原子物理学 第6章习题.
- 格式:ppt
- 大小:388.00 KB
- 文档页数:3
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:222212121v m V M V M e +'=αα (1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,得)sin(sin ϕθθα+=VM v m e (4))sin(sin ϕθϕαα+='VM V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa2 sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----∙∙⨯=⨯==秒米千克λhp 能量为:λ/hc hv E ==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。
3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meVh 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。
因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。
试证明之。
证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。
所以,可以将上式的根式作泰勒展开。
只取前两项,得:)10489.01(2)41(260200V eVm h cm eVeVm h -⨯-=-=λ由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。
第六章 磁场中的原子6.1 已知钒原子的基态是2/34F 。
(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。
解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。
钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为4123212=+⨯=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。
(2)J J P meg2=μ h h J J P J 215)1(=+= 按LS 耦合:52156)1(2)1()1()1(1==++++-++=J J S S L L J J gB B J h m e μμμ7746.0515215252≈=⋅⋅⋅=∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距厘米/467.0~=∆v,试计算所用磁场的感应强度。
解:裂开后的谱线同原谱线的波数之差为:mcBeg m g m vπλλ4)(1'1~1122-=-=∆ 氦原子的两个价电子之间是LS 型耦合。
对应11P 原子态,1,0,12-=M ;1,1,0===J L S ,对应01S 原子态,01=M ,211.0,0,0g g J L S =====。
mc Be vπ4/)1,0,1(~-=∆ 又因谱线间距相等:厘米/467.04/~==∆mc Be vπ。
特斯拉。
00.1467.04=⨯=∴emcB π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。
解:在弱磁场中,不考虑核磁矩。
2/323D 能级:,23,21,2===j S l54)1(2)1()1()1(123,21,21,232=++++-++=--=j j s s l l j j g M2/122P 能级:,21,21,2===j S l 32,21,211=-=g ML v)3026,3022,302,302,3022,3026(~---=∆ 所以:在弱磁场中由2/122/3223P D →跃迁产生的光谱线分裂成六条,谱线之间间隔不等。
1.1解:根据卢瑟福散射公式:可能达到的最粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:79 (1.60 10 19 )213 6诂 1.14 10 一1310 6 1.60 10 _19由上式看出:r min 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核 代替质子时,其与靶核的作用的最小距离仍为1.14 10“米。
1 .原子的基本状况ctg0—b = 4- 2 Ze 2「b Ze 2得到:e24二;°K79 (1.60 1019)2ctg 曹6…,小二915 r(4 二 8.85 10-12) (7.68 106 10J9^ 3.97 10 米 式中K 一. =2 Mv 2是〉粒子的功能。
1.2已知散射角为二的:•粒子与散射核的最短距离为212 Z e 2 1r m =()77^(1-),4 二; 试问上题:•粒子与散射的金原子核之间的最短距离r m 多大?212 Ze 21解:将1.1题中各量代入r m 的表达式,得:r min = ()^(1)192=9 109 I :。
