第二章优化方法数学基础
- 格式:ppt
- 大小:762.50 KB
- 文档页数:7
[A.基础达标]1.用随机数表法从100名同学(男生25人)中抽选20人进行评教,某男同学被抽到的机率是( ) A.1100 B.125 C.15D.14解析:选C.简洁随机抽样是等可能性抽样,每个个体被抽到的机率都是20100=15.故选C.2.(2021·昌乐二中检测)用随机数法进行抽样有以下几个步骤:①将总体中的个体编号;②猎取样本号码;③选定开头的数字;④选定读数的方向. 这些步骤的先后挨次应为( ) A .①②③④ B .①③④② C .③②①④ D .④③①② 解析:选B.先编号,再选数.3.下列抽样试验中,适合用抽签法的是( )A .从某厂生产的3 000件产品中抽取600件进行质量检验B .从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B.A 、D 中个体总数较大,不适合用抽签法;C 中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B 中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看成是搅拌均匀了.4.某工厂的质检人员对生产的100件产品接受随机数表法抽取10件检查,对100件产品接受下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是 ( ) A .①② B .①③ C .②③ D .③解析:选C.依据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样. 5.(2021·青岛检测)对于简洁随机抽样,下列说法中正确的为( )①它要求总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种抽样方法的公正性.A .①②③B .①②④C .①③④D .①②③④解析:选D.这四点全是简洁随机抽样的特点. 6.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查同学在其中一个班级旁画“√”,以了解最受欢迎的老师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任状况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名同学进行调查.解析:①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.答案:②④7.某中学高一班级有400人,高二班级有320人,高三班级有280人,以每人被抽取的可能性均为0.2,从该中学抽取一个容量为n 的样本,则n =________.解析:∵n400+320+280=0.2,∴n =200.答案:2008.一个总体数为60的个体编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最终5行)第11~12列的18开头,依次向下,到最终一行后向右,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95 38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80 82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50 24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49 96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60解析:先选取18,向下81、90、82不符合要求,下面选取05,向右读数,07、35、59、26、39,因此抽取的样本的号码为:18、05、07、35、59、26、39.答案:18、05、07、35、59、26、399.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何接受简洁随机抽样的方法抽取样本?解:法一:(抽签法)将100件轴编号为1,2,…,100,并做好大小、外形相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着逐个不放回地抽取10个号签,然后测量这10个号签对应的轴的直径.法二:(随机数表法)将100件轴编号为00,01,…,99,在随机数表中选定一个起始位置,如取第21行第1个数开头(见教材P 103附表),向右选取10个为68,34,30,13,70,55,74,77,40,44,这10个号码对应的轴即为所要抽取的对象.10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,并写出抽样过程.解:应使用抽签法,步骤如下:①将30辆汽车进行编号,号码是1,2,3,…,30; ②将1~30这30个编号写到大小、外形都相同的号签上; ③将写好的号签放入一个不透亮 的容器中,并搅拌均匀;④从容器中每次抽取一个号签,连续抽取3次,并记录下上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.