函数的应用单元试题(1)~(5)答案
- 格式:doc
- 大小:3.36 MB
- 文档页数:10
数学函数应用测试题(含答案)数学函数应用测试题(含答案)1. 题目一:利用函数解决实际问题小明骑自行车从家出发,以每小时20公里的速度向东骑行。
在骑行的过程中,小明感到口渴,于是决定在每行驶2小时后停下来喝水。
如果他从家到学校需要骑行6个小时,那么他停下来喝水的次数是多少次?解答:设小明停下来喝水的次数为n,根据题意可知:2n = 6 - 2解得 n = 2因此,小明需要停下来喝水的次数为2次。
2. 题目二:函数的图像分析已知函数 f(x) = x^2 - 2x - 3 的图像在直角坐标系中的顶点坐标为(1,-4),请回答以下问题:a) 函数的对称轴方程是什么?b) 函数在什么区间上是递增的?c) 函数的最小值是多少?解答:a) 函数的对称轴方程为 x = 1。
由已知条件可知,函数的顶点坐标为(1,-4),因此对称轴与 x 轴平行,其方程为 x = 1。
b) 函数在区间 (-∞, 1) 上是递减的,在区间(1, +∞) 上是递增的。
根据函数的对称轴方程 x = 1,可知对称轴将函数的图像分成两个部分。
在左半部分,即 x < 1 的区间上,函数递减;在右半部分,即 x >1 的区间上,函数递增。
c) 函数的最小值是 -4。
由已知条件可知,函数的顶点坐标为(1,-4),因此函数的最小值为 -4。
3. 题目三:函数的复合运算已知函数 f(x) = x^2 + 1 和 g(x) = 2x - 3,求函数 h(x) = f(g(x)) 的表达式并化简。
解答:由已知条件可得:h(x) = f(g(x))= f(2x - 3)= (2x - 3)^2 + 1= 4x^2 - 12x + 9 + 1= 4x^2 - 12x + 10因此,函数 h(x) 的表达式为 4x^2 - 12x + 10。
4. 题目四:函数的反函数已知函数 f(x) = 2x + 1,求它的反函数 f^{-1}(x) 的表达式。
高中数学必修一《函数的应用》单元测试卷及答案2套单元测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=2x +m 的零点落在(-1,0)内,则m 的取值范围为( ) A .(-2,0) B .(0,2) C .-2,0] D .0,2]2.设f (x )=3x+3x -8,用二分法求方程3x+3x -8=0在x ∈(1,2)内近似解的过程中得f (1.5)>0,f (1.25)<0,则方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不确定3.下列函数中,不能用二分法求零点的是( ) A .y =3x +1 B .y =x 2-1 C .y =log 2(x -1)D .y =(x -1)24.方程x 3-x -3=0的实数解所在的区间是( ) A .-1,0] B .0,1] C .1,2] D .2,3]5.为了求函数f (x )=2x+3x -7的零点,某同学利用计算器得到自变量x 和函数f (x )的部分对应值(精确度0.1)如下表所示:A .1.5B .1.4C .1.3D .1.26.若函数y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是( )A .m ≤-1B .-1≤m <0C .m ≥1 D.0<m ≤17.设x 0是函数f (x )=ln x +x -4的零点,则x 0所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)8.如果二次函数y =x 2+mx +m +3不存在零点,则m 的取值范围是( ) A .(-∞,-2)∪(6,+∞) B .{-2,6} C .-2,6]D .(-2,6)9.由表格中的数据可以判定方程e x-x -2=0的一个零点所在的区间是(k ,k +1)(k ∈Z ),则k 的值为( )x-1 0 1 2 3 e x0.37 1 2.72 7.39 20.09 x +21234510.已知x 0是函数f (x )=2x+11-x 的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>011.已知函数f (x )=|log 3(x -1)|-⎝ ⎛⎭⎪⎫13x-1有2个不同的零点x 1,x 2,则( )A .x 1·x 2<1B .x 1·x 2=x 1+x 2C .x 1·x 2>x 1+x 2D .x 1·x 2<x 1+x 212.若对于定义在R 上的函数f (x ),其图象是连续的,且存在常数λ(λ∈R ),使得f (x +λ)+λf (x )=0对任意的实数x 成立,则称f (x )是“λ-同伴函数”.下列关于“λ-同伴函数”的叙述中正确的是( )A .“12-同伴函数”至少有一个零点B .f (x )=x 2是一个“λ-同伴函数” C .f (x )=log 2x 是一个“λ-同伴函数” D .f (x )=0是唯一一个常值“λ-同伴函数”第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为________.14.函数f (x )=x 2+mx -6的一个零点是-6,则另一个零点是________. 15.若函数f (x )=lg|x -1|-m 有两个零点x 1和x 2,则x 1+x 2=________.16.设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧2-|x -1|+1x ≠1,ax =1,若关于x 的方程2f (x )]2-(2a+3)f (x )+3a =0有五个不同的实数解,则a 的取值范围是________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=⎩⎪⎨⎪⎧x +6,x ≤0,x 2-2x +2,x >0.(1)求不等式f (x )>5的解集;(2)若方程f (x )-m 22=0有三个不同实数根,求实数m 的取值范围.18.(本小题满分12分)已知定义在R 上奇函数f (x )在x ≥0时的图象是如图所示的抛物线的一部分. (1)请补全函数f (x )的图象;(2)写出函数f (x )的表达式(只写明结果,无需过程); (3)讨论方程|f (x )|=a 的解的个数(只写明结果,无需过程).19.(本小题满分12分)某上市股票在30天内每股交易价格P (元)与时间t (天)组成有序数对(t ,P ),点(t ,P )落在图中的两条线段上,该股票在30天内的日交易量Q (万股)与时间t (天)的部分数据如下表所示:第t 天4 10 16 22 Q (万股)36302418(1)根据提供的图象,写出该种股票每股交易价格P (元)与时间t (天)所满足的函数关系式;(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;(3)用y表示该股票日交易额(万元),写出y关于t的函数关系式,并求在这30天中第几天日交易额最大,最大值是多少?20.(本小题满分12分)定义在R上的奇函数f(x),当x∈(-∞,0)时,f(x)=-x2+mx-1.(1)当x∈(0,+∞)时,求f(x)的解析式;(2)若方程y=f(x)有五个零点,求实数m的取值范围.21.(本小题满分12分)已知函数f(x)=log a(2x+1)-log a(1-2x).(1)判断函数f(x)的奇偶性,并给予证明;(2)若函数y=f(x)与y=m-log a(2-4x)的图象有且仅有一个公共点,求实数m的取值范围.22.(本小题满分12分)已知函数f(x)=log4(4x+1)+kx,(k∈R)为偶函数.(1)求k的值;(2)若函数f(x)=log4(a·2x-a)有且仅有一个根,求实数a的取值范围.答案1.B 解析:由题意f(-1)·f(0)=(m-2)m<0,∴0<m<2.2.B 解析:因为f(1.5)>0,f(1.25)<0,所以由零点存在性定理可得,方程3x+3x-8=0的根落在区间(1.25,1.5)内.3.D 解析:结合函数y=(x-1)2的图象可知,该函数在x=1的左右两侧函数值的符号均为正,故其不能用二分法求零点.4.C 解析:方程x 3-x -3=0的实数解,可看成函数f (x )=x 3-x -3的零点.∵f (1)=-3<0,f (2)=3>0,∴f (1)·f (2)<0.由零点存在性定理可得,函数f (x )=x 3-x -3的零点所在的区间为1,2].故选C.5.B 解析:函数f (x )=2x+3x -7的零点在区间(1.375,1.437 5)内,且|1.375-1.437 5|=0.062 5<0.1,所以方程2x +3x =7的近似解(精确到0.1)可取为1.4.6.B 解析:函数图象与x 轴有公共点,即函数f (x )=⎝ ⎛⎭⎪⎫12|1-x |,g (x )=-m 有交点.作出f (x ),g (x )的图象,如图所示.0<-m ≤1,即-1≤m <0,故选B.7.C 解析:∵f (2)=ln 2+2-4=ln 2-2<0,f (3)=ln 3-1>ln e -1=0,由零点定理得f (2)·f (3)<0.∴x 0所在的区间为(2,3).故选C.8.D 解析:∵二次函数y =x 2+mx +m +3不存在零点,二次函数图象开口向上,∴Δ<0,可得m 2-4(m +3)<0,解得-2<m <6,故选D.9.C 解析:设函数f (x )=e x-x -2,如果零点在(k ,k +1),那么f (k )·f (k +1)<0,由表格分析,f (1)<0,f (2)>0,故k =1,故选C.10.B 解析:由定义法证明函数的单调性的方法,得f (x )在(1,+∞)上为增函数,又1<x 1<x 0<x 2,x 0为f (x )的一个零点,所以f (x 1)<f (x 0)=0<f (x 2).解题技巧:本题主要考查了函数的零点和单调性,解决本题的关键是判断出函数f (x )=2x+11-x的单调性. 11.D 解析:∵函数f (x )=|log 3(x -1)|-⎝ ⎛⎭⎪⎫13x-1有2个不同的零点,∴函数f (x )=|log 3(x -1)|与函数g (x )=⎝ ⎛⎭⎪⎫13x +1的图象有两个不同的交点.又∵g (x )=⎝ ⎛⎭⎪⎫13x+1是减函数,∴-log 3(x 1-1)>log 3(x 2-1),∴(x 1-1)(x 2-1)<1,整理得x 1·x 2<x 1+x 2,故选D.12.A 解析:令x =0,得f ⎝ ⎛⎭⎪⎫12+12f (0)=0,所以f ⎝ ⎛⎭⎪⎫12=-12f (0).若f (0)=0,显然f (x )=0有实数根;若f (0)≠0,f ⎝ ⎛⎭⎪⎫12·f (0)=-12(f (0))2<0.又因为函数f (x )的图象是连续不断的,所以f (x )=0在⎝ ⎛⎭⎪⎫0,12上必有实数根,即任意“12-同伴函数”至少有一个零点.故A 正确;用反证法,假设f (x )=x 2是一个“λ-同伴函数”,则(x +λ)2+λx 2=0,即(1+λ)x2+2λx +λ2=0对任意实数x 成立,所以λ+1=2λ=λ2=0,而此式无解,所以f (x )=x 2不是一个“λ-同伴函数”.故B 错误;因为f (x )=log 2x 的定义域不是R .故C 错误;设f (x )=C 是一个“λ-同伴函数”,则(1+λ)C =0,当λ=-1时,可以取遍实数集,因此f (x )=0不是唯一一个常值“λ-同伴函数”.故D 错误.13.2 解析:依题意可知f (x )=x 2+2x -3的零点为-3,1,∵x ≤0,∴零点为-3.f (x )=-2+ln x 的零点为e 2.故函数有2个零点.14.1 解析:依题意可知,f (-6)=(-6)2-6m -6=0⇒m =5,所以f (x )=x 2+5x -6=(x +6)(x -1),令f (x )=0,解得x =-6或x =1,所以另一个零点是1.15.2 解析:∵函数f (x )=lg|x -1|-m 有两个零点,∴函数y 1=lg|x -1|与函数y 2=m 有两个交点,∵y 1=lg|x -1|的图象关于x =1对称,∴lg|x 1-1|=lg|x 2-1|,∴x 1+x 2=2.16.1<a <32或32<a <2 解析:∵题中原方程2f (x )]2-(2a +3)f (x )+3a =0有且只有5个不同实数解,∴要求对应于f (x )等于某个常数有3个不同实数解, ∴先根据题意作出f (x )的简图:由图可知,只有当f (x )=a 时,它有三个根. 所以有1<a <2①.再根据2f (x )2-(2a +3)f (x )+3a =0有两个不等实根, 得:Δ>0即(2a +3)2-24a >0,a ≠32②.结合①②得:1<a <32或32<a <2.解题技巧:本题主要考查了函数零点和方程解的关系,解决本题的关键是找出隐含条件f (x )=a 有3个不同实数解.17.解:(1)当x ≤0时,由x +6>5,得-1<x ≤0; 当x >0时,由x 2-2x +2>5,得x >3.综上所述,不等式的解集为(-1,0]∪(3,+∞).(2)方程f (x )-m 22=0有三个不同实数根,等价于函数y =f (x )与函数y =m 22的图象有三个不同的交点.由图可知1<m 22<2,解得-2<m <-2或2<m <2.