俨寫10)。
靑心02 10_14 米1.3若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核解:当入射粒子与靶核对心碰撞时,散射角为180:。
当入射粒子的动能全部转化为两1 Mv 2Ze 24 二;0 r min,故有:r minZe 2oK p1・7能量为3.5兆电子伏特的细「粒子束射到单位面积上质量为1.05 10-公斤/米2的银 箔上,:•粒解:设靶厚度为t '。
非垂直入射时引起:粒子在靶物质中通过的距离不再是靶物质的 厚度t ',而是t=t '/si n60,,如图1-1所示。
因为散射到与之间茁立体角内的粒子数dn 与总入射粒子数n 的比为:式中立体角元 d ; -ds/L 2,t =t '/sin60° =2t '/-3门-20°N 为原子密度。
基本练习:1.选择题:(1)在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:CA .0;B 。
1; C.2; D 。
3 (2)正常塞曼效应总是对应三条谱线,是因为:CA .每个能级在外磁场中劈裂成三个; B.不同能级的郎德因子g 大小不同; C .每个能级在外场中劈裂后的间隔相同; D.因为只有三种跃迁 (3)B 原子态2P 1/2对应的有效磁矩(g =2/3)是 AA 。
B μ33; B. B μ32; C. B μ32 ; D 。
B μ22。
(4)在强外磁场中原子的附加能量E ∆除正比于B 之外,同原子状态有关的因子有:DA 。
朗德因子和玻尔磁子B 。
磁量子数、朗德因子 C.朗德因子、磁量子数M L 和M J D 。
磁量子数M L 和M S (5)塞曼效应中观测到的π和σ成分,分别对应的选择定则为:AA ;)(0);(1πσ±=∆J M B. )(1);(1σπ+-=∆J M ;0=∆J M 时不出现; C 。
)(0σ=∆J M ,)(1π±=∆J M ; D 。
)(0);(1πσ=∆±=∆S L M M (6)原子在6G 3/2状态,其有效磁矩为:B A .B μ315; B. 0; C. B μ25; D 。
B μ215- (7)若原子处于1D 2和2S 1/2态,试求它们的朗德因子g 值:D A .1和2/3; B.2和2/3; C.1和4/3; D 。
1和2 (8)由朗德因子公式当L=S,J ≠0时,可得g 值:CA .2; B.1; C 。
3/2; D.3/4 (9)由朗德因子公式当L=0但S ≠0时,可得g 值:DA .1; B.1/2; C.3; D 。
2(10)如果原子处于2P1/2态,它的朗德因子g值:AA.2/3;B.1/3;C.2;D.1/2(11)某原子处于4D1/2态,若将其放于弱磁场中,则能级分裂为:CA.2个;B。
9个; C.不分裂;D。
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
1.原子的基本状况1.1解:根据卢瑟福散射公式: 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。
非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。
因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvze d (2)把(2)式代入(1)式,得:2sin )()41(422220θπεΩ=d Mvze Nt n dn (3)式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。
练习六习题1-2解6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试问它的工作电压是多少?解:依据公式答:它的工作电压是100kV .6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K α)(10Z ;将值代入上式,10246.0101010)⨯⨯===1780 Z =43即该元素为43号元素锝(Te). 第六章习题3,46-3 钕原子(Z=60)的L 吸收限为0.19nm ,试问从钕原子中电离一个K 电子需作多少功?6-4 证明:对大多数元素K α1射线的强度为K α2射线的两倍. 第六章习题5,6参考答案6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请: (1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长.分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.解: (1)由已知的条件可画出X 射线能级简图.K K α L α K β K γ (2)激发L 线系所需的能量:K在L 壳层产生一个空穴所需的能量E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能.或即有m 即L α线的波长为0.116nm.6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120︒的方向上产生一级衍射极大,试问该晶面的间距为多大?