[B.力量提升]1.接受简洁随机抽样从含有6个个体的总体中抽取一个容量为3的样本,某个个体前两次未被抽到,则第三次被抽到的机会是( )A.12B.13C.16D.15解析:选A.从含有6个个体的总体中,抽取容量为3的样本,则每个个体在每次被抽到的机会都是12,这与第几次抽取无关.2.为了了解全校240名高一同学的体重状况,从中抽取40名同学进行测量.下列说法正确的是( ) A .总体是240 B .个体是每一名同学 C .样本是40名同学D .样本容量是40解析:选D.本题中的争辩对象是同学的体重,而不是同学自身.总体是240名同学的体重,个体是每一名同学的体重,样本是抽取的40名同学的体重,总体容量是240,样本容量是40.3.齐鲁风彩“七乐彩”的中奖号码是从1~30个号码中选出7个号码来按规章确定中奖状况,这种从30个号码中选7个号码的抽样方法是________.解析:当总体的个数不多时,宜接受抽签法.由于它简便易行,可用不同的方式制签,抽签也便利. 答案:抽签法4.2022年10月10日,袁隆平“超级稻”亩产创1 026.7公斤新纪录.要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行试验,利用随机数表法抽取种子,先将850颗种子按001,002, (850)行编号,假如从随机数表第3行第6列的数开头向右读,请依次写出最先检验的4颗种子的编号:________.(随机数表见教材P 103附表)解析:从随机数表第3行第6列的数2开头向右读第一个小于850的数字是227,其次个数字是665,第三个数字是650,第四个数字是267,符合题意.答案:227,665,650,2675.某电视台进行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选择10人,从18名香港艺人中随机选择6人,从10名台湾艺人中随机选择4人.试用抽签法确定选中的艺人,并确定他们的表演挨次.解:第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透亮 小筒中摇匀,从中抽出10个号签,则相应编号的艺人参与演出;(2)运用相同的方法分别从18名香港艺人中抽取6人,从10名台湾艺人中抽取4人.其次步:确定演出挨次:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的挨次,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出挨次,再汇总即可.6.(选做题)(2021·洛阳高一检测)现在有一种够级玩耍,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人,并围成一圈.够级开头时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,依据这张牌上的数字来确定抓牌的先后,这6人依次从216张牌中抓取36张牌,问这种抓牌的方法是否是简洁随机抽样?解:简洁随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始的牌,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简洁随机抽样.。
《控制工程基础》电子教案第一章:绪论1.1 课程介绍解释控制工程的定义、目的和重要性概述控制工程的应用领域和学科范围1.2 控制系统的基本概念介绍控制系统的定义和组成解释输入、输出、反馈和控制器的概念1.3 控制工程的历史和发展回顾控制工程的发展历程和重要里程碑讨论现代控制工程的挑战和发展趋势第二章:数学基础2.1 线性代数介绍矩阵、向量的基本运算和性质讲解线性方程组的求解方法2.2 微积分复习微积分的基本概念和公式讲解导数和积分的应用2.3 离散时间信号介绍离散时间信号的定义和特点讲解离散时间信号的运算和处理方法第三章:连续控制系统3.1 连续控制系统的概述介绍连续控制系统的定义和特点解释连续控制系统的应用领域3.2 传递函数讲解传递函数的定义和性质介绍传递函数的绘制和分析方法3.3 控制器设计讲解PID控制器和模糊控制器的原理和方法讨论控制器设计的考虑因素和优化方法第四章:离散控制系统4.1 离散控制系统的概述介绍离散控制系统的定义和特点解释离散控制系统的应用领域4.2 差分方程和离散传递函数讲解差分方程的定义和求解方法介绍离散传递函数的定义和性质4.3 控制器设计讲解离散PID控制器和模糊控制器的原理和方法讨论控制器设计的考虑因素和优化方法第五章:状态空间方法5.1 状态空间模型的概述介绍状态空间模型的定义和特点解释状态空间模型的应用领域5.2 状态空间方程讲解状态空间方程的定义和求解方法介绍状态空间方程的稳定性分析5.3 状态控制器设计讲解状态控制器的原理和方法讨论状态控制器设计的考虑因素和优化方法第六章:频域分析6.1 频率响应介绍频率响应的定义和作用讲解频率响应的实验测量方法6.2 