所以,实数m 的取值范围(-2,-2)∪(2,2).解题技巧:本题主要考查了函数零点和方程解的关系,解决本题的关键是画出函数f (x )图象,使函数y =f (x )与函数y =m 22的图象有三个不同的交点,从而求出m 的范围.18.解:(1)补全f (x )的图象如图(1)所示.①(2)当x ≥0时,设f (x )=a (x -1)2-2,由f (0)=0得,a =2,所以此时,f (x )=2(x -1)2-2,即f (x )=2x 2-4x , 当x <0时,-x >0,所以f (-x )=2(-x )2-4(-x )=2x 2+4x ,① 又f (-x )=-f (x ),代入①,得f (x )=-2x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧2x 2-4x x ≥0,-2x 2-4x x <0.(3)函数y =|f (x )|的图象如图(2)所示.②由图可知,当a <0时,方程无解; 当a =0时,方程有三个解; 当0<a <2时,方程有6个解; 当a =2时,方程有4个解; 当a >2时,方程有2个解.19.解:(1)由图象知,前20天满足的是递增的直线方程,且过两点(0,2),(20,6),容易求得直线方程为P =15t +2;从20天到30天满足递减的直线方程,且过两点(20,6),(30,5),求得方程为P =-110t+8,故P (元)与时间t (天)所满足的函数关系式为 P =⎩⎪⎨⎪⎧15t +2,0≤t ≤20,t ∈N ,-110t +8,20<t ≤30,t ∈N .(2)由图表,易知Q 与t 满足一次函数关系,即Q =-t +40,0≤t ≤30,t ∈N . (3)由以上两问,可知y =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫15t +2-t +40,0≤t ≤20,t ∈N ,⎝ ⎛⎭⎪⎫-110t +8-t +40,20<t ≤30,t ∈N=⎩⎪⎨⎪⎧-15t -152+125,0≤t ≤20,t ∈N ,110t -602-40,20<t ≤30,t ∈N ,当0≤t ≤20,t =15时,y max =125, 当20<t ≤30,y 随t 的增大而减小,∴在30天中的第15天,日交易额的最大值为125万元. 20.解:(1)设x >0,则-x <0,所以 f (-x )=-x 2-mx -1. 又f (x )为奇函数,即f (-x )=-f (x ), 所以f (x )=x 2+mx +1(x >0).又f (0)=0,所以f (x )=⎩⎪⎨⎪⎧x 2+mx +1,x >0,0, x =0,-x 2+mx -1,x <0.(2)因为f (x )为奇函数,所以函数y =f (x )的图象关于原点对称,即方程f (x )=0有五个不相等的实数解,得y =f (x )的图象与x 轴有五个不同的交点. 又f (0)=0,所以f (x )=x 2+mx +1(x >0)的图象与x 轴正半轴有两个不同的交点, 即方程x 2+mx +1=0有两个不等正根,记两根分别为x 1,x 2,所以⎩⎪⎨⎪⎧Δ=m 2-4>0,x 1+x 2=-m >0,x 1·x 2=1>0,解得m <-2.所以,所求实数m 的取值范围是m <-2. 21.解:(1)函数f (x )为奇函数. 证明如下:∵f (x )的定义域为x ∈⎝ ⎛⎭⎪⎫-12,12,关于原点对称,f (x )+f (-x )=log a2x +11-2x +log a -2x +11+2x=log a 1=0, ∴f (-x )=-f (x ),∴f (x )为奇函数.(2)函数y =f (x )与y =m -log a (2-4x )的图象有且仅有一个公共点⇔方程log a 2x +11-2x=m-log a (2-4x )在区间x ∈⎝ ⎛⎭⎪⎫-12,12上有且仅有一个实数解. m =log a2x +11-2x+log a 2(1-2x )=log a (4x +2). ∵ -12<x <12,∴0<4x +2<4∴log a (4x +2)∈(-∞,log a 4)或log a (4x +2)∈(log a 4,+∞), ∴当a >1时,m ∈(-∞,log a 4),当0<a <1时,m ∈(log a 4,+∞). 22.解:(1)∵f (x )为偶函数,∴f (-x )=f (x ), 即log 4(4-x+1)-kx =log 4(4x+1)+kx , ∴log 44x+14x -log 4(4x+1)=2kx ,∴(2k +1)x =0,∴k =-12.(2)依题意知,log 4(4x +1)-12x =log 4(a ·2x-a ),整理,得log 4(4x +1)=log 4(a ·2x -a )2x], ∴4x +1=(a ·2x -a )·2x(*).令t =2x,则(*)变为(1-a )t 2+at +1=0(**)只需其仅有一正根. ①当a =1时,t =-1不合题意;②当(**)式有一正一负根时,∴⎩⎪⎨⎪⎧Δ=a 2-41-a >0,t 1t 2=11-a <0,得a >1;③当(**)式有两相等的正根时,Δ=0,∴a =±22-2,且a2a -1>0, ∴a =-2-2 2.综上所述,a 的取值范围为{a |a >1或a =-2-22}.单元测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2-2x -3的零点是( ) A .1,-3 B .3,-1 C .1,2 D .不存在2.用二分法求方程f (x )=0在区间(1,2)内的唯一实数解x 0时,经计算得f (1)=3,f (2)=-5,f ⎝ ⎛⎭⎪⎫32=9,则下列结论正确的是( )A .x 0∈⎝ ⎛⎭⎪⎫1,32B .x 0=32C .x 0∈⎝ ⎛⎭⎪⎫32,2 D .x 0∈⎝ ⎛⎭⎪⎫1,32或x 0∈⎝ ⎛⎭⎪⎫32,2 3.若函数f (x )=ax +b 的零点是-1(a ≠0),则函数g (x )=ax 2+bx 的零点是( )A .-1B .0C .-1和0D .1和04.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2 000元降到1 280元,则这种手机的价格平均每次降低的百分率是( )A .10%B .15%C .18%D .20%5.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,3,x >0,若f (-4)=f (0),f (-2)=-2,则函数y =f (x )-x 的零点的个数为( )A .1B .2C .3D .46.函数f (x )=ln(x +1)-2x的零点所在的大致区间是( )A .(0,1)B .(1,2)C .(2,e)D .(3,4)7.实数a ,b ,c 是图象连续不断的函数y =f (x )定义域中的三个数,且满足a <b <c ,f (a )·f (b )<0,f (c )·f (b )<0,则函数y =f (x )在区间(a ,c )上的零点个数为( )A .2B .奇数C .偶数D .至少2个8.若方程m x-x -m =0(m >0,且m ≠1)有两个不同实数根,则m 的取值范围是( ) A .m >1 B .0<m <1 C .m >0 D .m >29.如图,△ABC 为等腰直角三角形,直线l 与AB 相交且l ⊥AB ,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则y =f (x )的图象大致为四个选项中的( )10.若一次函数f(x)=ax+b有一个零点2,则函数g(x)=bx2-ax的图象可能是( )11.某商场对顾客实行购物优惠活动,规定一次购物付款总额:①如果不超过200元,则不给予优惠;②如果超过200元但不超过500元,则按标价给予9折优惠;③如果超过500元,其500元内的按第②条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款( )A.413.7元 B.513.7元C.546.6元 D.548.7元12.已知0<a<1,则方程a|x|=|log a x|的实根个数为( )A.2 B.3C.4 D.与a的值有关第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.函数f(x)=ln x-1x-1的零点的个数是________.14.根据表格中的数据,若函数f(x)=ln x-x+2在区间(k,k+1)(k∈N*)内有一个零点,则k的值为________.x 1234 5ln x 00.69 1.10 1.39 1.61付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km.16.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)若二次函数f (x )=-x 2+2ax +4a +1有一个零点小于-1,一个零点大于3,求实数a 的取值范围.18.(本小题满分12分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.19.(本小题满分12分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的15%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按2log 5(A +1)进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型;(2)如果业务员老江获得5.5万元的奖金,那么他的销售利润是多少万元?20.(本小题满分12分)设函数f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2. (1)求f (x );(2)当函数f (x )的定义域是0,1]时,求函数f (x )的值域.21.(本小题满分12分)函数y =f (x )的图象关于x =1对称,当x ≤1时,f (x )=x 2-1. (1)写出y =f (x )的解析式并作出图象;(2)根据图象讨论f (x )-a =0(a ∈R )的根的情况.22.(本小题满分12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?答案1.B 解析:令x 2-2x -3=0得x =-1或x =3,故选B.2.C 解析:∵f (2)·f ⎝ ⎛⎭⎪⎫32<0,∴x 0∈⎝ ⎛⎭⎪⎫32,2. 3.C 解析:由条件知f (-1)=0,∴b =a ,∴g (x )=ax 2+bx =ax (x +1)的零点为0和-1,故选C.4.D 解析:由题意,可设平均每次价格降低的百分率为x , 则有2 000(1-x )2=1 280,解得x =0.2或x =1.8(舍去),故选D.5.C 解析:本题主要考查二次函数、分段函数及函数的零点.f (-4)=f (0)⇒b =4,f (-2)=-2⇒c =2,∴ f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,3,x >0.当x ≤0时,由x 2+4x +2=x 解得x 1=-1,x 2=-2;当x >0时,x =3.所以函数y =f (x )-x 的零点的个数为3,故选C.6.B 解析:f (1)=ln(1+1)-21=ln 2-2=ln 2-ln e 2<0,f (2)=ln(2+1)-22=ln 3-1>0,因此函数的零点必在区间(1,2)内,故选B.7.D 解析:由f (a )·f (b )<0知,y =f (x )在(a ,b )上至少有一零点,由f (c )·f (b )<0知,y =f (x )在(b ,c )上至少有一零点,故y =f (x )在(a ,c )上至少有2个零点.8.A 解析:方程m x-x -m =0有两个不同实数根,等价于函数y =m x与y =x +m 的图象有两个不同的交点.显然当m >1时,如图①有两个不同交点;当0<m <1时,如图②有且仅有一个交点,故选A.9.C 解析:设AB =a ,则y =12a 2-12x 2=-12x 2+12a 2,其图象为抛物线的一段,开口向下,顶点在y 轴正半轴.故选C.10.C 解析:由题意知,2a +b =0,所以a =-b2.因此g (x )=bx 2+b 2x =b ⎝⎛⎭⎪⎫x 2+12x =b ⎝ ⎛⎭⎪⎫x +142-b 16.易知函数g (x )图象的对称轴为x =-14,排除A ,D.又令g (x )=0,得x =0或x =-0.5,故选C.11.C 解析:设该顾客两次购物的商品价格分别为x ,y 元,由题意可知x =168,y ×0.9=423,∴y =470,故x +y =168+470=638(元),故如果他一次性购买上述两样商品应付款:(638-500)×0.7+500×0.9=96.6+450=546.6(元).12.A 解析:设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如下图所示.由图可知,有两个交点,故方程a |x |=|log a x |有两个根.