氢氘光谱实验PPT
- 格式:pdf
- 大小:1.31 MB
- 文档页数:15
1-2 氢-氘原子光谱引言原子光谱的研究,为量子理论的建立提供了坚实的实验基础。
氢原子是结构最简单的原子,其光谱也是最简单的。
1885年,巴尔末(J.J.Balmer )根据人们的观测数据,总结出了氢原子光谱线的经验公式。
1913年,玻尔(N.Bohr )在巴尔末研究成果基础上,提出了氢原子的玻尔模型;1925年,海森伯(W.Heisenberg )提出的量子力学理论,也是建立在原子光谱的测量基础之上的。
现在,原子光谱的观测研究,仍然是研究原子结构的重要方法之一。
20世纪初,人们根据实验预测氢有同位素。
1919年发明质谱仪后,物理学家用质谱仪测得氢的原子量为1.00778,而化学家由各种化合物测得的结果为1.00779。
基于上述微小的差异,伯奇(Birge)认为氢有同位素2H (元素左上角标代表原子量),它的质量约为1H 的2倍,据此他算得1H 和2H 在自然界中的含量比大约为4000:1。
由于里德伯(J.R.Rydberg)常量和原子核的质量有关,因此,2H 的光谱相对于1H 的应该会有位移。
1932年,尤雷(H.C.Urey)将3L 液氢在低压下细心蒸发至1mL 以提高2H 的含量,然后将这1mL 液氢注入放电管中,用它拍得的光谱,果然出现了相对于1H 移位了的2H 的光谱,从而发现了重氢,取名为氘,化学符号用D 表示。
由此可见,对样品的考究,实验的细心,测量的精确,于科学进步非常重要。
预习思考1. 巴尔末总结出来的氢原子光谱线的经验公式是什么? 2. 如何利用测量的氢、氘光谱线计算相应的里德伯常数? 3. 棱镜摄谱仪、光栅光谱仪是如何实现波长选择的?实验目的1. 加深对氢光谱规律和同位素位移的认识。
2. 通过计算氢、氘原子的里德伯常数,了解精密测量的意义。
3. 掌握利用摄谱仪、光栅光谱仪测量氢、氘原子光谱的方法。
实验原理1885年,巴尔末发现了氢原子光谱的规律,特别是位于可见光区的四条H α,H β,H γ和H δ谱线,其波长可以很准确的用经验公式(巴尔末公式)来表示。
专题实验1 光谱的测量与分析1.1 氢(氘)原子光谱原子光谱是建立量子理论的实验基础。
1885年,巴尔末(J. J. Balmer )根据已有的观测结果,提出氢光谱线的经验公式。
波尔(N. Bohr )1913年2月看到这一公式,3月6日就建立了氢原子理论;海森堡(W. Heisenberg )在1925年提出量子力学理论也是基于原子光谱的实验成就;光谱的精细结构使人们认识到核外电子的运动状态除了存在主能级量子化以外,还有亚能级量子化。
1932年,尤里(H. C. Urey )将3 liter 液态氢在低压下缓慢蒸发至1 ml 后,注入放电管,拍摄其巴尔末线系光谱,发现在普通氢(氕)每条谱线的短波侧都出现一条弱的伴线,从而证实了氘的存在。
这是原子核质量差异导致里德伯常数发生变化的结果,称为同位素移位。
对于重核,同位素移位并不明显,但是中子数不同会引起核自旋发生改变,光谱结构还是会复杂化,这就是所谓的超精细结构。
今天,原子光谱仍然是研究原子结构的重要方法。
一、实验目的(1)了解光栅光谱仪等常见光谱分析仪器的原理和使用方法; (2)通过测量巴尔末线系的谱线波长,计算氘的里德伯常数。
二、实验原理原子虽然是元素的最小单元,但还具有复杂的核式内部结构,核外是绕核运动的电子。
α粒子散射实验肯定了原子的核式结构,而对核外结构的认识则是从光谱研究开始的。
光谱记录了电磁辐射随波长变化的强度分布,是研究原子结构的重要手段。
通过测量原子发光光谱中各谱线的波长,可以推算出原子的能级结构,从而得到有关原子微观结构的信息。
光谱主要指发射光谱或吸收光谱。
发射光谱是由发光体直接产生的光谱,例如,由炽热的固体、液体和高压气体发光形成的连续光谱和由稀薄气体或者金属蒸汽发光形成的明线光谱都属于发射光谱。
吸收光谱则是连续光谱中某些波长的光被物质吸收后产生的光谱。
吸收光谱中的每条暗线都与物质的特征谱线相对应。
在所有的元素中,氢的原子结构最简单,从氢原子明线光谱理解原子的核外结构也最直观。
实验题目:氢氘光谱实验目的:本实验以氘原子光谱为研究对象,研究获得同位素光谱的实验方法、分析方法及其在微观测量中的应用。
实验仪器:WGD-8型多功能光栅光谱仪、氢氘灯、汞灯、微机等。