频率特性分析系统频率特性的性质和图形讨论频率特性对系统性能的影响6.3 滤波器设计讲解滤波器的基本类型和设计方法分析不同滤波器设计指标的选择和计算第七章:数字控制系统7.1 数字控制系统的概述介绍数字控制系统的定义和特点解释数字控制系统的应用领域7.2 数字控制器设计讲解Z变换和反变换的基本原理介绍数字PID控制器和模糊控制器的设计方法7.3 数字控制系统的仿真与实现讲解数字控制系统的仿真方法和技术讨论数字控制系统的实现和优化第八章:非线性控制系统8.1 非线性系统的概述介绍非线性系统的定义和特点解释非线性系统的应用领域8.2 非线性模型和分析方法讲解非线性系统的建模方法和分析技术分析非线性系统的稳定性和可控性8.3 非线性控制策略讲解非线性PID控制器和模糊控制器的原理和方法讨论非线性控制策略的设计和优化第九章:鲁棒控制9.1 鲁棒控制的概述介绍鲁棒控制的定义和目的解释鲁棒控制在控制工程中的应用领域9.2 鲁棒控制设计方法讲解鲁棒控制的基本设计和评估方法分析不同鲁棒控制策略的性能和特点9.3 鲁棒控制在实际系统中的应用讲解鲁棒控制在工业和航空航天等领域的应用案例讨论鲁棒控制在实际系统中的挑战和限制第十章:控制系统的设计与实践10.1 控制系统的设计流程讲解控制系统设计的基本流程和方法分析控制系统设计中的关键环节和技术选择10.2 控制系统实践案例分析不同控制系统实践案例的设计和实现过程讲解控制系统实践中的注意事项和优化方法10.3 控制系统的发展趋势讨论控制系统未来的发展方向和挑战分析新兴控制技术和方法在控制系统中的应用前景重点和难点解析重点环节1:控制系统的基本概念和组成控制系统定义和组成的理解输入、输出、反馈和控制器的相互作用重点环节2:传递函数和控制器设计传递函数的定义和性质PID控制器和模糊控制器的设计方法和应用重点环节3:差分方程和离散传递函数差分方程的求解方法离散传递函数的定义和性质重点环节4:状态空间模型的建立和分析状态空间方程的定义和求解状态空间模型的稳定性和可控性分析重点环节5:频率响应和滤波器设计频率响应的实验测量和分析滤波器设计方法和应用重点环节6:数字控制系统和控制器设计Z变换和反变换的应用数字PID控制器和模糊控制器的设计方法重点环节7:非线性系统的建模和控制策略非线性系统的建模方法非线性控制策略的设计和优化重点环节8:鲁棒控制的设计和评估鲁棒控制的基本设计和评估方法鲁棒控制策略的性能和特点重点环节9:控制系统的设计流程和实践案例控制系统设计的基本流程和方法控制系统实践案例的设计和实现过程重点环节10:控制系统的发展趋势和新兴技术控制系统未来的发展方向新兴控制技术和方法在控制系统中的应用前景本教案涵盖了控制工程基础的十个重点环节,包括控制系统的基本概念和组成、传递函数和控制器设计、差分方程和离散传递函数、状态空间模型的建立和分析、频率响应和滤波器设计、数字控制系统和控制器设计、非线性系统的建模和控制策略、鲁棒控制的设计和评估、控制系统的设计流程和实践案例以及控制系统的发展趋势和新兴技术。
2.1 随机抽样2.1.1 简洁随机抽样1.问题导航(1)什么叫简洁随机抽样?(2)最常用的简洁随机抽样方法有哪两种? (3)抽签法是如何操作的? (4)随机数表法是如何操作的? 2.例题导读通过教材中的“思考”,我们了解抽签法的优、缺点及适用条件.1.简洁随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),假如每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简洁随机抽样.2.简洁随机抽样的分类简洁随机抽样⎩⎪⎨⎪⎧抽签法(抓阄法)随机数法3.随机数法的类型随机数法⎩⎪⎨⎪⎧随机数表法随机数骰子法计算机产生的随机数法1.推断下列各题.(对的打“√”,错的打“×”)(1)在简洁随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最小;( ) (2)有同学说:“随机数表只有一张,并且读数时只能依据从左向右的挨次读取,否则产生的随机样本就不同了,对总体的估量就不精确 了”.( )解析:(1)在简洁随机抽样中,每个个体被抽到的可能性相等,与第几次抽取无关;(2)随机数表的产生是随机的,读数的挨次也是随机的,不同的样本对总体的估量相差并不大. 答案:(1)× (2)×2.某校期末考试后,为了分析该校高一班级 1 000名同学的学习成果,从中随机抽取了100名同学的成果单,就这个问题来说,下面说法中正确的是( )A .1 000名同学是总体B .每名同学是个体C .每名同学的成果是所抽取的一个样本D .样本的容量是100解析:选D.该问题中,1 000名同学的成果是总体,每个同学的成果是个体,抽取的100名同学的成果是样本,样本的容量是100.3.抽签法的优点、缺点各是什么?解:优点:简洁易行,当总体个数不多的时候搅拌均匀很简洁,每个个体有均等的机会被抽中,从而保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.1.简洁随机抽样是一种最简洁、最基本的抽样方法,简洁随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简洁随机抽样方法有抽签法和随机数法.2.