故选A. 13.2 解析:由y =ln x 与y =1x -1的图象可知有两个交点.14.3 解析:由表中数据可知,f (1)=ln 1-1+2=1>0,f (2)=ln 2-2+2=ln 2=0.69>0, f (3)=ln 3-3+2=1.10-1=0.1>0, f (4)=ln 4-4+2=1.39-2=-0.61<0, f (5)=ln 5-5+2=1.61-3=-1.39<0,∴f (3)·f (4)<0,∴k 的值为3.15.9 解析:设乘客每次乘坐出租车需付费用为f (x )元,由题意,得 f (x )=⎩⎪⎨⎪⎧8+1,x ∈0,3],9+x -3×2.15,x ∈3,8],9+5×2.15+x -8×2.85,x ∈8,+∞,令f (x )=22.6,显然9+5×2.15+(x -8)×2.85=22.6(x >8),解得x =9.16.(0,1) 解析:画出f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图所示.由函数g (x )=f (x )-m 有3个零点,即f (x )-m =0有3个不相等的实根,结合图象,得0<m <1.17.解:因为二次函数f (x )=-x 2+2ax +4a +1的图象开口向下,且在区间(-∞,-1),(3,+∞)内各有一个零点,所以⎩⎪⎨⎪⎧f-1>0,f3>0,即⎩⎪⎨⎪⎧--12-2a +4a +1>0,-32+2a ×3+4a +1>0,即⎩⎪⎨⎪⎧2a >0,10a -8>0,解得a >45.18.解:设f (x )=ax 2+bx +c (a ≠0), 由题意知,c =3,-b2a=2.设x 1,x 2是方程ax 2+bx +c =0的两根, 则x 1+x 2=-b a ,x 1·x 2=c a.∵x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,即⎝ ⎛⎭⎪⎫-b a 2-2c a=10,∴42-6a =10, ∴a =1,b =-4. ∴f (x )=x 2-4x +3. 19.解:(1)由题意,得y =⎩⎪⎨⎪⎧0.15x ,0<x ≤10,1.5+2log 5x -9,x >10.(2)x ∈(0,10],0.15x ≤1.5. 又∵y =5.5,∴x >10,∴1.5+2log 5(x -9)=5.5,∴x =34. ∴老江的销售利润是34万元.20.解:(1)∵f (x )的两个零点是-3和2, ∴函数图象过点(-3,0),(2,0),∴⎩⎪⎨⎪⎧9a -3b -8-a -ab =0,①4a +2b -8-a -ab =0.②①-②,得b =a +8.③③代入②,得4a +2a -a -a (a +8)=0, 即a 2+3a =0. ∵a ≠0,∴a =-3,∴b =a +8=5.∴f (x )=-3x 2-3x +18. (2)由(1)得f (x )=-3x 2-3x +18=-3⎝ ⎛⎭⎪⎫x +122+34+18,图象的对称轴是x =-12,又0≤x ≤1,∴f (x )min =f (1)=12,f (x )max =f (0)=18, ∴函数f (x )的值域是12,18].21.解:(1)由题意知f (x )=⎩⎪⎨⎪⎧x 2-1x ≤1,x -22-1x >1.图象如图所示.(2)当a <-1时,f (x )-a =0无解; 当a =-1时,f (x )-a =0有两个实数根; 当-1<a <0时,f (x )-a =0有四个实数根; 当a =0时,f (x )-a =0有三个实数根; 当a >0时,f (x )-a =0有两个实数根. 22.解:(1)设f (x )=k 1x ,g (x )=k 2x , 所以f (1)=18=k 1,g (1)=12=k 2,即f (x )=18x (x ≥0),g (x )=12x (x ≥0). (2)设投资债券类产品x 万元,则股票类投资为(20-x )万元. 依题意,得y =f (x )+g (20-x ) =x 8+1220-x (0≤x ≤20). 令t =20-x (0≤t ≤25). 则y =20-t 28+12t =-18(t -2)2+3,所以当t =2,即x =16(万元)时,收益最大,最大收益为3万元.。
函数的应用习题及答案函数的应用习题及答案函数是数学中常见的概念,它在各个领域都有广泛的应用。
通过函数,我们可以描述和研究各种现象和问题。
在学习函数的过程中,习题是必不可少的一部分,它们可以帮助我们巩固所学的知识,并提升解决问题的能力。
下面,我将给大家介绍一些关于函数的应用习题及其答案。
1. 习题一:某公司的销售额与广告投入之间存在一定的关系,已知销售额与广告投入的函数关系为S(x) = 0.8x + 100,其中S(x)表示销售额,x表示广告投入。
如果某公司的广告投入为200万元,求该公司的销售额。
解答:将广告投入x代入函数中,得到S(200) = 0.8 * 200 + 100 = 260(万元)。
所以该公司的销售额为260万元。
2. 习题二:某物体从初始位置出发,经过一段时间后,它的位置与时间的关系可以用函数f(t) = 2t^2 + 3t + 5来描述,其中f(t)表示物体的位置,t表示时间。
求该物体在2秒时的位置。
解答:将时间t代入函数中,得到f(2) = 2 * 2^2 + 3 * 2 + 5 = 21。
所以该物体在2秒时的位置为21。
3. 习题三:某商品的价格与销量之间存在一定的关系,已知价格与销量的函数关系为p(x) = 100 - 0.5x,其中p(x)表示价格,x表示销量。
如果某商品的价格为50元,求该商品的销量。
解答:将价格p代入函数中,得到50 = 100 - 0.5x,解方程得到x = (100 - 50)/ 0.5 = 100。
所以该商品的销量为100。
4. 习题四:某物体在水平面上做匀速直线运动,已知物体的速度与时间的关系为v(t) = 10t,其中v(t)表示速度,t表示时间。
求该物体在5秒内所经过的距离。
解答:速度等于位移与时间的比值,即 v = s / t。
将速度v代入函数中,得到10t = s / t,解方程得到s = 10t^2。
所以该物体在5秒内所经过的距离为10 *5^2 = 250。
高中数学必修一第三章《函数的应用》单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .02.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.某企业2010年12月份的产值是这年1月份产值的P 倍,则该企业2010年度产值的月平均增长率为( )A .P P -1 B .11P -1C .11PD .P -1114.如图所示的函数图象与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④5.如图1,直角梯形OABC 中,AB∥OC,AB =1,OC =BC =2,直线l∶x=t 截此梯形所得位于l 左方图形面积为S ,则函数S =f(t)的图象大致为图中的( )图16.已知在x 克a%的盐水中,加入y 克b%的盐水,浓度变为c%,将y 表示成x 的函数关系式为( )A .y =c -ac -b x B .y =c -ab -c x C .y =c -bc -axD .y =b -cc -ax 7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( ) (下列数据仅供参考:2=1.41,3=1.73,33=1.44,66=1.38)A .38%B .41%C .44%D .73%8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是单位产量Q 的函数:R(Q)=4Q -1200Q 2,则总利润L(Q)的最大值是________万元,这时产品的生产数量为________.(总利润=总收入-成本)( )A .250 300B .200 300C .250 350D .200 3509.在一次数学实验中,运用图形计算器采集到如下一组数据:x -2.0 -1.0 0 1.00 2.00 3.00 y0.240.5112.023.988.02则x 、y )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x10.根据统计资料,我国能源生产自1986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?( )A .一次函数B .二次函数C .指数函数D .对数函数11.用二分法判断方程2x 3+3x -3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421875,0.6253=0.24414)( )A .0.25B .0.375C .0.635D .0.82512.有浓度为90%的溶液100g ,从中倒出10g 后再倒入10g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.3010,lg 3=0.4771)( )A .19B .20C .21D .22二、填空题(本大题共4小题,每小题5分,共20分)13.用二分法研究函数f(x)=x 3+2x -1的零点,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈________,第二次计算的f(x)的值为f(________).14.若函数f(x)=a x-x -a(a>0,且a≠1)有两个零点,则实数a 的取值范围为________.15.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为________________万元.16.函数f(x)=x 2-2x +b 的零点均是正数,则实数b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.(1)写出国庆这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出x 的取值范围.(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y.(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.4771)19.(12分)某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线AB 是函数y =ka t(t≥1,a>0,且k ,a 是常数)的图象.(1)写出服药后y 关于t 的函数关系式;(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克)?20.(12分)已知一次函数f(x)满足:f(1)=2,f(2)=3, (1)求f(x)的解析式;(2)判断函数g(x)=-1+lg f 2(x)在区间[0,9]上零点的个数.21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x 年后,我国人口为y 亿.(1)求y 与x 的函数关系式y =f(x);(2)求函数y =f(x)的定义域;(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)答案1.B [由1+1x =0,得1x=-1,∴x =-1.]2.B [由题意x 0为方程x 3=(12)x -2的根,令f (x )=x 3-22-x,∵f (0)=-4<0,f (1)=-1<0,f (2)=7>0, ∴x 0∈(1,2).]3.B [设1月份产值为a ,增长率为x ,则aP =a (1+x )11, ∴x =11P -1.]4.A [对于①③在函数零点两侧函数值的符号相同,故不能用二分法求.] 5.C [解析式为S =f (t ) =⎩⎪⎨⎪⎧12t ·2t 0≤t ≤112×1×2+t -1×21<t ≤2=⎩⎪⎨⎪⎧t 20≤t ≤12t -11<t ≤2∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]6.B [根据配制前后溶质不变,有等式a %x +b %y =c %(x +y ),即ax +by =cx +cy ,故y =c -a b -cx .] 7.B [设职工原工资为p ,平均增长率为x , 则p (1+x )6=8p ,x =68-1=2-1=41%.]8.A [L (Q )=4Q -1200Q 2-Q -200=-1200(Q -300)2+250,故总利润L (Q )的最大值是250万元,这时产品的生产数量为300.]9.B [∵x =0时,b x无意义,∴D 不成立. 由对应数据显示该函数是增函数,且增幅越来越快, ∴A 不成立. ∵C 是偶函数,∴x =±1的值应该相等,故C 不成立. 