︒的方向上产生一级衍射极大sin θn=1解得 d =0.312 nm 第六章习题8参考答案6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求散射光子的最小能量及电子的最大动量.6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量.(1)其中c m光子去的能量为电子获得的能量 k E h h ='-νν依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式E由此可算出: νγγh E E 22=+E c E00=+ 2)(2cm EE h h o =-νν代入数据.010⨯=-光E 2解之: E 光=55.9 keV 第六章习题9参考答案6-9 若入射光子与质子发生康普顿散射,试求质子的康普顿波长.如?则 依6-8m EE =可得出:6-10 康普顿散射产生的散射光子,再与原子发生相互作用,当散射角θ>60°时,无论入射光子能量多么大,散射光子总不能再产生正负电子偶.试证明之. 第六章习题11,126-11 证明:光子与自由电子相碰,不可能发生光电效应. 6-12 证明:在真空中不可能发生“光子一电子对”过程. 第六章习题13、14参考答案6-13已知铑(Z=45)的电子组态为1s 22s 22p 63s 23p 63d 104s 24p 64d 85s I ,现请:(1)确定它的基态谱项符号;(2)用它的K αX 射线作康普顿散射实验,当光子的散射角为60°时,求反冲电子的能量(已知K α的屏蔽系数b =0.9);(3)在实验装置中用厚为0.30cm 的铅屏蔽该射线.如果改用铝代替铅,为达到同样的屏蔽效果,需要用多少厚的铝?(μpb =52.5 cm -I ;μAl =0.765cm -1)解:(1)电子组态中4d 85s 1未填满,所以为基态的电子组态4d 25s l 1= l 2=2,l 3=0其原子态计算先2d 电子耦合,得出最低态3F 4,3,2.找出基态3F 4,再与s 耦合,得4F 9/2.为基态.(2)因为X K α射线的能量为:216)(10248.0b z h h K -⨯=αν9.0≈b反冲电子的能量为:60=θ 代入上式得eV E K 384=(3)由郎伯-比耳定律可得: 用Pb 屏蔽时 10Pbx e I I μ-= (1)用Al 屏蔽时 20Alx e I I μ-= (2)比较(1)(2)式可得: 21x x Al Pb μμ=其中 15.52-=cm Pb μ1765.0-=cm Al μx 1=0.3cm得: x 2=20.59cm6-14已知铜和锌的K αX 射线的波长分别为0.015 39 nm ,和0.014 34 nm ,镍的K 吸收限为0.148 9 nm ,它对铜和锌的K αX 射线的质量吸收系数分别为48 cm 2/g 和325 cm 2/g .试问:为了使铜的K α射线与锌的K α射线的相对强度之比提高10倍,需要多厚的镍吸收片? 解: 按朗伯-比耳定律经镍吸收片吸收后,铜的强度 ρ-=x e I I 480锌的强度 23250''ρx e I I -=由于 I 0所以2mg/cm 31.8=x ρ 镍的密度为 ρ=8.9g/cm 3所以 x =9.3 μm。
第四章 碱金属原子1. 已知Li 原子光谱主线系最长波长0A 6707=λ,辅线系系限波长A 3519=∞λ.求Li 原子第一激发电势和电离电势.解:主线系最长波长是原子从第一激发态跃迁至基态的光谱线的波长E h hc νλ∆==第一激发电势1eU E =∆34811976.626210310V 1.850V 1.602210 6.70710E hc U e e λ---∆⨯⨯⨯====⨯⨯⨯辅线系系限波长是原子从无穷处向第一激发态跃迁产生的 辅线系~~*2n R n νν∞=-,~~*n n νν∞→∞=192 5.648910J hc eU λ-∞==⨯2 3.526V U =电离电势:U =U 1+U 2=5.376V2. Na 原子的基态3S .已知其共振线波长为58930A ,漫线系第一条的波长为81930A ,基线系第一条的波长为184590A ,主线系的系限波长为24130A 。
试求3S 、3P 、3D 、4F 各谱项的项值. 解:主线系波数~p 22s p ,3,4,(3)()n R Rn n ν=-=-∆-∆~~p 2s ,(3)n Rn νν∞→∞==-∆系限波长:p λ∞=24130A =72.41310m -⨯~1613S 71m 4.144210m 2.41310T ν--∞-===⨯⨯共振线为主线系第一条线, 是原子从3P 到3S 跃迁产生的光谱线 共振线波长:λp1=58930A =75.89310m -⨯~61p13S 3P 71 1.696910m 5.89310mT T ν--=-==⨯⨯1616S 3P 3m 104473.2m 106969.1--⨯=⨯-=T T漫线系(第一辅线系)波数~d 22p d ,3,4,(3)()n R Rn n ν=-=-∆-∆漫线系第一条线是原子从3D 到3P 跃迁产生的光谱线 漫线系第一条光谱线的波长7d18.19310m λ-=⨯167D 3P 31~d m 102206.1m10193.81--⨯=⨯=-=T T ν1616P 3D 3m 102267.1m 102206.1--⨯=⨯-=T T基线系(柏格曼线系)波数,5,4,)()3(2f 2d ~f =∆--∆-=n n RR n ν 基线系第一条线是原子从4F 到3D 跃迁产生的光谱线 基线系第一条光谱线的波长6f1 1.845910m λ-=⨯156F 4D 31fm 104174.5m108459.1--⨯=⨯=-=T T ν 1515D 3F 4m 108496.6m 104174.5--⨯=⨯-=T T3. K 原子共振线波长为7665Å,主线系系限波长为2858Å. 