随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍旧不是很便利,但是比抽签法公正,因此这两种方法只适合总体容量较少的抽样类型.3.简洁随机抽样中每个个体入样的可能性都相等,均为n/N ,但是这里肯定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种状况区分开来,避开在解题中消灭错误.简洁随机抽样的概念下面的抽样方法是简洁随机抽样吗?为什么?(1)从很多个个体中抽取20个个体作为样本;(2)从50台冰箱中一次性抽取5台冰箱进行质量检查;(3)一彩民选号,从装有36个大小、外形都相同的号签的盒子中无放回地抽取6个号签.[解](1)不是简洁随机抽样.由于总体的个数是无限的,而不是有限的.(2)不是简洁随机抽样.虽然“一次性”抽取和“逐个”抽取不影响个体被抽到的可能性,但简洁随机抽样的定义要求的是“逐个不放回地抽取”.(3)是简洁随机抽样.由于总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能地进行抽样.方法归纳推断一个抽样是否为简洁随机抽样的依据是其四个特征1.下列抽样方式是否是简洁随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,称其质量是否合格;(2)某班有56名同学,指定个子最高的5名同学参与学校组织的篮球赛.解:由简洁随机抽样的特点可知,(1)(2)均不是简洁随机抽样.抽签法的应用2021年,某师范高校为了支援西部训练事业,现从报名的18名免费师范毕业生中选取6人组成志愿小组,请用抽签法确定志愿小组成员,写出抽样步骤.[解]抽样步骤是:第一步,将18名志愿者编号,号码是1,2, (18)其次步,将号码分别写在同样大小的小纸片上,揉成团,制成号签;第三步,将得到的号签放入一个不透亮的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,与所得号码对应的志愿者就是志愿小组的成员.方法归纳(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否便利;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.(2)应用抽签法时应留意以下几点:①编号时,假如已有编号可不必重新编号;②号签要求大小、外形完全相同;③号签要均匀搅拌;④要逐一不放回地抽样.2.某校高一(1)班有同学48人,为了调查某种状况,打算抽取一个样本容量为10的样本,问若接受抽签法抽样将如何进行?解:首先把该校同学都编上号,号码是1,2,3,4,…,48.并制成48个外形、大小相同的号签,然后将这些号签放在一个不透亮的容器内,搅拌均匀后,逐个无放回地抽取10个号签,这样就可以得到一个容量为10的样本.随机数表法的应用(2021·衡阳模拟)已知某总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表中第1行的第5列和第6列的数字开头由左到右依次选取两个数字,则选出来的第4个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481 A.08 B.07C.02 D.01[解析]从随机数表第1行的第5列和第6列的数字开头由左到右依次选取两个数字,依次为65,72,08,02,63,14,07,…,其中08,02,14,07,…符合条件,故选B.[答案] B[互动探究]如将本例中的“从随机数表中第1行的第5列和第6列的数字开头由左到右依次选取两个数字”改为“从随机数表中第1行的倒数第2列和第3列的数字开头由右到左依次选取两个数字”,其他条件不变,则选出来的第4个个体的编号为多少?解:从随机数表中第1行的倒数第2列和第3列的数字开头由右到左依次选取两个数字,依次为91,08,27,99,63,42,07,04,13,…,其中08,07,04,13,…符合条件,故选出来的第4个个体的编号为13.方法归纳利用随机数表法抽样时应留意的问题:(1)编号要求位数相同,若不相同,需先调整到全都后再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开头编号,那么全部个体的号码都用两位数字表示即可,从00~99号.假如选择从1开头编号,那么全部个体的号码都必需用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开头读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.3.有一批机器编号为1,2,3,…,112,请用随机数表法抽取10台入样,写出抽样过程(随机数表见教材P103附表).解:第一步,将原来的编号调整为001,002, (112)其次步,在随机数表中任选一数作为开头,任选一方向作为读数方向.比如,选第9行第7个数“3”向右读.第三步,从“3”开头向右读,每次取三位,凡不在001~112中的数跳过去不读.