对于B ,当x =0时,y =1, ∴a +1=1,a =0;当x =1时,y =b =2.02,经验证它与各数据比较接近.]10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]11.C [令f (x )=2x 3+3x -3,f (0)<0,f (1)>0,f (0.5)<0,f (0.75)>0,f (0.625)<0,∴方程2x 3+3x -3=0的根在区间(0.625,0.75)内, ∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.]12.C [操作次数为n 时的浓度为(910)n +1,由(910)n +1<10%,得n +1>-1lg 910=-12lg3-1≈21.8,∴n ≥21.] 13.(0,0.5) 0.25解析 根据函数零点的存在性定理. ∵f (0)<0,f (0.5)>0,∴在(0,0.5)存在一个零点,第二次计算找中点,即0+0.52=0.25. 14.(1,+∞)解析 函数f (x )的零点的个数就是函数y =a x与函数y =x +a 交点的个数,如下图,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.15.a (1-b %)n解析 第一年后这批设备的价值为a (1-b %);第二年后这批设备的价值为a (1-b %)-a (1-b %)·b %=a (1-b %)2; 故第n 年后这批设备的价值为a (1-b %)n. 16.(0,1]解析 设x 1,x 2是函数f (x )的零点,则x 1,x 2为方程x 2-2x +b =0的两正根,则有⎩⎪⎨⎪⎧Δ≥0x 1+x 2=2>0x 1x 2=b >0,即⎩⎪⎨⎪⎧4-4b ≥0b >0.解得0<b ≤1.17.解 (1)依题意得y =5x +10(1200-x ) =-5x +12000,0≤x ≤1200. (2)∵1200×65%≤x ≤1200×85%, 解得780≤x ≤1020,而y =-5x +12000在[780,1 020]上为减函数, ∴-5×1020+12000≤y ≤-5×780+12000. 即6900≤y ≤8100,∴国庆这天停车场收费的金额范围为[6 900,8 100]. 18.解 (1)依题意:y =a ·0.9x,x ∈N *. (2)依题意:y ≤13a ,即:a ·0.9x≤a3,0.9x≤13=0.91log 30.9,得x ≥log 0.913=-lg32lg3-1≈-0.47710.9542-1≈10.42.答 通过至少11块玻璃后,光线强度减弱到原来的13以下.19.解 (1)当0≤t <1时,y =8t ;当t ≥1时,⎩⎪⎨⎪⎧ka =8,ka 7=1.∴⎩⎪⎨⎪⎧a =22,k =8 2.∴y =⎩⎪⎨⎪⎧8t , 0≤t <1,8222t,t ≥1.(2)令82·(22)t≥2,解得t ≤5. ∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药. (3)第二次服药后3小时,每毫升血液中含第一次所服药的药量为y 1=82×(22)8=22(微克);含第二次服药后药量为y 2=82×(22)3=4(微克),y 1+y 2=22+4≈4.7(微克). 故第二次服药再过3小时,该病人每毫升血液中含药量为4.7微克. 20.解 (1)令f (x )=ax +b ,由已知条件得⎩⎪⎨⎪⎧a +b =22a +b =3,解得a =b =1,所以f (x )=x +1(x ∈R ).(2)∵g (x )=-1+lg f 2(x )=-1+lg (x +1)2在区间[0,9]上为增函数,且g (0)=-1<0,g (9)=-1+lg102=1>0,∴函数g (x )在区间[0,9]上零点的个数为1个. 21.解 (1)2009年底人口数:13.56亿. 经过1年,2010年底人口数:13.56+13.56×1%=13.56×(1+1%)(亿). 经过2年,2011年底人口数:13.56×(1+1%)+13.56×(1+1%)×1% =13.56×(1+1%)2(亿). 经过3年,2012年底人口数:13.56×(1+1%)2+13.56×(1+1%)2×1% =13.56×(1+1%)3(亿).∴经过的年数与(1+1%)的指数相同.∴经过x年后人口数为13.56×(1+1%)x(亿).∴y=f(x)=13.56×(1+1%)x.(2)理论上指数函数定义域为R.∵此问题以年作为时间单位.∴此函数的定义域是{x|x∈N*}.(3)y=f(x)=13.56×(1+1%)x.∵1+1%>1,13.56>0,∴y=f(x)=13.56×(1+1%)x是增函数,即只要递增率为正数,随着时间的推移,人口的总数总在增长.22.解(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则x0=100+60-510.02=550.因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当0<x≤100时,P=60;当100<x<550时,P=60-0.02·(x-100)=62-x50;当x≥550时,P=51.所以P=f(x)=⎩⎪⎨⎪⎧60,0<x≤10062-x50,100<x<550,51,x≥550(x∈N).(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则L=(P-40)x=⎩⎪⎨⎪⎧20x,0<x≤10022x-x250,100<x<550,11x,x≥550(x∈N).当x=500时,L=6000;当x=1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.测试卷二(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .42.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为( )A .每个110元B .每个105元C .每个100元D .每个95元3.今有一组实验数据如下表,现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )A .y =log 2tB .y =12C .y =t 2-12D .y =2t -24.某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他去一次购买上述同样的商品,则应付款是( )A .413.7元B .513.7元C .548.7元D .546.6元5.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( )A .(-235,+∞) B .(1,+∞) C .[-235,1]D .(-∞,-235]6.设f(x)是区间[a ,b]上的单调函数,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一实根7.方程x 2-(2-a)x +5-a =0的两根都大于2,则实数a 的取值范围是( )A .a<-2B .-5<a<-2C .-5<a≤-4D .a>4或a<-48.四人赛跑,其跑过的路程f(x)和时间x 的关系分别是:f 1(x)=12x ,f 2(x)=14x ,f 3(x)=log 2(x +1),f 4(x)=log 8(x +1),如果他们一直跑下去,最终跑到最前面的人所具有的函数关系是( )A .f 1(x)=12xB .f 2(x)=14xC .f 3(x)=log 2(x +1)D .f 4(x)=log 8(x +1)9.函数f(x)=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)10.已知f(x)=(x -a)(x -b)-2的两个零点分别为α,β,则( )A .a<α<b<βB .α<a<b<βC .a<α<β<bD .α<a<β<b11.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=f(x +1x +4)的所有x之和为( )A .-92B .-72C .-8D .812.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如图所示.现给出下面说法:①前5分钟温度增加的速度越来越快; ②前5分钟温度增加的速度越来越慢; ③5分钟以后温度保持匀速增加; ④5分钟以后温度保持不变. 其中正确的说法是( )A .①④B .②④C .②③D .①③二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=⎩⎪⎨⎪⎧log 2x x>03xx≤0,且关于x 的方程f(x)+x -a =0有且只有一个实根,则实数a 的取值范围是______________.14.要建造一个长方体形状的仓库,其内部的高为3m ,长与宽的和为20m ,则仓库容积的最大值为________.15.已知函数f(x)=⎩⎪⎨⎪⎧2x-1, x>0,-x 2-2x ,x≤0.若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围为________.16.若曲线|y|=2x+1与直线y =b 没有公共点,则b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)讨论方程4x 3+x -15=0在[1,2]内实数解的存在性,并说明理由.18.(12分)(1)已知f(x)=23x-1+m 是奇函数,求常数m 的值; (2)画出函数y =|3x-1|的图象,并利用图象回答:k 为何值时,方程|3x-1|=k 无解?有一解?有两解?19.(12分)某出版公司为一本畅销书定价如下: C(n)=⎩⎪⎨⎪⎧12n ,1≤n≤24,n ∈N *,11n ,25≤n ≤48,n ∈N *,10n ,n ≥49,n ∈N *,这里n 表示定购书的数量,C (n )是定购n 本书所付的钱数(单位:元).若一本书的成本价是5元,现有甲、乙两人来买书,每人至少买1本,两人共买60本,问出版公司最少能赚多少钱?最多能赚多少钱?20.(12分)是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.21.(12分)已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求实数a的取值范围.22.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;③每户每月的定额损耗费a不超过5元.(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系式;(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:m,n,a的值.答案1.A [在同一坐标系中分别画出函数y1=|x2-3|和y2=a的图象,如图所示.可知方程解的个数为0,2,3或4,不可能有1个解.] 2.D [设售价为x 元,则利润y =[400-20(x -90)](x -80)=20(110-x )(x -80)=-20(x 2-190x +8800) =-20(x -95)2+4500.∴当x =95时,y 最大为4500元.]3.C [当t =4时,y =log 24=2,y =12log 4=-2,y =42-12=7.5,y =2×4-2=6.所以y =t 2-12适合,当t =1.99代入A 、B 、C 、D4个选项,y =t 2-12的值与表中的1.5接近,故选C.]4.D [购物超过200元,至少付款200×0.9=180(元),超过500元,至少付款500×0.9=450(元),可知此人第一次购物不超过200元,第二次购物不超过500元,则此人两次购物总金额是168+4230.9=168+470=638(元).若一次购物,应付500×0.9+138×0.7=546.6(元).]5.C [令f (x )=x 2+ax -2,则f (0)=-2<0, ∴要使f (x )在[1,5]上与x 轴有交点,则需要⎩⎪⎨⎪⎧f 1≤0f 5≥0,即⎩⎪⎨⎪⎧a -1≤023+5a ≥0,解得-235≤a ≤1.]6.D [∵f (a )·f (b )<0,∴f (x )在区间[a ,b ]上存在零点,又∵f (x )在[a ,b ]上是单调函数,∴f (x )在区间[a ,b ]上的零点唯一,即f (x )=0在[a ,b ]上必有唯一实根.]7.C [由题意知⎩⎪⎨⎪⎧Δ≥02-a2>2f 2>0,解得-5<a ≤-4.]8.B [在同一坐标系下画出四个函数的图象,由图象可知f 2(x )=14x 增长的最快.]9.B [f (2)=ln2-22=ln2-1<1-1=0,f (3)=ln3-23>1-23=13>0.故零点所在区间为(2,3).]10.B [设g (x )=(x -a )(x -b ),则f (x )是由g (x )的图象向下平移2个单位得到的,而g (x )的两个零点为a ,b ,f (x )的两个零点为α,β,结合图象可得α<a <b <β.]11.C [∵x >0时f (x )单调且为偶函数, ∴|2x |=|x +1x +4|,即2x (x +4)=±(x +1). ∴2x 2+9x +1=0或2x 2+7x -1=0. ∴共有四根.