实验原理:(点击跳过实验原理)1. 原理:根据玻尔理论,原子的能量是量子化的,即具有分立的能级。
当电子从高能级跃迁到低能级时,原子释放出能量,并以电磁波形式辐射。
氢和类氢原子的巴耳末线系对应光谱线波数为:)121()1()4(222320242nm m c h Z e m Ze e -+=πεπσ(1)其中m Z 为原子核质量,m e 为电子质量,e 为电子电荷,h 为普朗克常数,ε0为真空介电常数,c 为光速,Z 为原子序数。
因此类氢原子的里德伯常数可写成:)1(1)4(2320242Ze e Z m m ch Ze m R +⋅=πεπ(2)若∞→Z m ,即假定原子核不动,则有:ch Ze m R e 320242)4(2πεπ=∞ (3)因此:)1(Ze Z m m R R +=∞ (4)由此可见,R Z 随原子核质量m Z 变化,对于不同的元素或同一元素的不同同位素R Z 值不同。
m Z 对R Z 影像很小,因此氢和它的同位素的相应波数很接近,在光谱上形成很难分辨的双线或多线。
设氢和氘的里德伯常数分别为R H 和R D ,氢、氘光谱线的波数σH 、σD 分别为:⎪⎭⎫ ⎝⎛-=22121n R H Hσn=3,4,5 (5)⎪⎭⎫⎝⎛-=22121n R D D σ n=3,4,5… (6)氢和氘光谱相应的波长差为:)1()1()1(DH H DH H HD H D H R R -=-=-=-=∆λσσλλλλλλλ(7)因此,通过实验测得氢和氘的巴耳末线系的前几条谱线的谱长及其波长差,可求得氢与氘的里德伯常数R H 、R D 。
根据式(4)有:⎪⎪⎭⎫ ⎝⎛+=∞H e Hm m R R 1/ (8) ⎪⎪⎭⎫⎝⎛+=∞D e D m m R R 1/(9) 其中m H 和m D 分别为氢和氘原子核的质量。
氢氘光谱光谱线系的规律与原子结构有内在的了解,因此,原子光谱是研究原子结构的一种重要方法。
1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。
1932年尤里(H.C.Urey)根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素——氘的存在。
通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。
WGD-8A型光栅光谱仪用于近代物理实验中的氢(氘)原子光谱实验,一改以往在大型摄谱仪上用感光胶片记录的方法,而使光谱既可在微机屏幕上显示,又可打印成谱图保存,实验结果准确明了。
[实验目的]1.熟悉光栅光谱仪的性能与用法。
2.用光栅光谱仪测量氢(氘)原子光谱巴尔末线系的波长,求氢(氘)的里德伯常数。
[实验原理]氢原子光谱是最简单、最典型的原子光谱。
用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa左右),可得到线状氢原子光谱。
瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式(4.1)式中为氢原子谱线在真空中的波长。
=364.57nm是一经验常数。
n取3,4,5等整数。
若用波数表示,则上式变为(4.2)式中称为氢的里德伯常数。
根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得(4.3)式中M为原子核质量,m为电子质量,e为电子电荷,c为光速,h为普朗克常数,ε为真空介电常数,z为原子序数。
当M→∞时,由上式可得出相当于原0子核不动时的里德伯常数(普适的里德伯常数)(4.4)所以(4.5)对于氢,有(4.6)这里是氢原子核的质量。
图1 氢原子能级由此可知,通过实验测得氢的巴尔末线系的前几条谱线的波长,借助(4.6)式可求得氢的里德伯常数。
里德伯常数是重要的基本物理常数之一,对它的精密测量在科学上有重要意义,目前它的推荐值为=10973731.568549(83)m-1表4-1为氢的巴尔末线系的波长表。
实验内容:(1)打开光谱仪控制箱电源和微机电源,依据显示器上的提示,选择“光电倍增管”(光电倍增管的负高压分为手动调节和半自动调节两类),具体调节因测量光谱类别的不同而不同。