已知K 原子的基态为4S. 试求4S 、4P 谱项的量子数修正项∆S 、∆P 值各为多少?K 原子的主线系波数,5,4,)()4(2P 2S ~p=∆--∆-=n n RR n ν 2S ~~p )4(,∆-==∞→∞Rn n νν 1617~m 104990.3m 10858.211---∞∞⨯=⨯==p λν 16~S 4m 104990.3-∞⨯==νT而 2S S 4)4(∆-=RT 所以 S4S 4T R =∆- 17m 100973731.1-∞⨯=≈R R 7709.14S =∆-2291.2S =∆K 原子共振线为主线系第一条线, 是原子从4P 到4S 跃迁产生的光谱线1p A 7665=λ167P 4S 41pm 103046.1m10665.7--⨯=⨯=-=T T ν 1616S 4P 4m 101944.2m 103046.1--⨯=⨯-=T T而 2P P 4)4(∆-=RT 所以 P4P 4T R =∆- 17m 100973731.1-∞⨯=≈R R7638.14P4P =-=∆T R第五章 多电子原子1. He 原子的两个电子处在2p3d 电子组态.问可能组成哪几种原子态?用原子态的符号表示之.已知电子间是LS 耦合.解:p 电子的轨道角动量和自旋角动量量子数分别为,11=l 211=s . d 电子的轨道角动量和自旋角动量量子数分别为,21=l 212=s . 因为是LS 耦合,所以.,,1,212121l l l l l l L -⋯-++=.1,2,3=L.0,1.2121=-+=S s s s s S 或而 .,,1,S L S L S L J -⋯-++=.1,0,1===J S L 原子态为11P . .0,1,2,1,1===J S L 原子态为30,1,2P ..2,0,2===J S L 原子态为12D ..1,2,3,1,2===J S L 原子态为31,2,3D ..3,0,3===J S L 原子态为13F . .2,3,4,1,3===J S L 原子态为32,3,4F .2. 已知He 原子的两个电子被分别激发到2p 和3d 轨道,其所构成的原子态为3D ,问这两电子的轨道角动量p l 1与p l 2之间的夹角,自旋角动量p s 1与p s 2之间的夹角分别为多少?(1). 解:已知原子态为3D ,电子组态为2p3d, 所以2,1,1,221====l l S L因此'1212221211212221222211113733212/)(cos cos 26)1(6)1(22)1(οθθθπ==---=-+==+==+==+=l l l l L l l l l L L l l p p p p P p p p p P L L P l l p hl l p 所以'0'0471061373180=-=οθL(2).1212122s s S s s p p P =======因为所以而'2212221222212221228109312/)(cos cos 2οθθθ=-=---=-+=s s s s S s s s s S p p p p P p p p p P 所以'0'0327028109180=-=οθS4. 试以两个价电子l 1=2和l 2=3为例说明,不论是LS 耦合还是jj 耦合都给出同样数目的可能状态. (1) LS 耦合.3,221==l l.,,1,212121l l l l l l L -⋯-++=.1,23,4,5=L .2121==s s .0,1=S.,,1,S L S L S L J -⋯-++=当S =0时,J =L , L 的5个取值对应5个单重态, 即1=L 时,1=J ,原子态为11P .2=L 时,2=J ,原子态为12D .3=L 时,3=J ,原子态为13F . 4=L 时,4=J ,原子态为14G .5=L 时,5=J ,原子态为15H .当S =1时,.1,,1-+=L L L J代入一个L 值便有一个三重态.5个L 值共有5乘3等于15个原子态,分别是:1=L 时,0,1,2=J 原子态为30,1,2P2=L 时,1,2,3=J 原子态为31,2,3D3=L 时,2,3,4=J 原子态为32,3,4F 4=L 时,3,4,5=J 原子态为33,4,5G5=L 时,4,5,6=J 原子态为34,5,6H因此,LS 耦合时共有20个可能状态. (2) jj 耦合.,...,.2527;2325;21212121j j j j j j J j j s l j s l j -++===-=+=或或或 将每个j 1、j 2 合成J 得:.1,2,3,42523.2,3,4,52723.0,1,2,3,4,52525.1,2,3,4,5,6272521212121============J j j J j j J j j J j j ,合成和,合成和,合成和,合成和4,3,2,15,4,3,25,4,3,2,1,06,5,4,3,2,1)25,23()27,23()25,25()27,25(共20个可能状态所以,无论是LS耦合还是jj耦合,都会给出20种可能状态.6.