∵x 1+x 2=-92,x 3+x 4=-72,∴所有x 之和为-92+(-72)=-8.]12.B [因为温度y 关于时间t 的图象是先凸后平行直线,即5分钟前每当t 增加一个单位增量Δt ,则y 随相应的增量Δy 越来越小,而5分钟后y 关于t 的增量保持为0.故选B.]13.(1,+∞)解析 由f (x )+x -a =0, 得f (x )=a -x ,令y =f (x ),y =a -x ,如图,当a >1时,y =f (x )与y =a -x 有且只有一个交点, ∴a >1. 14.300m 3解析 设长为x m ,则宽为(20-x )m ,仓库的容积为V , 则V =x (20-x )·3=-3x 2+60x,0<x <20,由二次函数的图象知,顶点的纵坐标为V 的最大值. ∴x =10时,V 最大=300(m 3). 15.(0,1)解析 函数f (x )=⎩⎪⎨⎪⎧2x-1, x >0,-x 2-2x ,x ≤0的图象如图所示,该函数的图象与直线y =m 有三个交点时m ∈(0,1),此时函数g (x )=f (x )-m 有3个零点.16.[-1,1]解析 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件为b ∈[-1,1].17.解 令f (x )=4x 3+x -15, ∵y =4x 3和y =x 在[1,2]上都为增函数. ∴f (x )=4x 3+x -15在[1,2]上为增函数,∵f (1)=4+1-15=-10<0,f (2)=4×8+2-15=19>0, ∴f (x )=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解. 18.解 (1)∵f (x )=23x -1+m 是奇函数,∴f (-x )=-f (x ),∴23-x -1+m =-23x -1-m .∴2·3x1-3x +m =21-3x -m , ∴23x -11-3x+2m =0. ∴-2+2m =0,∴m =1.(2)作出直线y =k 与函数y =|3x-1|的图象,如图.①当k <0时,直线y =k 与函数y =|3x-1|的图象无交点,即方程无解;②当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解;③当0<k <1时,直线y =k 与函数y =|3x-1|的图象有两个不同的交点,所以方程有两解.19.解 设甲买n 本书,则乙买(60-n )本(不妨设甲买的书少于或等于乙买的书),则n ≤30,n ∈N *.①当1≤n ≤11且n ∈N *时,49≤60-n ≤59,出版公司赚的钱数f (n )=12n +10(60-n )-5×60=2n +300; ②当12≤n ≤24且n ∈N *时,36≤60-n ≤48, 出版公司赚的钱数f (n )=12n +11(60-n )-5×60=n +360;③当25≤n ≤30且n ∈N *时,30≤60-n ≤35, 出版公司赚的钱数f (n )=11×60-5×60=360. ∴f (n )=⎩⎪⎨⎪⎧2n +300, 1≤n ≤11,n ∈N *,n +360,12≤n ≤24,n ∈N *,360,25≤n ≤30,n ∈N *.∴当1≤n ≤11时,302≤f (n )≤322; 当12≤n ≤24时,372≤f (n )≤384; 当25≤n ≤30时,f (n )=360.故出版公司最少能赚302元,最多能赚384元. 20.解 若实数a 满足条件, 则只需f (-1)f (3)≤0即可.f (-1)f (3)=(1-3a +2+a -1)(9+9a -6+a -1)=4(1-a )(5a +1)≤0,所以a ≤-15或a ≥1.检验:(1)当f (-1)=0时a =1, 所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a ≠1. (2)当f (3)=0时a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).21.解 当a =0时,函数为f (x )=2x -3,其零点x =32不在区间[-1,1]上.当a ≠0时,函数f (x )在区间[-1,1]分为两种情况: ①函数在区间[-1,1]上只有一个零点,此时:⎩⎪⎨⎪⎧Δ=4-8a -3-a ≥0f -1·f 1=a -5a -1≤0或⎩⎪⎨⎪⎧Δ=4-8a -3-a =0-1≤-12a ≤1,解得1≤a ≤5或a =-3-72.②函数在区间[-1,1]上有两个零点,此时⎩⎪⎨⎪⎧Δ>0-1<-12a <1f -1f 1≥0,即⎩⎪⎨⎪⎧8a 2+24a +4>0-1<-12a<1a -5a -1≥0.解得a ≥5或a <-3-72.综上所述,如果函数在区间[-1,1]上有零点,那么实数a 的取值范围为(-∞,-3-72]∪[1,+∞). 22.解 (1)依题意,得y =⎩⎪⎨⎪⎧9+a ,0<x ≤m , ①9+n x -m +a ,x >m .②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②,得⎩⎪⎨⎪⎧17=9+n 4-m +a , ③23=9+n 5-m +a .④③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16. 又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13,这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量.将⎩⎪⎨⎪⎧x =2.5,y =11代入①,得11=9+a ,由⎩⎪⎨⎪⎧a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.。
函数的应用题库及答案函数是数学中描述变量之间关系的基本概念,广泛应用于解决实际问题。
以下是一些函数的应用题库及答案,供学生练习和理解函数的应用。
# 题库1. 人口增长问题某城市2010年的人口是100万,预计每年增长率为2%,求2020年该城市的人口。
2. 投资收益问题如果某人投资1000元,年利率为5%,计算5年后的总收益。
3. 物理运动问题一个物体从静止开始,以匀加速运动,加速度为2m/s²,求10秒后物体的速度和位移。
4. 几何问题一个圆的半径是r,求该圆的面积和周长。
5. 温度转换问题如果华氏温度是98.6°F,求对应的摄氏温度。
6. 利润最大化问题一家公司生产产品的成本是每件10元,市场价格是每件20元,如果公司想要利润最大化,求每件产品的最佳售价。
7. 函数图像问题给定函数f(x) = x² - 4x + 3,求该函数的图像顶点坐标。
8. 线性规划问题某工厂有100吨原料,生产A产品需要1吨原料,生产B产品需要2吨原料,A产品的利润是每吨100元,B产品的利润是每吨200元,求最大利润。
9. 函数的奇偶性问题判断函数g(x) = x³ - 2x是否为奇函数或偶函数。
10. 函数的周期性问题给定函数h(x) = sin(x),求该函数的周期。
# 答案1. 答案2020年的人口 = 100万× (1 + 2%)¹⁰ ≈ 100万× 1.02¹⁰≈ 108.36万。
2. 答案5年后的总收益= 1000 × (1 + 5%)⁵ ≈ 1000 × 1.27628 ≈ 1276.28元。
3. 答案10秒后的速度= 0 + 2 × 10 = 20m/s,位移= 0.5 × 2 × 10² = 100m。
4. 答案圆的面积= πr²,周长= 2πr。
5. 答案摄氏温度 = (98.6 - 32) × 5/9 ≈ 37°C。
高一数学必修1《第三章 函数的应用》单元测试题(满分150分 时间 120分钟)班级:__________ 姓名:__________ 成绩:__________第Ⅰ卷(选择题,共50分)一、选择题 (每题5分,共50分) 1. 函数223y x x =--的零点是( )A .1,3-B .3,1-C .1,2D .不存在2. 方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5)3.下列函数中增长速度最快的是( )A.1100xy e =B .y=100ln xC .y=100xD .y=1002x ⋅4.已知函数2212341,2,21,2,x y y x y x y x==--=-=其中能用二分法求出零点的函数个数是( )A .1B .2C .3D .45. 若函数()f x 唯一的零点一定在三个区间(2,16)2824、(,)、(,)内,那么下列命题中正确的是( )A .函数()f x 在区间(2,3)内有零点B .函数()f x 在区间(2,3(3,4))或内有零点C .函数()f x 在区间(3,16)内有零点D .函数()f x 在区间(4,16)内无零点6. 如图表示人的体重与年龄的关系,则( )A .体重随年龄的增长而增加B .25岁之后体重不变C .体重增加最快的是15~25岁D .体重增加最快的是15岁之前7. 世界人口已超过60亿,若按千分之一的年增长率计算,则两年增长的人口约为( )A .120万B .1100万C .1200万D .12000万8. 已知函数()24f x mx =+,若在[]2,1-上存在0x 使0()0f x =,则实数m 的取值范围是( )A .5,42⎡⎤-⎢⎥⎣⎦B.(][),21,-∞-+∞C. []1,2-D. []2,1-9. 若商品进价每件40元,当售价为50元/件时,一个月能卖出500件,通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件。
EXCEL函数练习题及答案(一)Excel函数练习题及答案Excel函数是Excel强大的功能之一,它为我们提供了很多实用的工具,可以帮助我们提高工作效率。
下面是一些Excel函数练习题及答案,希望能够帮助大家更好地掌握Excel函数的使用。
练习题一:用Excel函数求和题目:在A1、A2、A3、A4、A5单元格中输入5个数,用Excel函数求和。
答案:在B1单元格中输入“=SUM(A1:A5)”,按回车键即可算出这5个数的和。
练习题二:用Excel函数计算平均数题目:在A1、A2、A3、A4、A5单元格中输入5个数,用Excel函数计算平均数。
答案:在B1单元格中输入“=AVERAGE(A1:A5)”,按回车键即可计算出这5个数的平均数。
练习题三:用Excel函数计算百分数题目:在A1、A2、A3、A4、A5分别输入5个数,用Excel函数计算这5个数的百分数,保留两位小数。
答案:在B1单元格中输入“=A1/SUM(A1:A5)*100”,按回车键即可算出A1单元格中的数占这5个数的百分数,然后在B1单元格上方的格式栏中选择“百分比”,再点击小数点按钮后保留2位小数,即可在B1单元格中得出百分数。
练习题四:用Excel函数找出最大值和最小值题目:在A1、A2、A3、A4、A5单元格中输入5个数,用Excel函数找出最大值和最小值。
答案:在B1单元格中输入“=MAX(A1:A5)”,按回车键即可得出最大值,在B2单元格中输入“=MIN(A1:A5)”,按回车键即可得出最小值。
练习题五:用Excel函数计算绝对值题目:在A1单元格中输入一个数,用Excel函数计算这个数的绝对值。
答案:在B1单元格中输入“=ABS(A1)”,按回车键即可得出这个数的绝对值。
练习题六:用Excel函数计算乘幂题目:在A1单元格中输入一个数,用Excel函数计算这个数的平方。
答案:在B1单元格中输入“=POWER(A1,2)”,按回车键即可得出这个数的平方。
