离散数学sec16-17 群
- 格式:pptx
- 大小:533.09 KB
- 文档页数:15
离散数学形考任务3代数结构部分概念及性质一、概念介绍代数结构是离散数学中的一个重要概念。
它描述了在特定集合上定义的运算规则和性质。
常见的代数结构主要包括:1. 群(Group):群是一种具有封闭性、结合律、单位元和逆元的代数结构。
它是一种基本的抽象代数结构,并具有丰富的性质和应用。
2. 环(Ring):环是一种具有加法和乘法两种运算的代数结构。
它具有封闭性、结合律、单位元、交换律和分配律等性质。
3. 域(Field):域是一种具有加法、乘法、减法和除法四种运算的代数结构。
它是一种高级的代数结构,并满足多种性质,如交换性、维数等。
二、性质探讨不同的代数结构具有不同的性质,下面我们分别探讨一下群、环和域的性质:1. 群的性质:- 封闭性:对于群G中的任意元素a和b,它们的运算结果ab 也属于G。
- 结合律:对于群G中的任意元素a、b和c,(ab)c = a(bc),即运算顺序不影响结果。
- 单位元:群G中存在一个元素e,使得对于任意元素a,ae = ea = a。
- 逆元:对于群G中的任意元素a,存在一个元素b,使得ab = ba = e。
2. 环的性质:- 封闭性:对于环R中的任意元素a和b,它们的加法运算结果a+b和乘法运算结果ab都属于R。
- 结合律:对于环R中的任意元素a、b和c,(a+b)+c = a+(b+c)和(ab)c = a(bc),即运算顺序不影响结果。
- 单位元:环R中存在一个元素0,使得对于任意元素a,a+0 = 0+a = a。
- 交换律:对于环R中的任意元素a和b,a+b = b+a和ab = ba。
- 分配律:对于环R中的任意元素a、b和c,a(b+c) = ab+ac和(a+b)c = ac+bc。
3. 域的性质:- 封闭性:对于域F中的任意非零元素a和b,它们的加法运算结果a+b和乘法运算结果ab都属于F。
- 结合律、单位元和逆元:与群和环的性质类似,域也具有结合律、单位元和逆元的性质。
命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。
约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。
离散数学代数结构部分离散数学是数学的一个分支,主要研究离散的、分离的、离散化的对象和结构。
其中代数结构是离散数学的一个重要部分,涉及到一些常见的代数结构,如群、环和域等。
下面将从群、环和域三个方面展开,对离散数学中的代数结构进行详细介绍。
一、群群是离散数学中的一个基本代数结构,它由三个主要部分组成:集合、运算和满足一定性质的公理。
具体地,一个群G是一个非空集合,也即G={a,b,c,...},其中的元素a、b、c等叫做群的元素。
除此之外,群还具有一个二元运算,记作"·",满足以下四个公理:1.封闭性公理:对于群的任意两个元素a、b,它们的乘积c=a·b仍然属于G,即c∈G。
2.结合律公理:对于群的任意三个元素a、b、c,(a·b)·c=a·(b·c)。
3.单位元公理:群中存在一个特殊的元素e,称为单位元,满足对于任意元素a,有a·e=e·a=a。
4.逆元公理:对于群中任意元素a,存在一个元素b,使得a·b=b·a=e,其中e是群的单位元。
群结构的研究对于解决各类数学问题具有重要意义。
例如,在密码学中,通信双方使用群的运算来实现加密和解密的功能。
二、环环是另一个重要的代数结构,在离散数学中有广泛的应用。
一个环R由一个非空集合以及两个满足一定条件的二元运算分别组成。
对于一个环R={G,+,·},其中G是一个非空集合,"+"和"·"分别是R上的两个二元运算,满足以下四个公理:1.集合G关于"+"构成一个阿贝尔群,即对于任意的a、b、c∈G,满足以下性质:(a+b)+c=a+(b+c),存在单位元0,对于任意元素a,有a+0=0+a=a,对于任意元素a,存在一个元素-b,使得a+(-b)=-b+a=0,且满足交换律性质:a+b=b+a。