前面已经读过的数不读,依次可得到074,100,094,052,080,003,105,107,083,092.第四步,对应原来编号为074,100,094,052,080,003,105,107,083,092的机器便是要抽取的对象.易错警示因基本概念不明致误为了了解参与第27届世界高校生冬运会的2 015名运动员的身高状况,从中抽取100名运动员进行调查,就这个问题,下面说法中正确的是()①2 015名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤每个运动员被抽到的可能性相等.A.④⑤B.①②③C.①②④⑤D.①②③④⑤[解析]抽样的目的是了解参与冬运会的2 015名运动员的身高状况,故总体应当是2 015名运动员的身高,而不是这2 015名运动员,同理,个体应当是每个运动员的身高,样本应当是所抽取的100名运动员的身高.故①②③都不正确,④⑤正确.[答案] A[错因与防范](1)解决本题易搞错考察的对象,误认为考察对象为运动员,从而误认为①②③也正确.(2)解决此类问题时,关键是明确考察的对象,依据有关的概念可得总体、个体与样本的考察对象是相同的.4.(2022·高考四川卷)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本解析:选A.调查的目的是“了解某地5 000名居民某天的阅读时间”,所以“5 000名居民的阅读时间的全体”是调查的总体.1.一个总体共有15个个体,用简洁随机抽样的方法从中抽取一个容量为5的样本,每个个体被抽到的可能性是( )A.13B.15C.110D.115解析:选A.简洁随机抽样具有等可能性,每个个体被抽到的可能性是515=13.2.下面的抽样方法是简洁随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B .从20个零件中一次性抽出3个进行质量检查C .某学校分别从行政人员、老师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D .用抽签法从10件产品中选取3件进行质量检验解析:选D.依据简洁随机抽样的定义及特点可推断D 为简洁随机抽样.3.在某年的高考中,A 省有20万名考生,为了估量他们的数学平均成果,从中逐个抽取2 015名同学的数学成果作为样本进行统计分析,请回答以下问题:本题中,总体、个体、样本、样本容量各指什么?解:总体是指在该年的高考中,A 省20万名考生的数学成果;个体是指在该年的高考中,A 省20万名考生中每一名考生的数学成果;样本是指被抽取的2 015人的数学成果;样本容量是2 015.[A.基础达标]1.用随机数表法从100名同学(男生25人)中抽选20人进行评教,某男同学被抽到的机率是( ) A.1100 B.125 C.15D.14解析:选C.简洁随机抽样是等可能性抽样,每个个体被抽到的机率都是20100=15.故选C.2.(2021·昌乐二中检测)用随机数法进行抽样有以下几个步骤:①将总体中的个体编号;②猎取样本号码;③选定开头的数字;④选定读数的方向. 这些步骤的先后挨次应为( ) A .①②③④ B .①③④② C .③②①④ D .④③①② 解析:选B.先编号,再选数.3.下列抽样试验中,适合用抽签法的是( )A .从某厂生产的3 000件产品中抽取600件进行质量检验B .从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B.A 、D 中个体总数较大,不适合用抽签法;C 中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B 中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看成是搅拌均匀了.4.某工厂的质检人员对生产的100件产品接受随机数表法抽取10件检查,对100件产品接受下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是 ( ) A .①② B .①③ C .②③ D .③解析:选C.依据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样.5.(2021·青岛检测)对于简洁随机抽样,下列说法中正确的为( )①它要求总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种抽样方法的公正性.A .①②③B .①②④C .①③④D .①②③④解析:选D.这四点全是简洁随机抽样的特点. 6.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查同学在其中一个班级旁画“√”,以了解最受欢迎的老师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任状况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名同学进行调查.解析:①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.