原子物理学第六章
- 格式:ppt
- 大小:1.40 MB
- 文档页数:65
第六章 磁场中的原子6.1 已知钒原子的基态是2/34F 。
(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。
解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。
钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为4123212=+⨯=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。
(2)J J P meg2=μ h h J J P J 215)1(=+= 按LS 耦合:52156)1(2)1()1()1(1==++++-++=J J S S L L J J gB B J h m e μμμ7746.0515215252≈=⋅⋅⋅=∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距厘米/467.0~=∆v,试计算所用磁场的感应强度。
解:裂开后的谱线同原谱线的波数之差为:mcBe g m g m v πλλ4)(1'1~1122-=-=∆ 氦原子的两个价电子之间是LS 型耦合。
对应11P 原子态,1,0,12-=M ;1,1,0===J L S ,对应01S 原子态,01=M ,211.0,0,0g g J L S =====。
mc Be vπ4/)1,0,1(~-=∆ 又因谱线间距相等:厘米/467.04/~==∆mc Be vπ。
特斯拉。
00.1467.04=⨯=∴emcB π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。
解:在弱磁场中,不考虑核磁矩。
2/323D 能级:,23,21,2===j S l54)1(2)1()1()1(123,21,21,232=++++-++=--=j j s s l l j j g M2/122P 能级:,21,21,2===j S l 32,21,211=-=g ML v)3026,3022,302,302,3022,3026(~---=∆ 所以:在弱磁场中由2/122/3223P D →跃迁产生的光谱线分裂成六条,谱线之间间隔不等。
练习六习题1-2解6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试问它的工作电压是多少?解:依据公式答:它的工作电压是100kV .6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K α)(10Z ;将值代入上式,10246.0101010)⨯⨯===1780 Z =43即该元素为43号元素锝(Te). 第六章习题3,46-3 钕原子(Z=60)的L 吸收限为0.19nm ,试问从钕原子中电离一个K 电子需作多少功?6-4 证明:对大多数元素K α1射线的强度为K α2射线的两倍. 第六章习题5,6参考答案6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请: (1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长.分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.解: (1)由已知的条件可画出X 射线能级简图.K K α L α K β K γ (2)激发L 线系所需的能量:K在L 壳层产生一个空穴所需的能量E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能.或即有m 即L α线的波长为0.116nm.6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120︒的方向上产生一级衍射极大,试问该晶面的间距为多大?︒的方向上产生一级衍射极大sin θn=1解得 d =0.312 nm 第六章习题8参考答案6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求散射光子的最小能量及电子的最大动量.6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量.(1)其中c m光子去的能量为电子获得的能量 k E h h ='-νν依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式E由此可算出: νγγh E E 22=+E c E00=+ 2)(2cm EE h h o =-νν代入数据.010⨯=-光E 2解之: E 光=55.9 keV 第六章习题9参考答案6-9 若入射光子与质子发生康普顿散射,试求质子的康普顿波长.如?则 依6-8m EE =可得出:6-10 康普顿散射产生的散射光子,再与原子发生相互作用,当散射角θ>60°时,无论入射光子能量多么大,散射光子总不能再产生正负电子偶.试证明之. 第六章习题11,126-11 证明:光子与自由电子相碰,不可能发生光电效应. 6-12 证明:在真空中不可能发生“光子一电子对”过程. 第六章习题13、14参考答案6-13已知铑(Z=45)的电子组态为1s 22s 22p 63s 23p 63d 104s 24p 64d 85s I ,现请:(1)确定它的基态谱项符号;(2)用它的K αX 射线作康普顿散射实验,当光子的散射角为60°时,求反冲电子的能量(已知K α的屏蔽系数b =0.9);(3)在实验装置中用厚为0.30cm 的铅屏蔽该射线.如果改用铝代替铅,为达到同样的屏蔽效果,需要用多少厚的铝?(μpb =52.5 cm -I ;μAl =0.765cm -1)解:(1)电子组态中4d 85s 1未填满,所以为基态的电子组态4d 25s l 1= l 2=2,l 3=0其原子态计算先2d 电子耦合,得出最低态3F 4,3,2.找出基态3F 4,再与s 耦合,得4F 9/2.为基态.(2)因为X K α射线的能量为:216)(10248.0b z h h K -⨯=αν9.0≈b反冲电子的能量为:60=θ 代入上式得eV E K 384=(3)由郎伯-比耳定律可得: 用Pb 屏蔽时 10Pbx e I I μ-= (1)用Al 屏蔽时 20Alx e I I μ-= (2)比较(1)(2)式可得: 21x x Al Pb μμ=其中 15.52-=cm Pb μ1765.0-=cm Al μx 1=0.3cm得: x 2=20.59cm6-14已知铜和锌的K αX 射线的波长分别为0.015 39 nm ,和0.014 34 nm ,镍的K 吸收限为0.148 9 nm ,它对铜和锌的K αX 射线的质量吸收系数分别为48 cm 2/g 和325 cm 2/g .试问:为了使铜的K α射线与锌的K α射线的相对强度之比提高10倍,需要多厚的镍吸收片? 解: 按朗伯-比耳定律经镍吸收片吸收后,铜的强度 ρ-=x e I I 480锌的强度 23250''ρx e I I -=由于 I 0所以2mg/cm 31.8=x ρ 镍的密度为 ρ=8.9g/cm 3所以 x =9.3 μm。