力、加工过程结束后留存下来的残余应力…等等)。
(二)机械性能金属在一定温度条件下承受外力(载荷)作用时,抵抗变形和断裂的能力称为金属材料的机械性能(也称为力学性能)。
金属材料承受的载荷有多种形式,它可以是静态载荷,也可以是动态载荷,包括单独或同时承受的拉伸应力、压应力、弯曲应力、剪切应力、扭转应力,以及摩擦、振动、冲击等等,因此衡量金属材料机械性能的指标主要有以下几项:1.强度这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。
由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂,测定的强度指标主要有:(1)强度极限:材料在外力作用下能抵抗断裂的最大应力,一般指拉力作用下的抗拉强度极限,以σb表示,如拉伸试验曲线图中最高点b对应的强度极限,常用单位为兆帕(MPa),换算关系有:1MPa=1N/m2=(9.8)-1Kgf/mm2或1Kgf/mm2=9.8MPa σb=Pb/Fo式中:Pb–至材料断裂时的最大应力(或者说是试样能承受的最大载荷);Fo–拉伸试样原来的横截面积。
(2)屈服强度极限:金属材料试样承受的外力超过材料的弹性极限时,虽然应力不再增加,但是试样仍发生明显的塑性变形,这种现象称为屈服,即材料承受外力到一定程度时,其变形不再与外力成正比而产生明显的塑性变形。
产生屈服时的应力称为屈服强度极限,用σs表示,相应于拉伸试验曲线图中的S点称为屈服点。