必修一数学(第三章函数的应用)单元检测(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2020·洛阳高一检测)函数f(x)的图象如图所示,函数f(x)零点的个数为( )A.1个B.2个C.3个D.4个2.(2020·宜昌高一检测)若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=03.已知方程x=3-lgx,下列说法正确的是( )A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内4.(2020·长沙高一检测)已知f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,那么下面命题错误的是( )A.函数f(x)在(1,2)或[2,3]内有零点B.函数f(x)在(3,5)内无零点C.函数f(x)在(2,5)内有零点D.函数f(x)在(2,4)内不一定有零点5.(2020·临川高一检测)设x0是方程lnx+x=4的解,则x0在下列哪个区间内( )A.(3,4)B.(0,1)C.(1,2)D.(2,3)6.(2020·新余高一检测)下列方程在区间(0,1)存在实数解的是( )A.x2+x-3=0B.x+1=0C.x+lnx=0D.x2-lgx=07.(2020·郑州高一检测)函数f(x)=3x-log2(-x)的零点所在区间是( )A. B.(-2,-1)C.(1,2)D.8.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2000元降到1280元,则这种手机的价格平均每次降低的百分率是( )A.10%B.15%C.18%D.20%9.向高为H的圆锥形漏斗注入化学溶液(漏斗下方口暂时关闭),注入溶液量V与溶液深度h的函数图象是( )10.若方程a x-x-a=0有两个解,则a的取值范围是( )A.(1,+∞)B.(0,1)C.(0,+∞)D.∅11.(2020·福州高一检测)若函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,则f可以是( )A.f=4x-1B.f=(x-1)2C.f=e x-1D.f=ln12.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( )A.①②③B.①③C.②③D.①②二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2020·南昌高一检测)用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是.14.已知函数f(x)=若关于x的方程f(x)-k=0有唯一一个实数根,则实数k的取值范围是.15.若函数f(x)=lgx+x-3的近似零点在区间(k,k+1)(k∈Z)内,则k= .16.定义在R上的偶函数y=f(x),当x≥0时,y=f(x)是单调递减的,f(1)·f(2)<0,则y=f(x)的图象与x轴的交点个数是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020·杭州高一检测)已知函数f(x)的图象是连续的,有如下表格,判断函数在哪几个区间上有零点.x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2f(x) -3.51 1.02 2.37 1.56 -0.38 1.23 2.77 3.45 4.89 18.(12分)设f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3,2.(1)求f(x).(2)当函数f(x)的定义域为[0,1]时,求其值域.19.(12分)用二分法求方程2x+x-8=0在区间(2,3)内的近似解.(精确度为0.1,参考数据:22.5≈5.657,22.25≈4.757,22.375≈5.187,22.4375≈5.417,22.75≈6.727) 20.(12分)(2020·潍坊高一检测)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.21.(12分)(2020·徐州高一检测)在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置,生产x台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润的函数等于收入与成本之差.求出利润函数p(x)及其边际利润函数Mp(x);判断它们是否具有相同的最大值;并写出本题中边际利润函数Mp(x)最大值的实际意义.22.(12分)A地某校准备组织学生及学生家长到B地进行社会实践,为便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2∶1,从A到B的火车票价格(部分)如下表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票至少要花多少钱?最多要花多少钱?参考答案与解析1【解析】选D.由图象知与x轴有4个交点,则函数f(x)共有4个零点.2【解析】选C.f(a)f(b)<0时,存在实数c∈(a,b)使得f(c)=0,f(a)f(b)>0时,可能存在实数c∈(a,b)使得f(c)=0.3【解析】选C.2<3-lg2,3>3-lg3,又f(x)=x+lgx-3在(0,+∞)上是单调递增的,所以方程x=3-lgx的解在区间(2,3)内.4【解析】选C.f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,则区间(1,3)内必有零点,(2,5)内不一定有零点,(3,5)内无零点,所以选C.5【解析】选D.令f(x)=lnx+x-4,由于f(2)=ln2+2-4<0,f(3)=ln3+3-4>0,f(2)·f(3)<0,又因为函数f(x)在(2,3)内连续,故函数f(x)在(2,3)内有零点,即方程lnx+x=4在(2,3)内有解.6【解题指南】先从好判断的一次方程、二次方程入手,不好求解的利用函数图象的交点进行判断.【解析】选 C.x2+x-3=0的实数解为x=和x=,不属于区间(0,1);x+1=0的实数解为x=-2,不属于区间(0,1);x2-lgx=0在区间(0,1)内无解,所以选C,图示如下:7【解析】选 B.f(x)=3x-log2(-x)的定义域为(-∞,0),所以C,D不能选;又f(-2)·f(-1)<0,且f(x)在定义域内是单调递增函数,故零点在(-2,-1)内.8【解析】选D.设平均每次降低的百分率为x,则2000(1-x)2=1280,解得x=0.2,故平均每次降低的百分率为20%.9【解析】选A.注入溶液量V随溶液深度h的增加增长越来越快,故选A.10【解析】选A.画出y1=a x,y2=x+a的图象知a>1时成立.11【解析】选A.f=4x-1的零点为x=,f=(x-1)2的零点为x=1,f=e x-1的零点为x=0,f=ln的零点为x=.现在我们来估算g=4x+2x-2的零点,因为g(0)= -1,g=1,g<0,且g(x)在定义域上是单调递增函数,所以g(x)的零点x∈,又函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,只有f=4x-1的零点适合.12【解析】选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.13【解析】令f(x)=x3-2x-5,f(2.5)·f(2)<0所以下一个有根的区间是(2,2.5). 答案:(2,2.5)14【解析】关于x的方程f(x)-k=0有唯一一个实数根,等价于函数y=f(x)与y=k 的图象有唯一一个交点,在同一个平面直角坐标系中作出它们的图象.由图象可知实数k的取值范围是[0,1)∪(2,+∞).答案:[0,1)∪(2,+∞)15【解析】由lgx+x-3=0,可得lgx=-x+3,令y1=lgx,y2=-x+3,结合两函数的图象,可大体判断零点在(1,3)内,又因为f(2)=lg2-1<0,f(3)=lg3>0,f(x)=lgx+x-3是单调递增函数,所以k=2.答案:216【解析】f(1)·f(2)<0,y=f(x)在区间(1,2)内有一个零点,由偶函数的对称性知,在区间(-2,-1)内也有一个零点,所以共有2个零点.答案:217【解析】因为函数的图象是连续不断的,并且由对应值表可知f·f<0,f·f(0)<0,f·f<0,所以函数f在区间(-2,-1.5),(-0.5,0)以及(0,0.5)内有零点.18【解析】(1)因为f(x)的两个零点分别是-3,2,所以即解得a=-3,b=5,f(x)=-3x2-3x+18.(2)由(1)知f(x)=-3x2-3x+18的对称轴x=-,函数开口向下,所以f(x)在[0,1]上为减函数,f(x)的最大值f(0)=18,最小值f(1)=12,所以值域为[12,18].19【解析】设函数f(x)=2x+x-8,则f(2)=22+2-8=-2<0,f(3)=23+3-8=3>0,所以f(2)·f(3)<0,说明这个函数在区间(2,3)内有零点x0,即原方程的解. 用二分法逐次计算,列表如下:区间中点的值中点函数近似值(2,3)2.50.157(2,2.5)2.25-0.993(2.25,2.5)2.375-0.438(2.375,2.5)2.437 5-0.145 5由表可得x0∈(2,2.5),x0∈(2.25,2.5),x0∈(2.375,2.5),x0∈(2.4375,2.5).因为|2.4375-2.5|=0.0625<0.1,所以方程2x+x-8=0在区间(2,3)内的近似解可取为2.4375.20【解析】设二次函数为f(x)=ax2+bx+c(a≠0).由题意知:c=3,-=2.设x1,x2是方程ax2+bx+c=0的两根,则+=10,所以(x1+x2)2-2x1x2=10,所以-=10,所以16-=10,所以a=1.代入-=2中,得b=-4.所以f(x)=x2-4x+3.21【解析】p(x)=R(x)-C(x)=-20x2+2500x-4000,x∈[1,100],x∈N,所以Mp(x)=p(x+1)-p(x)=[-20(x+1)2+2500(x+1)-4000]-(-20x2+2500x-4000),=2480-40x,x∈[1,100],x∈N;所以p(x)=-20+74125,x∈[1,100],x∈N,故当x=62或63时,p(x)max=74120(元),因为Mp(x)=2480-40x为减函数,当x=1时有最大值2440.故不具有相等的最大值.边际利润函数取最大值时,说明生产第二台机器与生产第一台的利润差最大.22【解析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座火车票,依题意得:解得则2m=20,答:参加社会实践的老师、家长与学生各有10人、20人与180人.(2)由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x-180)名成年人买二等座火车票,(210-x)名成年人买一等座火车票.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x-180)+81(210-x),即y=-13x+13950(180≤x<210).②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长、老师一起购买一等座火车票共(210-x)张.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210-x),即y=-30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=-13x+13950,由此可见,当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=-30x+17010,由此可见,当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买单程火车票至少要花11233元,最多。
9年级学生函数试卷加答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列函数中,哪个函数是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = -x^32. 如果函数f(x) = x^3 3x + 2,那么f(-1)的值是?A. -2B. 0C. 2D. 43. 下列哪个函数是奇函数?A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)4. 函数y = 2^x的图像是?A. 上升的直线B. 下降的直线C. 上升的曲线D. 下降的曲线5. 如果函数f(x) = x^2 + 2x + 1,那么它的顶点坐标是?A. (-1, 0)B. (-1, 1)C. (1, 0)D. (1, 1)二、判断题(每题1分,共5分)1. 所有的线性函数都是一次函数。
()2. 函数y = x^3在x = 0处有极值。
()3. 偶函数的图像关于y轴对称。
()4. 如果函数f(x)在区间(a, b)上单调递增,那么它在整个实数域上也是单调递增的。
()5. 函数y = ax^2 + bx + c的图像是一个抛物线,无论a的值是正是负。
()三、填空题(每题1分,共5分)1. 如果函数f(x) = x^2 4x + 3,那么f(2)的值是______。
2. 函数y = 3x 2的图像是一条______。
3. 如果函数f(x) = x^3 6x^2 + 9x,那么f'(x)的值是______。
4. 函数y = |x|的图像在x = 0处______。
5. 如果函数f(x) = (x 1)^2,那么它的顶点坐标是______。
四、简答题(每题2分,共10分)1. 简述一次函数的定义及其图像特点。
2. 什么是函数的单调性?如何判断一个函数的单调性?3. 简述二次函数的定义及其图像特点。
4. 什么是函数的奇偶性?如何判断一个函数的奇偶性?5. 简述函数的极值概念及其求法。