答案:②④7.某中学高一班级有400人,高二班级有320人,高三班级有280人,以每人被抽取的可能性均为0.2,从该中学抽取一个容量为n 的样本,则n =________.解析:∵n400+320+280=0.2,∴n =200.答案:2008.一个总体数为60的个体编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最终5行)第11~12列的18开头,依次向下,到最终一行后向右,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 9538 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 8082 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 5024 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 4996 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60解析:先选取18,向下81、90、82不符合要求,下面选取05,向右读数,07、35、59、26、39,因此抽取的样本的号码为:18、05、07、35、59、26、39.答案:18、05、07、35、59、26、399.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何接受简洁随机抽样的方法抽取样本?解:法一:(抽签法)将100件轴编号为1,2,…,100,并做好大小、外形相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着逐个不放回地抽取10个号签,然后测量这10个号签对应的轴的直径.法二:(随机数表法)将100件轴编号为00,01,…,99,在随机数表中选定一个起始位置,如取第21行第1个数开头(见教材P103附表),向右选取10个为68,34,30,13,70,55,74,77,40,44,这10个号码对应的轴即为所要抽取的对象.10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,并写出抽样过程.解:应使用抽签法,步骤如下:①将30辆汽车进行编号,号码是1,2,3, (30)②将1~30这30个编号写到大小、外形都相同的号签上;③将写好的号签放入一个不透亮的容器中,并搅拌均匀;④从容器中每次抽取一个号签,连续抽取3次,并记录下上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.[B.力量提升]1.接受简洁随机抽样从含有6个个体的总体中抽取一个容量为3的样本,某个个体前两次未被抽到,则第三次被抽到的机会是()A.12 B.13C.16 D.15解析:选A.从含有6个个体的总体中,抽取容量为3的样本,则每个个体在每次被抽到的机会都是12,这与第几次抽取无关.2.为了了解全校240名高一同学的体重状况,从中抽取40名同学进行测量.下列说法正确的是() A.总体是240B.个体是每一名同学C.样本是40名同学D.样本容量是40解析:选D.本题中的争辩对象是同学的体重,而不是同学自身.总体是240名同学的体重,个体是每一名同学的体重,样本是抽取的40名同学的体重,总体容量是240,样本容量是40.3.齐鲁风彩“七乐彩”的中奖号码是从1~30个号码中选出7个号码来按规章确定中奖状况,这种从30个号码中选7个号码的抽样方法是________.解析:当总体的个数不多时,宜接受抽签法.由于它简便易行,可用不同的方式制签,抽签也便利.答案:抽签法4.2022年10月10日,袁隆平“超级稻”亩产创1 026.7公斤新纪录.要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行试验,利用随机数表法抽取种子,先将850颗种子按001,002, (850)行编号,假如从随机数表第3行第6列的数开头向右读,请依次写出最先检验的4颗种子的编号:________.(随机数表见教材P103附表)解析:从随机数表第3行第6列的数2开头向右读第一个小于850的数字是227,其次个数字是665,第三个数字是650,第四个数字是267,符合题意.答案:227,665,650,2675.某电视台进行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选择10人,从18名香港艺人中随机选择6人,从10名台湾艺人中随机选择4人.试用抽签法确定选中的艺人,并确定他们的表演挨次.解:第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透亮小筒中摇匀,从中抽出10个号签,则相应编号的艺人参与演出;(2)运用相同的方法分别从18名香港艺人中抽取6人,从10名台湾艺人中抽取4人.其次步:确定演出挨次:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的挨次,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出挨次,再汇总即可.6.