已知He原子的一个电子被激发到2p轨道,另一个电子还在1s轨道,试做出能级跃迁图来说明可能出现哪些光谱线跃迁.解:在1s2p组态的能级和1s1s基态之间存在中间激发态,电子组态为1s2s.利用LS耦合规则求出各电子组态的原子态如下:1s1s:1S01s2s:1S0、3S11s2p:1P1、3P0,1,2根据选择定则,这些原子态之间可以发生5条光谱线跃迁。
原子物理学习题解答第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mvα=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。
已知金的原子量为197。
解:散射角在d θθθ+ 之间的α粒子数dn 与入射到箔上的总粒子数n 的比是:dnNtd nσ=其中单位体积中的金原子数:0//Au Au Nm N A ρρ==而散射角大于090的粒子数为:2'dndn nNt d ππσ=⎰=⎰所以有:2'dn Nt d nππσ=⎰22218002903cos122()()4sin 2AuN Ze t d A Mu οοθρπθθπε=⋅⋅⎰ 等式右边的积分:180180909033cos sin 2221sin sin 22d I d οοοοθθθθθ=⎰=⎰=故'22202012()()4Au N dn Ze t n A Mu ρππε=⋅⋅ 648.5108.510--≈⨯=⨯即速度为71.59710/⨯米秒的α粒子在金箔上散射,散射角大于90ο以上的粒子数大约是4008.510-⨯。
皖西学院近代物理期末考试试卷(共100分)姓名:_________ 学号:_________ 成绩:_________ 一.选择题(共11题, 共有31分)4 1.若原子处于1D2和2S1/2状态, 它们的朗德因子g的值分别为:A. 1和2/3 ;B. 2和2/3 ;C. 1和4/3 ;D. 1和2 。
3 2.伦琴线光谱的K L M,, 吸收限的能量数值分别对应各壳层电子的A. 激发态;B. 俄歇电子能量;C. 电离能;D. 电子跃迁形成各线系第一条线的能量。
4 3.由伦琴射线照射原子所导致的俄歇电子的能量A. 与伦琴射线的能量有关,与被照射原子性质无关;B. 与伦琴射线和被照射原子性质都有关;C. 与伦琴射线和被照射原子性质都无关;D. 与被照射原子性质有关,与伦琴射线能量无关。
3 4.镁原子(Z=12)处于基态时价电子的电子组态及基态原子态应是:A. 2s2s 1S0;B. 2s2p 3P0;C. 3s3s 1S0;D. 3s3p 3P0。
1 5.根据能级多重性的交替规律,铷原子(Z=37)的能级多重结构是:A. 双重;B. 一、三重;C. 单重;D. 二、四重。
4 6.将钠光灯置于某均匀磁场中,发现波长为589.0nm的谱线分裂为间距相等的三条谱线。
人们将这种现象称为:A. 正常塞曼效应;B. 反常塞曼效应;C. 顺磁共振;D. 帕邢—巴克效应。
2 7.氯化钠组成立方晶体,钠和氯离子沿x,y,z三个轴交错占据位置,已知钠和氯的原子量分别为22.99和35.46,氯化钠的密度为2.2⨯103kg.m-3,则相邻离子的间隔为:A. 3.5⨯10-10m;B. 2.8⨯10-10m;C. 5.6⨯10-9m;D. 3.5⨯10-9m。
3 8.235U吸收一个慢中子后发生的裂变过程, 所放出的能量约为(MeV):A. 50 ;B. 100 ;C. 200 ;D. 931。
2 9.处于L=3, S=2原子态的原子,其总角动量量子数J的可能取值为:A. 3, 2,1;B. 5, 4, 3, 2, 1;C. 6, 5, 4, 3;D. 5/2, 4/2, 3/2, 2/2, 1/2。
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2) ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
一. 选择题 37.氢原子的能级为DA.- 2222e n s μ.B.-μ22222e n s .C.242n e s μ -. D. -μe n s 4222 .38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为BA.r r R nl )(2. B.22)(r r R nl . C.rdr r R nl )(2. D.dr r r R nl 22)(. 39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为D A.),(ϕθlm Y . B. 2),(ϕθlm Y . C. Ωd Y lm ),(ϕθ. D. Ωd Y lm 2),(ϕθ.40.波函数ψ和φ是平方可积函数,则力学量算符 F 为厄密算符的定义是CA.ψφτφψτ*** F d F d =⎰⎰. B.