高中数学必修一第三章《函数的应用》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1 ) A .()8,9B .()9,10C .()12,13D .()14,152.若函数f (x )在[a ,b ]上连续,且同时满足f (a )·f (b )<0,()02a b f a f +⎛⎫⋅> ⎪⎝⎭.则( )A .f (x )在,2a b a +⎡⎤⎢⎥⎣⎦上有零点 B .f (x )在,2a b b +⎡⎤⎢⎥⎣⎦上有零点C .f (x )在,2a b a +⎡⎤⎢⎥⎣⎦上无零点 D .f (x )在,2a b b +⎡⎤⎢⎥⎣⎦上无零点3.三个变量y 1,y 2,y 3随着变量x 的变化情况如下表:则关于x A .y 1,y 2,y 3B .y 2,y 1,y 3C .y 3,y 2,y 1D .y 1,y 3,y 24.下列图象所表示的函数中,能用二分法求零点的是( )5.对于函数f(x)在定义域内用二分法的求解过程如下:f(2014)<0,f(2015)<0,f(2016)>0,则下列叙述正确的是( )A .函数f (x )在(2014,2015)内不存在零点B .函数f (x )在(2015,2016)内不存在零点C .函数f (x )在(2015,2016)内存在零点,并且仅有一个D .函数f (x )在(2014,2015)内可能存在零点 6.已知x 0是函数()121x f x x=+-的一个零点.若()101,x x ∈,()20,x x ∈+∞, 则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>07.二次函数f (x )=ax 2+bx +c (x ∈R)的部分对应值如下表:A .(-3,-1)和(2,4)B .(-3,-1)和(-1,1)C .(-1,1)和(1,2)D .(-∞,-3)和(4,+∞)8.某研究小组在一项实验中获得一组关系y 、t 之间的数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y 与t 之间关系( )A .y =2tB .y =2t 2C .y =t 3D .y =log 2t9.某厂原来月产量为a ,一月份增产10%,二月份比一月份减产10%,设二月份产量为b ,则( ) A .a >bB .a <bC .a =bD .无法判断10.设a,b,k是实数,二次函数f(x)=x2+ax+b满足:f(k-1)与f(k)异号,()1f k+与f(k)异号.在以下关于f(x)的零点的说法中,正确的是()A.该二次函数的零点都小于kB.该二次函数的零点都大于kC.该二次函数的两个零点之间差一定大于2D.该二次函数的零点均在区间(k-1,k+1)内11.若函数f(x)=x3-x-1在区间[]1,1.5内的一个零点附近函数值用二分法逐次计算列表如下那么方程x3A.1.2 B.1.3125 C.1.4375 D.1.2512.已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为a,b,c,则()A.a<b<c B.a<c<b C.b<a<c D.c<a<b二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若函数y=mx2+x-2没有零点,则实数m的取值范围是________.14.已知二次函数f(x)=x2+x+a(a>0),若f(m)<0,则在(m,m+1)上函数零点的个数是________.15.已知y=x(x-1)(x+1)的图象如图所示.令f(x)=x(x-1)(x+1)+0.01,则下列关于f(x)=0的解叙述正确的是________.①有三个实根;②x >1时恰有一实根; ③当0<x <1时恰有一实根; ④当-1<x <0时恰有一实根;⑤当x <-1时恰有一实根(有且仅有一实根).16.某工程由A 、B 、C 、D 四道工序完成,完成它们需用的时间依次2、5、x 、4天,四道工序的先后顺序及相互关系是:A 、B 可以同时开工;A 完成后,C 可以开工;B 、C 完成后,D 可以开工,若完成该工程总时间数为9天,则完成工序C 需要的天数x 最大为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)设函数()[)()222,1,2,,1x x f x x x x ⎧-∈+∞⎪=⎨-∈-∞⎪⎩,求函数()()14g x f x =-的零点.18.(12分) 已知二次函数()()2,f x x bx c b c =++∈R ,若()()12f f -=,且函数()y f x x =-的值域为[)0,+∞.(1)求函数()f x 的解析式;(2)若函数()2x g x k =-,当[]1,2x ∈时,记()()f x g x ,的值域分别为A B A B A =U ,,, 求实数k 的值.19.(12分)已知函数()()3lg ,23lg 3,2x x f x x x ⎧≥⎪⎪=⎨⎪-<⎪⎩,若方程f (x )=k 无实数解,求k 的取值范围.20.(12分)某公司从1999年的年产值100万元,增加到10年后2009年的500万元,如果每年产值增长率相同,则每年的平均增长率是多少?(ln(1+x )≈x ,lg2=0.3,ln10=2.30)21.(12分)关于x 的方程x 2-2x +a =0,求a 为何值时: (1)方程一根大于1,一根小于1;(2)方程一个根在(-1,1)内,另一个根在(2,3)内; (3)方程的两个根都大于零?22.(12分)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】当9x =时,lg91y =-;当10x =时,9111010y =-=, 即()1lg91010-⋅<,得函数在区间()9,10内存在零点.故选B . 2.【答案】B【解析】由已知,易得()02a b f b f +⎛⎫⋅< ⎪⎝⎭,因此f (x )在,2a b b +⎡⎤⎢⎥⎣⎦上一定有零点,但在其他区间上可能有零点,也可能没有零点.故选B . 3.【答案】C【解析】通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y 3随x 的变化符合此规律;指数函数的增长速度越来越快,y 2随x 的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y 1随x 的变化符合此规律,故选C . 4.【答案】C【解析】∵C 中零点左右两侧的函数值的符号相反.故选C . 5.【答案】D【解析】在区间(2015,2016)内零点的个数不确定,故B ,C 错误,在区间(2014,2015)内可能有零点,故选D . 6.【答案】B【解析】由于函数()1111g x x x ==---在()1,+∞上单调递增,函数h (x )=2x 在()1,+∞上单调递增,故函数f (x )=h (x )+g (x )在()1,+∞上单调递增,所以函数f (x )在()1,+∞上只有唯一的零点x 0,且f (x 1)<0,f (x 2)>0,故选B . 7.【答案】A【解析】∵f (-3)=6>0,f (-1)=-4<0,∴f (-3)·f (-1)<0.∵f (2)=-4<0,f (4)=6>0,∴f (2)·f (4)<0.∴方程ax 2+bx +c =0的两根所在的区间分别是(-3,-1)和(2,4).故选A . 8.【答案】D【解析】由点(2,1),(4,2),(8,4),故选D . 9.【答案】A【解析】∵()()1110%110%1100b a a ⎛⎫=+-=- ⎪⎝⎭,∴99100b a =⨯,∴b <a ,故选A . 10.【答案】D【解析】由题意得f (k -1)·f (k )<0,f (k )·f (k +1)<0,由零点的存在性定理可知, 在区间(k -1,k ),(k ,k +1)内各有一个零点,零点可能是区间内的任何一个值, 故D 正确. 11.【答案】B【解析】由于f (1.375)>0,f (1.3125)<0,且1.375-1.3125<0.1,故选B . 12.【答案】B 【解析】因为()1111022f -=-=-<,f (0)=1>0,所以f (x )的零点a ∈(-1,0); 因为g (2)=0,所以g (x )的零点b =2;因为11110222h ⎛⎫=-+=-< ⎪⎝⎭,h (1)=1>0,所以h (x )的零点1,12c ⎛⎫∈ ⎪⎝⎭.因此a <c <b .故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】1m<8-【解析】当m =0时,函数有零点,所以应有0180m m ∆≠⎧⎨=+<⎩,解得1m<8-.14.【答案】1【解析】设函数f (x )的两个零点为x 1,x 2,则x 1+x 2=-1,x 1·x 2=a .∵121x x -=,又f (m )<0,∴f (m +1)>0.∴f (x )在(m ,m +1)上零点的个数是1. 15.【答案】①⑤【解析】f (x )的图象是将函数y =x (x -1)(x +1)的图象向上平移0.01个单位得到.故f (x )的图象与x 轴有三个交点,它们分别在区间(),1-∞-,10,2⎛⎫ ⎪⎝⎭和1,12⎛⎫⎪⎝⎭内,故只有①⑤正确. 16.【答案】3 【解析】如图,设工程所用总天数为f (x ),则由题意得: 当x ≤3时,f (x )=5+4=9, 当x >3时,f (x )=2+x +4=6+x , ∴()9,36,3x f x x x ≤⎧=⎨+>⎩,∵工程所用总天数f (x )=9,∴x ≤3,∴x 最大值为3.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】9825-.【解析】求函数()()14g x f x =-的零点,即求方程()104f x -=的根. 当x ≥1时,由12204x --=得98x =; 当x <1时,由21204x x --=得25x + (舍去)或25x -. ∴函数()()14g x f x =-的零点是9825-.18.【答案】(1)()21f x x x =-+;(2)1k =. 【解析】(1)因为()()12f f -=,所以1b =-,因为函数()()22211y f x x x x c x c =-=-+=-+-的值域为[)0,+∞, 所以故101c c -=⇒=.所以()21f x x x =-+.(2)当[]1,2x ∈时,()21f x x x =-+递增,可得最小值为1,最大值为3, []1,3A ∴=,()2x g x k =-,当[]1,2x ∈时,()g x 递增,可得最小值为2k -,最大值为4k -,[]2,4B k k =--,由A B A =U ,有B A ⊆,所以21143k k k -≥⇒=-≤⎧⎨⎩. 19.【答案】3,lg 2⎛⎫-∞ ⎪⎝⎭.【解析】当32x ≥时,函数f (x )=lg x 是增函数,∴()3lg ,2f x ⎡⎤∈+∞⎢⎥⎣⎦; 当32x <时,函数f (x )=lg(3-x )是减函数,∴()3lg ,2f x ⎛⎫∈+∞ ⎪⎝⎭. 故()3lg ,2f x ⎡⎫∈+∞⎪⎢⎣⎭.要使方程无实数解,则3lg 2k <.故k 的取值范围是3,lg 2⎛⎫-∞ ⎪⎝⎭.20.【答案】16.1%.【解析】设每年年增长率为x ,则100(1+x )10=500,即(1+x )10=5, 两边取常用对数,得10·lg(1+x )=lg5, ∴()()lg510.7lg 1lg10lg2101010x +==-=. 又∵()()ln 1lg 1ln10x x ++=,∴ln(1+x )=lg(1+x )·ln10.∴()0.70.7ln 1ln10 2.300.16116.1%1010x +=⨯=⨯==. 又由已知条件:ln(1+x )≈x 得x ≈16.1%. 故每年的平均增长率约为16.1%.21.【答案】(1)a <1;(2)-3<a <0;(3)0<a <1.【解析】(1)设f (x )=x 2-2x +a ,(1)结合图象知,当方程一根大于1,一根小于1时,f (1)<0,得1-2+a <0,所以a <1.(2)由方程一个根在区间(-1,1)内,另一个根在区间(2,3)内, 得()()()()10102030ff f f ⎧->⎪<⎪⎨<⎪⎪>⎩,即30120440960a a a a +>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩,解得-3<a <0.(3)由方程的两个根都大于零,得()44000a f ∆=->⎧⎪⎨>⎪⎩,解得0<a <1.22.【答案】(1)110112⎛⎫- ⎪⎝⎭;(2)5年;(3)15年.【解析】(1)设每年砍伐面积的百分比为x (0<x <1),则()10112a x a -=,即()10112x -=.解得110112x ⎛⎫=- ⎪⎝⎭. (2)设经过m年剩余面积为原来的2, 则()1ma x -=,即11021122m⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,1102m =,解得m =5.故到今年为止,已砍伐了5年.(3)设从今年开始,以后砍伐了n 年,则n年后剩余面积为()12nx -.()114nx a -≥,即()1n x -≥,31021122n⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭,3102n ≤,解得n ≤15.故今后最多还能砍伐15年单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数()1ln ,034,0x x f x x x -+>⎧=⎨+<⎩的零点个数为( )A .3B .2C .1D .02.下列给出的四个函数()f x 的图象中能使函数()1y f x =-没有零点的是( )3.