(2)阅读光栅光谱仪的使用说明书,理解光谱仪的工作原理和工作方式。
(3)选择合适的实验参数,获得Hg光谱。
(手动调节时负高压取380~520V左右,半自动时置为1~8),然后读取Hg光谱的峰值,并记录Hg光谱各标准波长值。
(4)谱线的定标和测量以Hg光谱为基准,进行波长测量值的修正。
可以做Hg光谱标准波长与其对应的测量波长的关系拟合图,从而获得对光谱仪测得的光谱波长的修正公式。
(5)选择合适的实验参数,获得氢氘光谱点燃氢氘灯,选择合适的工作状态,运行软件,获得氢氘巴尔末线系在可见光范围内的4对谱线(谱线波长在400nm~660nm之间),测量氢氘巴尔末线系在可见光范围内的各波长值;根据光谱波长修正公式,修正氢氘光谱波长值,计算里德伯常数值。
实验数据处理与分析:1.利用Hg光谱数据对光谱仪定标为了得到清晰准确的Hg光谱,实验中对光谱仪的相关参数设定如下:测量间隔:0.02nm光谱的起始波长:350.00nm 终止波长:600.00nm道址的最大值:1000.0 最小值:0.0光电倍增管的负高压:6光电倍增管的增益:1设定以上参数的光谱仪可以获得Hg光谱,由原始数据可得Hg光谱中各个峰值对应的谱线波长,同时与实验中给出的标准值比较,整理得下表一:表一:Hg光谱中各波峰对应谱线波长的实验测量值与标准值利用origin 可以做出Hg 光谱中各谱线波长的实验测量值与标准值的关系曲线,同时线性拟合就能得到该光谱仪测得的谱线波长的修正公式,从而对光谱仪定标。
其中做出的Hg 光谱中各谱线波长的实验测量值与标准值的拟合直线图见下图一:图一:Hg 光谱各谱线波长的实验测量值与标准值的拟合直线图350400450500550600350400450500550600谱线波长的测量值λ'(nm)谱线波长的标准值λ(n m)利用origin 自带的直线拟合功能可以得到该拟合直线的方程:Linear Regression for Data1: λ= A + B * λ’Parameter Value Error A -0.265840.04988B 1.00054 1.08928E-4所以由图一可以得到光谱仪测量修正公式为: 测得的谱线波长修正值'00054.126584.0λλ⨯+-= (1)(其中'λ为光谱仪测量得到的实验值)2.对氢氘光谱的测量和数据处理为了得到清晰准确的氢氘光谱,实验中对光谱仪的相关参数设定如下:测量间隔:0.01nm光谱的起始波长:405.00nm 终止波长:660.00nm 道址的最大值 :1000.0 最小值 :0.0 光电倍增管的负高压 :6 光电倍增管的增益 :2设定以上参数的光谱仪可以获得氢氘光谱,由原始数据可得氢氘光谱中各个峰值对应的谱线波长,同时利用之前测得的光谱仪测量修正公式----式(1)可以对每条谱线波长修正,将测量值与修正值整理得下表二:表二:氢氘光谱中各波峰对应谱线波长的实验测量值与修正值由表二可以发现,这八条谱线的波长可以分为四组相近的双线波长,由实验原理知每一组双谱线都由同一能级的氢与氘激发所产生的。
实验氢-氘原子光谱原子光谱的测定与分析,为量子理论的建立提供了坚实的实验基础。
1885年巴尔末(J. J. Balmer )总结出了氢光谱线的经验公式。
1913年玻尔(N. Bohr ),1925年,海森伯(W.Heisenberg )建立起他们的理论都是建筑在原子光谱的测量基础之上的。
现在,无论在工业生产部门还是在科学研究领域,原子光谱的观察、测定和分析都是研究原子结构、物质分析的重要方法之一。
在物理学、化学化工、材料、生命科学领域内有广泛的实际应用。
一 实验目的1.掌握WPG-100型平面光栅摄谱仪的工作原理和使用方法,学习摄谱、识谱和谱线测量等光谱研究的基本技术。
2.通过所测得的氢(氘)原子光谱在可见和近紫外区的波长(误差小于0.5Å),验证巴耳末公式并准确测出氢(氘)的里德伯常数。
3.测量氢、氘同位素位移,求出质子与电子的质量比。
二 实验原理1.原子的激发与辐射原子内部的不同能量状态称为能级。
处于基态的原子可以吸收能量而跃迁到较高的能量状态,这个过程称为原子的激发。
原子也可以从较高的能级退到较低的能级或基态而放出能量,如果放出的能量取辐射形式,那么放出的能量就成为一个光子的能量hv ,这个过程称为原子的辐射。
要使原子发光必须先将它激发,原子激发的方式通常分为碰撞激发和光激发两种。