主要内容1.无向树的定义及其性质.2.生成树的定义及存在定理.3.基本回路及基本回路系统.4.基本割集及基本割集系统.5.最小生成树.6.根树及其分类.7.最优树、Huffman算法.8.最佳前缀码.9.波兰符号法与逆波兰符号法.学习要求1.深刻理解树的定义和性质.2.熟练地求解无向树.3.准确地求解最小生成树(见例题).4.深刻理解基本回路、基本割集、基本回路系统、基本割集系统等概念.5.深刻理解根树、分类、家族树等诸多概念.6.会画阶数n较小的非同构的根树.7.熟练掌握用Huffman算法求最优树的方法.8.熟练掌握求最佳前缀码的方法.9.会用二叉树表示算式.10会求算式的波兰符号法和逆波兰符号法表示的算式.典型习题1.无向树T有n i个i度顶点, i=2,3,…,k, 其余顶点都是树叶, 求T的树叶数t.2.设T为非平凡的无向树, 最大度△(T)≥k(k≥1), 证明T至少有k片树叶.3.设G'是无向连通图G的无圈子图, 证明G中存在生成树T, 使得E(G')E(T).4.设C为无向图G中一个圈, 边e1与e2在C中, 证明G中存在割集S, 使得e1,e2∈S.5.设G为n阶无向简单图, n≥5, 证明G或必含圈.6.关于顶点和度数选择题.7.画出5阶所有非同构的根树, 并分析它们都是几叉树.8.设T是正则二叉树, 有t片树叶. 证明T的阶数n=2t-1.9.设7个字母在通信中出现的频率如下:a:35% b:20%c:15% d:10%e:10% f:5%g:5%用Huffman算法求传输它们的前缀码. 要求画出最优树, 指出每个字母对应的编码. 并指出传输10n个按上述频率出现的字母, 需要多少个二进制数字.10下图所示的2叉树表达一个算式.(1)用中序行遍法还原算式.(2)用前序行遍法写出该算式的波兰符号法表示式.(3)用后序行遍法写出该算式的逆波兰符号法表示式.。
离散数学代数系统中的群与域知识梳理离散数学是研究不连续量的数学分支,而代数系统是离散数学的基础概念之一。
在代数系统中,群与域是两个重要的概念。
本文将对离散数学代数系统中的群与域的相关知识进行梳理。
一、群的定义及性质群是代数系统中一种基本的代数结构,它是一个集合与一个二元运算的组合,满足四个条件:封闭性、结合律、单位元和逆元。
1.1 封闭性在群中的任意两个元素进行运算后,结果仍然属于这个群。
即对于群 G 中任意的 a、b,有 a * b ∈ G。
1.2 结合律在群中进行运算的结果不受运算元素的顺序影响。
即对于群 G 中任意的 a、b、c,有 (a * b) * c = a * (b * c)。
1.3 单位元群中存在一个特殊元素,称为单位元,它与群中的任意元素进行运算后得到这个元素本身。
即对于群 G 中任意的 a,有 a * e = e * a = a,其中 e 是群 G 的单位元。
1.4 逆元对于群 G 中的每个元素 a,群中存在一个元素 b,使得 a * b = b * a = e,其中 e 是群 G 的单位元,并且称元素 b 是元素 a 的逆元,记作 b = a^(-1)。
二、群的例子2.1 整数环(Z,+)整数环是一个群,其中的运算为加法。
整数环满足群的四个条件:封闭性、结合律、单位元和逆元。
例如,对于整数环中的任意两个整数 a、b,其和仍然为整数,满足封闭性;整数的加法满足结合律;0 是整数环的单位元,对于任意整数 a,有 a + 0 = 0 + a = a;对于任意整数 a,存在一个整数 -a,使得 a + (-a) = (-a) + a = 0。
2.2 二进制群(Zn,⊕)二进制群是一个有限集合,其中的运算为模 n 的加法(⊕)。
二进制群也满足群的四个条件:封闭性、结合律、单位元和逆元。
例如,对于二进制群中的任意两个元素 a、b,其模 n 的和仍然在这个群中,满足封闭性;模 n 的加法满足结合律;0 是二进制群的单位元,对于任意元素 a,有 a ⊕ 0 = 0 ⊕ a = a;对于任意元素 a,存在一个元素 b,使得 a ⊕ b = b ⊕ a = 0。