若函数y=f(x)在区间(-2,2)上的图象是连续不断的曲线,且方程f(x)=0在()-上仅2,2有一个实数根,则()()-⋅的值()11f fA.大于0 B.小于0 C.无法判断D.等于零4.方程1lg-=必有一个根的区间是()x xA.()0.3,0.4D.()0.4,0.50.2,0.3C.()0.1,0.2B.()5.方程2x-1+x=5的解所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)6.如下图1所示,阴影部分的面积S是h的函数(0≤h≤H),则该函数的图象是下面四个图形中的()图17.某人2011年7月1日到银行存入a 元,若按年利率x 复利计算,则到2014年7月1日可取款( ) A .a (1+x )2元 B .a (1+x )4元 C .a +(1+x )3元D .a (1+x )3元8.已知函数()24f x mx =+,若在[]2,1-上存在x 0,使()00f x =,则实数m 的取值范围是( ) A .5,42⎡⎤⎢⎥⎣⎦B .(][),21,-∞-+∞UC .[]1,2-D .[]2,1-9.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:(1)如一次购物不超过200元,不予以折扣;(2)如一次购物超过200元但不超过500元,按标价予以九折优惠;(3)如一次购物超过500元,其中500元给予九折优惠,超过500元的部分给予八五折优惠.某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款( ) A .608元B .574.1元C .582.6元D .456.8元10.若函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25,则f (x )可以是( ) A .f (x )=4x -1 B .f (x )=(x -1)2 C .f (x )=e x -1D .()1ln 2f x x ⎛⎫=- ⎪⎝⎭11.如图2,直角梯形OABC 中,AB ∥OC ,AB =1,OC =BC =2,直线l :x =t 截此梯形所得位于l 左方图形的面积为S ,则函数S =f (t )的图象大致为( )图212.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .0k = B .1k >C .01k ≤<D .1k >,或0k =二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3, 则下一个有根区间是__________.14.方程e x -x =2在实数范围内的解有________个.15.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初始时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)16.某公司欲投资13亿元进行项目开发,现有以下六个项目可供选择:号).三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知函数f(x)=2(m+1)x2+4mx+2m-1,(1)m为何值时,函数的图象与x轴有两个交点?(2)如果函数的一个零点在原点,求m的值.18.(12分)设函数f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3和2.(1)求f(x);(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.19.(12分)设函数f(x)=e x-m-x,其中m R,当m>1时,判断函数f(x)在区间(0,m)内是否存在零点.20.(12分)某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图所示).(1)根据图象,求一次函数y=kx+b的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元.试用销售单价x表示利润S;并求销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?图421.(12分)星期天,刘老师到电信局打算上网开户,经询问,记录了可能需要的三种方式所花费的费用资料,现将资料整理如下:①163普通:上网资费2元/小时;②163A:每月50元(可上网50小时),超过50小时的部分资费2元/小时;③ADSLD:每月70元,时长不限(其他因素均忽略不计).请你用所学的函数知识对上网方式与费用问题作出研究:(1)分别写出三种上网方式中所用资费与时间的函数解析式;(2)在同一坐标系内分别画出三种方式所需资费与时间的函数图象; (3)根据你的研究,请给刘老师一个合理化的建议.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:(1)画出2000~(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】当0x >时,令1ln 0x -+=,故e x =,符合;当0x <时,令340x +=,故符合,所以()y f x =的零点有2个,故选B .2.【答案】C【解析】把()y f x =的图象向下平移1个单位后,只有C 图中图象与x 轴无交点. 故选C . 3.【答案】C【解析】由题意不能断定零点在区间(-1,1)内部还是外部.故选C . 4.【答案】A【解析】设()lg 1f x x x -+=,则()0.10.10.110.10f lg =-+=-<, f (0.2)=lg0.2-0.2+1≈0.1>0,f (0.1)f (0.2)<0,故选A . 5.【答案】C【解析】令f (x )=2x -1+x -5,则f (2)=2+2-5=-1<0,f (3)=22+3-5=2>0, 从而方程在区间(2,3)内有解.故选C . 6.【答案】C 【解析】当2Hh =时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S 随之减小,故排除A 、B 、D ,选择C . 7.【答案】D【解析】由题意知,2012年7月1日可取款a (1+x )元, 2013年7月1日可取款a (1+x )·(1+x )=a (1+x )2元,2014年7月1日可取款a (1+x )2·(1+x )=a (1+x )3元.故选D . 8.【答案】B【解析】由题意,知m ≠0,故f (x )是单调函数. 又在[]2,1-上存在x 0,使f (x 0)=0,所以f (-2)·f (1)≤0. 所以(-4m +4)·(2m +4)≤0,即(m -1)(m +2)≥0,得1020m m -≥⎧⎨+≥⎩或1020m m -≤⎧⎨+≤⎩,可解得m ≤-2,或m ≥1.故选B .9.【答案】C【解析】本题实际上是一个分段函数的问题,购物付款432元,实际商品价值为104324809⨯=(元);则一次购买标价为176+480=656(元)的商品应付款5000.91560.85582.6⨯+⨯= (元),故选C . 10.【答案】A【解析】f (x )=4x -1的零点为14x =,f (x )=(x -1)2的零点为x =1, f (x )=e x -1的零点为x =0,()1ln 2f x x ⎛⎫=- ⎪⎝⎭的零点为32x =,估算g (x )=4x +2x -2的零点,因为g (0)=-1,112g ⎛⎫= ⎪⎝⎭,所以g (x )的零点10,2x ⎛⎫∈ ⎪⎝⎭.又函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25, 只有f (x )=4x -1的零点适合.故选A . 11.【答案】C【解析】由题图可得函数的解析式为()2,0121,12t t S f t t t ⎧≤≤⎪==⎨-<≤⎪⎩.故选C .12.【答案】D【解析】令y 1=|x 2-6x +8|,y 2=k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】(2,3)【解析】设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3). 14.【答案】2【解析】可转化为判断函数y =e x 与函数y =x +2的图象的交点个数.图315.【答案】8【解析】设过滤n 次才能达到市场要求,则12%10.1%3n⎛⎫-≤ ⎪⎝⎭,即20.132n⎛⎫≤ ⎪⎝⎭,∴2lg 1lg23n ≤--.∴n ≥7.39,∴n =8.16.【答案】ABE (或BDEF )【解析】本题适用于估算来解决.首先确定出各个项目的利润与投资比:A :0.11;B :0.2;C :0.1;D :0.125;E :0.15;F :0.1,大小顺序是:B ,E ,D ,A ,C ,F ;而B ,E ,D 三项的利润和超过1.6千万元;但投资不到13亿元,只有12亿元,所以可以再加上F ,即B ,D ,E ,F ;或者去掉D 选A ,即A ,B ,E 也符合题意.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)当m <1,且m ≠-1时,函数的图象与x 轴有两个交点;(2)12m =. 【解析】(1)∵函数的图象与x 轴有两个交点,∴100m ∆+≠⎧⎨>⎩,即()()()214421210m m m m ≠-⎧⎪⎨-⨯+⋅->⎪⎩,整理得11m m ≠-⎧⎨<⎩. 即当m <1,且m ≠-1时,函数的图象与x 轴有两个交点. (2)∵函数的一个零点在原点,即点(0,0)在函数f (x )的图象上, ∴f (0)=0,即2(m +1)·02+4m ·0+2m -1=0.∴12m =. 18.【答案】(1)f (x )=-3x 2-3x +18;(2)[]12,18. 【解析】(1)∵f (x )的两个零点是-3和2, ∴函数图象过点(-3,0)、(2,0). ∴9a -3(b -8)-a -ab =0, ① 4a +2(b -8)-a -ab =0. ② ①-②,得b =a +8.③③代入②,得4a +2a -a -a (a +8)=0, 即a 2+3a =0.∵a ≠0,a =-3,∴b =a +8=5.∴f (x )=-3x 2-3x +18. (2)由(1)得()22133********f x x x x ⎛⎫=--+=-+++ ⎪⎝⎭,图象的对称轴方程是12x =-,且0≤x ≤1,∴f (x )min =f (1)=12,f (x )max =f (0)=18. ∴函数f (x )的值域是[]12,18. 19.【答案】存在零点.【解析】f (x )=e x -m -x ,所以f (0)=e -m -0=e -m >0,f (m )=e 0-m =1-m . 又m >1,所以f (m )<0,所以f (0)·f (m )<0.又函数f (x )的图象在区间[0,m ]上是一条连续曲线,故函数f (x )=e x-m-x (m >1)在区间(0,m )内存在零点.20.【答案】(1)y =-x +1 000(500≤x ≤800);(2)见解析. 【解析】(1)由图象知,当x =600时,y =400; 当x =700时,y =300.代入y =kx +b 中,得400600300700k b k b =+⎧⎨=+⎩,解得11000k b =-⎧⎨=⎩,∴y =-x +1 000(500≤x ≤800)(2)销售总价=销量单价×销售量=xy ,成本总价=成本单价×销售量=500y , 代入求毛利润的公式,得S =xy -500y =x (-x +1 000)-500(-x +1 000)=-x 2+1 500x -500 000 =-(x -750)2+62 500(500≤x ≤800)∴当销售单价为750元/件时,可获得最大毛利润62 500元,此时销售量为250件. 21.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)上网费用y (元)与上网时间t (小时)的函数关系: ①163普通:y =2t (t ≥0);②163A :()50,05050250,50t y t t ≤≤⎧⎪=⎨+->⎪⎩,③ADSLD :y =70(t ≥0); (2)如图5所示:图5(3)163普通:适合不常上网,偶尔上网的,当每月上网时间t ≤25小时时,这种方式划算. 163A :适合每月上网25~60小时的情况.ADSLD :每月上网时间t ≥60小时的情况,用此方式比较合算.22.【答案】(1)见解析;(2)()3522f x x =+;(3)9.1万件. 【解析】(1)散点图如图6:图6(2)设f (x )=ax +b .由已知得437a b a b +=⎧⎨+=⎩,解得32a =,52b =,∴()3522f x x =+.检验:f (2)=5.5,|5.58-5.5|=0.08<0.1; f (4)=8.5,|8.44-8.5|=0.06<0.1. ∴模型()3522f x x =+能基本反映产量变化. (3)()35771322f =⨯+=,由题意知,2006年的年产量约为1370%9.1⨯=(万件),即2006年的年产量应约为9.1万件。