具有一定能量的电子、原子、分子与某原子相碰撞而使后者激发称为碰撞激发;原子吸收一个光子引起的激发称为光激发,即光的吸收过程。
本实验采用碰撞激发,它又分为热激发和电场引起的碰撞激发两种形式,前者指在高温下各原子有较大的运动速度,相互碰撞而产生激发,本实验的铁光谱就是这种方式产生的。
电场引起的碰撞激发是带电粒子在电场作用下加速运动,与原子发生非弹性碰撞使原子激发,氢(氘)光谱就是采用这种方式产生的。
2.氢原子光谱的实验规律早在原子理论建立以前人们就积累了有关原子光谱的大量实验数据,发现氢原子光谱可用一个普通的公式表示,即⎪⎭⎫ ⎝⎛-=2211~n mR v (1)其中:m 取1、2、3、4、5等正整数,每一个m 值对应一个光谱线系,如当m=2时便得到谱线在可见光和近紫外区的巴耳末线系;n 取m+1、m+2、m+3、…等正整数,每一个n 值对应一条谱线;R 称为里德伯常数。
氢(氘)原子光谱姓名:唐方学号:091120119引言光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。
1883 年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。
1932 年尤里(H .C.Urey)根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氧的同位素——氚的存在。
通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。
WGD-3 型光栅光谱仪用于近代物理实验中的氢(氘)原子光谱实验,一改以往在大型摄谱仪上用感光胶片记录的方法,而使光谱既可在微机屏幕上显示,又可打印成谱图保存,实验结果准确明了。
实验目的1.熟悉光栅光谱仪的性能与用法。
2.用光栅光谱仪测量氢原子光谱巴尔末线系的波长,求里德伯常数。
实验原理1.氢原子光谱氢原子光谱是最简单、最典型的原子光谱。
用电激发氢放电管(氢灯)中的稀薄氢气(压力在102 Pa左右),可得到线状氢原子光谱。
瑞士物理学家巴尔未根据实验结果给出氢原子光谱在可见光区域的经验公式=(2.5-1)式中为氢原子谱线在真空中的波长,=364.57 nm 是一经验常数;n取3,4,5等整数。
若用波数表示,则(2.5-1)式变为==() (2.5-2) 式中称为氢的里德伯常数。
根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得=(2.5-3)式中M为原子核质量,m为电子质量,e为电子电荷,c 为光速,h 为普朗克常数,为真空介电常数,Z为原子序数。
当时,由(2.5-3)式可得出相当于原子核不动时的里德伯常数(普适的里德伯常数)(2.5-4) 所以(2.5-5)对于氢,有(2.5-6)这里是氢原子核的质量。
由此可知,通过实验测得氢的巴尔末线系的前几条谱线的波长,借助(2.5-6)式可求得氢的里德伯常数。
氢氘原子光谱
实验步骤
1. 启动仪器,选择合适参数,读取汞原子在350~600nm 段的光谱,记录各谱线波长值。
2. 换用氢氘灯,调整参数,读取氢氘巴尔末线系四对谱线波长,记录数据。
3. 数据处理与分析。
数据分析 1. 汞光谱定标
将利用光谱仪测得的汞光谱与汞原子理论谱线波长比较,对光谱仪进行线性修正
拟合得到修正曲线方程λ实=1.00071×λ测−0.18629
2. 氢氘光谱分析
由巴尔末线系公式ν =R 1
4−
1n 2
∝R ∝M ,即λ∝1
M ,双线中波长较小的为D 线,较长的为H 线。
利用光谱仪修正曲线进行修正
由R=1
λ/(1
4
−1
n
)及M D
M H
=m e
M H
λH
λD−λH+λD m e
M
∴
R H=10970331m−1
R D=10973422m−1
M D
H
=2.08
思考题
1.会影响到分辨率和光强。
狭缝越窄,分辨率越高,光强越弱。
2.需要提高光谱仪分辨率和光源强度。
氢与氘质量比约为2,其他元素同位素质量比
小于2,分辨双峰结构要比氢氘光谱困难,所以需要更高的分辨率。
3.将λ
真空=n×λ
空气
修正带入数据中计算得
R H=10973512 m−1
R D=10976604m−1
M D/M H不变,为2.08。