ψφτφψτ** ( )F d F d =⎰⎰.C.( ) **F d F d ψφτψφτ=⎰⎰.D.***F d F d ψφτψφτ=⎰⎰.41. F和 G 是厄密算符,则D A. FG必为厄密算符. B. FG GF -必为厄密算符. C.i FG GF ()+必为厄密算符.D. i FG GF ()-必为厄密算符.42.已知算符 xx =和 pi x x =- ∂∂,则AA. x和 p x 都是厄密算符. B. xp x 必是厄密算符. C. xp p x x x +必是厄密算符.D. xpp x x x -必是厄密算符. 43.自由粒子的运动用平面波描写,则其能量的简并度为B A.1. B. 2. C. 3. D. 4.44.二维自由粒子波函数的归一化常数为(归到δ函数)AA.1212/()/π .B.12/()π .C.1232/()/π . D.122/()π 45.角动量Z 分量的归一化本征函数为CA.12πϕ exp()im . B.)ex p(21r k i⋅π. C.12πϕexp()im . D.)ex p(21r k i ⋅π.46.波函数)ex p()(cos )1(),(ϕθϕθim P N Y ml lm m lm-=CA. 是 L2的本征函数,不是L z 的本征函数. B.不是 L 2的本征函数,是L z 的本征函数.C 是 L 2、 L z 的共同本征函数. D. 即不是 L 2的本征函数,也不是L z 的本征函数.47.若不考虑电子的自旋,氢原子能级n=3的简并度为C A. 3. B. 6. C. 9. D. 12. 48.氢原子能级的特点是BA.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为n 2,这种性质是BA. 库仑场特有的.B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为W r dr R r dr 323222()=,则其几率分布最大处对应于Bohr 原子模型中的圆轨道半径是CA.a 0.B. 40a .C. 90a .D. 160a . 51.设体系处于ψ=--123231102111R Y R Y 状态,则该体系的能量取值及取值几率分别为AA.E E 321434,;,. B.E E 321232,;,-. C.E E 321232,;,. D.E E 323414,;,. 52. 设体系处于ψ=--123231102111R Y R Y 状态,该体系的角动量的取值及相应几率分别为CA.21 ,.B. ,1.C.212 ,.D.212,. 53. 设体系处于ψ=--123231102111R Y R Y 状态,该体系的角动量Z 分量的取值及相应几率分别为AA.01434,;,- . B. 01434,;, . C.01232,;, -. D. 01232,;,-- . 54. 设体系处于ψ=--123231102111R Y R Y 状态,该体系的角动量Z 分量的平均值为DA.14 .B. -14 .C. 34 .D. -34 .55. 设体系处于ψ=--123231102111R Y R Y 状态,该体系的能量的平均值为BA.-μe s 4218 .B.-3128842μe s .C.-2925642μe s . D.-177242μe s.56.体系处于ψ=C kx cos 状态,则体系的动量取值为AA. k k ,-.B. k .C. - k .D. 12 k.57. 体系处于ψ=C kx cos 状态,体系的动量取值几率分别为BA. 1,0.B. 1/2,1/2.C. 1/4,3/4/ .D. 1/3,2/3. 58. 体系处于ψ=C kx cos 状态, 体系的动量平均值为AA.0.B. k .C. - k .D. 12 k.59.一振子处于ψψψ=+c c 1133态中,则该振子能量取值分别为C A.3252 ωω,. B. 1252 ωω,. C. 3272 ωω,. D. 1252 ωω,.60. 一振子处于ψψψ=+c c 1133态中,该振子的能量取值E E 13,的几率分别为BA.2321,c c . B. 232121c c c +,232123c c c +. C.23211c c c +,23213c c c +. D.31,c c .61. 一振子处于ψψψ=+c c 1133态中,该振子的能量平均值为DA. ω 232123215321c c c c ++. B. 5 ω. C. 92 ω. D. ω 232123217321c c c c ++.二. 填空题1. 经典力学中,在中心力场V ( r)中运动的粒子(质量为μ),角动量=l 。
1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。
非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。
因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvze d (2)把(2)式代入(1)式,得:2sin )()41(422220θπεΩ=d Mvze Nt n dn (3)式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。