第一章-金属材料力学性能指标.
- 格式:ppt
- 大小:232.50 KB
- 文档页数:20
材料力学性能-考前复习总结(前三章)金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。
材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性第一章单向静拉伸力学性能应力和应变:条件应力条件应变 =真应力真应变应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。
其中必有一主平面,切应力为零,只有主应力,且,满足胡克定律。
应力软性系数:最大切应力与最大正应力的相对大小。
1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
ae=1/2σeεe=σe2/2E。
取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。
需通过合金强化及组织控制提高弹性极限。
2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。
①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。
金属中点缺陷的移动,长时间回火消除。
弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。
吸收变形功循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。
②包申格效应:定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了)解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。
第一章金属材料的力学性能机械制造中使用的材料品种很多,为了正确使用材料,并把它加工成合格的工件,必须掌握材料的使用性能和工艺性能。
使用性能,是指为保证工件正常工作材料应具备的性能,包括力学性能、物理和化学性能等。
工艺性能,是指材料在加工过程中所表现出来的性能,包括铸造性能、锻压性能、焊接性能和切削加工性等。
所谓力学性能,是指材料在外力作用下所表现出来的性能,主要有强度、塑性、硬度、冲击韧性、疲劳强度等,是设计机械零件时选材的重要依据。
这些性能指标是通过试验测定的。
第一节刚度、强度、塑性刚度、强度和塑性是根据试验测定出来的。
将材料制成标准试样(图1-1a),然后把试样装在试验机上施加静拉力,随着拉力的增加试样逐渐变形,直到拉断为止(图1-1b)。
将试样从开始到拉断所受的力F 及所对应的伸长量ΔL绘制在F—ΔL坐标上,得出力一伸长曲线。
低碳钢的力一伸长曲线如图1—2所示。
从图1—2可知,在OE 阶段,试样的伸长量随拉力成比例增加,若去除拉力后试样恢复原状,这种变形称为弹性变形。
超过E 点后,若去除拉力试样不能完全恢复原状,尚有一部分伸长量保留下来,这部分保留下来的变形称为塑性变形。
当拉力增加到F s 时,力一伸长曲线在S 点呈现水平台阶,即表示外力不再增加而试样继续伸长,这种现象称为屈服,该水平台阶称为屈服台阶。
屈服以后,试样又随拉力增加而逐渐均匀伸长。
达到B 点,试样的某一局部开始变细,出现缩颈现象。
由于在缩颈部分试样横截面积迅速减小,因此使试样继续伸长所需的拉力也就相应减小。
当达到K 点时,试样在缩颈处断裂。
低碳钢在拉伸过程中经历了弹性变形、弹一塑性变形和断裂三个阶段。
F —ΔL 曲线与试样尺寸有关。
为了消除试样尺寸的影响,把拉力F 除以试样原始横截面积A0,得出试样横截面积上的应力,同时把伸长量ΔL 除以试样原始标距L 0,得到试样的应变LL ε∆=0F A σ=σ—ε曲线与F —ΔL 曲线形状一样,只是坐标不同。
金属材料的力学性能指标金属材料是工程中常用的材料之一,其力学性能指标对于材料的选择和设计具有重要意义。
力学性能指标是评价金属材料力学性能的重要依据,主要包括强度、韧性、塑性、硬度等指标。
下面将对金属材料的力学性能指标进行详细介绍。
首先,强度是评价金属材料抵抗外部力量破坏能力的指标。
强度可以分为屈服强度、抗拉强度、抗压强度等。
其中,屈服强度是材料在受到外部力作用下开始产生塑性变形的应力值,抗拉强度是材料在拉伸状态下抵抗破坏的能力,抗压强度是材料在受到压缩力作用下抵抗破坏的能力。
强度指标直接影响着材料的承载能力和使用寿命。
其次,韧性是材料抵抗断裂的能力。
韧性指标包括冲击韧性、断裂韧性等。
冲击韧性是材料在受到冲击载荷作用下抵抗破坏的能力,断裂韧性是材料在受到静态载荷作用下抵抗破坏的能力。
韧性指标反映了材料在受到外部冲击或载荷作用下的抗破坏能力,对于金属材料的使用安全性具有重要意义。
再次,塑性是材料在受力作用下产生塑性变形的能力。
塑性指标包括伸长率、收缩率等。
伸长率是材料在拉伸破坏前的延展性能指标,收缩率是材料在受力破坏后的收缩性能指标。
塑性指标直接影响着金属材料的加工性能和成形性能,对于金属材料的加工工艺和成形工艺具有重要影响。
最后,硬度是材料抵抗划伤、压痕等表面破坏的能力。
硬度指标包括洛氏硬度、巴氏硬度等。
硬度指标反映了材料表面的硬度和耐磨性能,对于金属材料的耐磨性和使用寿命具有重要意义。
综上所述,金属材料的力学性能指标是评价材料性能的重要依据,强度、韧性、塑性、硬度等指标直接影响着材料的使用性能和工程应用。
在工程设计和材料选择中,需要根据具体的工程要求和使用环境,综合考虑各项力学性能指标,选择合适的金属材料,以确保工程的安全可靠性和经济性。
第1章工程材料1.1 金属材料的力学性能金属材料的性能包括使用性能和工艺性能。
使用性能是指金属材料在使用过程中应具备的性能,它包括力学性能(强度、塑性、硬度、冲击韧性、疲劳强度等)、物理性能(密度、熔点、导热性、导电性等)和化学性能(耐蚀性、抗氧化性等)。
工艺性能是金属材料从冶炼到成品的生产过程中,适应各种加工工艺(如:铸造、冷热压力加工、焊接、切削加工、热处理等)应具备的性能。
金属材料的力学性能是指金属材料在载荷作用时所表现的性能。
1.1.1 强度金属材料的强度、塑性一般可以通过金属拉伸试验来测定。
1.拉伸试样图1.1.1拉伸试样与拉伸曲线2.拉伸曲线拉伸曲线反映了材料在拉伸过程中的弹性变形、塑性变形和直到拉断时的力F时,拉伸曲线Op为一直线,即试样的伸长量与载荷学特性。
当载荷不超过p成正比地增加,如果卸除载荷,试样立即恢复到原来的尺寸,即试样处于弹性变形阶段。
载荷在Fp-Fe间,试样的伸长量与载荷已不再成正比关系,但若卸除载荷,试样仍然恢复到原来的尺寸,故仍处于弹性变形阶段。
当载荷超过Fe后,试样将进一步伸长,但此时若卸除载荷,弹性变形消失,而有一部分变形当载荷增加到Fs时,试样开始明显的塑性变形,在拉伸曲线上出现了水平的或锯齿形的线段,这种现象称为屈服。
当载荷继续增加到某一最大值Fb时,试样的局部截面缩小,产生了颈缩现象。
由于试样局部截面的逐渐减少,故载荷也逐渐降低,试样就被拉断。
3.强度强度是指金属材料在载荷作用下,抵抗塑性变形和断裂的能力。
(1) 弹性极限金属材料在载荷作用下产生弹性变形时所能承受的最大应力称为弹性极限,用符号σe 表示:(2) 屈服强度金属材料开始明显塑性变形时的最低应力称为屈服强度在拉伸试验中不出现明显的屈服现象,无法确定其屈服点。
所以国标中规定,以试样塑性变形量为试样标距长度的0.2%时,材料承受的应力称为“条件屈服强度”,并以符号σ0.2 表示。
1.1.2 塑性金属材料在载荷作用下,产生塑性变形而不破坏的能力称为塑性。