(选做题)(2021·洛阳高一检测)现在有一种够级玩耍,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人,并围成一圈.够级开头时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,依据这张牌上的数字来确定抓牌的先后,这6人依次从216张牌中抓取36张牌,问这种抓牌的方法是否是简洁随机抽样?解:简洁随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始的牌,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简洁随机抽样.。
《控制工程基础》电子教案第一章:绪论1.1 课程介绍了解控制工程的概念、内容和研究方法理解控制工程在工程实践中的应用和重要性1.2 控制系统的基本概念定义系统、输入、输出和反馈区分开环系统和闭环系统1.3 控制工程的目标掌握稳定性、线性、非线性和时变性等控制系统的特性学习控制系统的设计方法和步骤第二章:数学基础2.1 线性代数基础掌握向量、矩阵和行列式的基本运算学习线性方程组和特征值、特征向量的求解方法2.2 微积分基础复习极限、连续性和微分、积分的基本概念和方法应用微积分解决实际问题2.3 复数基础了解复数的概念、代数表示法和几何表示法学习复数的运算规则和复数函数的性质第三章:控制系统分析3.1 传递函数定义传递函数的概念和性质学习传递函数的绘制和解析方法3.2 频率响应分析理解频率响应的概念和特点应用频率响应分析方法评估系统的性能3.3 根轨迹分析掌握根轨迹的概念和绘制方法分析根轨迹对系统稳定性的影响第四章:控制系统设计4.1 控制器设计方法学习PID控制器的设计原理和方法了解模糊控制器和神经网络控制器的设计方法4.2 控制器参数调整掌握控制器参数调整的目标和方法应用Ziegler-Nichols方法和频域方法进行参数调整4.3 系统校正和优化理解系统校正的概念和目的学习常用校正方法和优化技术第五章:现代控制理论5.1 状态空间描述了解状态空间的概念和表示方法学习状态空间方程的求解和状态反馈控制5.2 状态估计和最优控制掌握状态估计的概念和方法学习最优控制的目标和求解方法5.3 鲁棒控制和自适应控制理解鲁棒控制的概念和特点了解自适应控制的设计方法和应用场景第六章:线性系统的稳定性分析6.1 稳定性的定义和性质理解系统稳定性的概念和重要性学习稳定性分析的基本方法6.2 劳斯-赫尔维茨准则掌握劳斯-赫尔维茨准则的原理和应用应用劳斯-赫尔维茨准则判断系统的稳定性6.3 李雅普诺夫方法了解李雅普诺夫方法的原理和分类学习李雅普诺夫第一和第二方法判断系统的稳定性第七章:线性系统的控制器设计7.1 控制器设计概述理解控制器设计的目标和重要性学习控制器设计的基本方法7.2 PID控制器设计掌握PID控制器的设计原理和方法应用PID控制器进行系统控制7.3 状态反馈控制器设计了解状态反馈控制器的设计原理和方法学习状态反馈控制器的设计和应用第八章:非线性控制系统分析8.1 非线性系统概述理解非线性系统的概念和特点学习非线性系统分析的基本方法8.2 非线性系统的描述方法学习非线性系统的数学模型和描述方法应用非线性系统分析方法研究系统的性质8.3 非线性控制系统的应用了解非线性控制系统在工程实践中的应用学习非线性控制系统的设计和优化方法第九章:鲁棒控制理论9.1 鲁棒控制概述理解鲁棒控制的概念和重要性学习鲁棒控制的基本方法9.2 鲁棒控制设计方法掌握鲁棒控制设计的原则和方法应用鲁棒控制设计方法设计控制器9.3 鲁棒控制在控制系统中的应用了解鲁棒控制在实际控制系统中的应用学习鲁棒控制在控制系统中的设计和优化方法第十章:控制系统仿真与实验10.1 控制系统仿真概述理解控制系统仿真的概念和重要性学习控制系统仿真的基本方法10.2 MATLAB控制系统仿真掌握MATLAB控制系统仿真工具的使用应用MATLAB进行控制系统仿真和分析10.3 控制系统实验了解控制系统实验的目的和重要性学习控制系统实验的方法和技巧重点和难点解析重点环节1:控制系统的基本概念和特性控制系统的基本概念,包括系统、输入、输出和反馈区分开环系统和闭环系统掌握稳定性、线性、非线性和时变性等控制系统的特性重点环节2:传递函数和频率响应分析传递函数的概念和性质,传递函数的绘制和解析方法频率响应的概念和特点,频率响应分析方法分析根轨迹对系统稳定性的影响重点环节3:控制器设计方法和参数调整控制器设计方法,包括PID控制器、模糊控制器和神经网络控制器的设计原理和方法控制器参数调整的目标和方法,应用Ziegler-Nichols方法和频域方法进行参数调整重点环节4:状态空间描述和最优控制状态空间的概念和表示方法,状态空间方程的求解和状态反馈控制状态估计和最优控制的目标和求解方法重点环节5:非线性控制系统分析和鲁棒控制理论非线性系统的概念和特点,非线性系统分析的基本方法鲁棒控制的概念和重要性,鲁棒控制的基本方法重点环节6:控制系统仿真与实验控制系统仿真的概念和重要性,控制系统仿真的基本方法MATLAB控制系统仿真工具的使用,应用MATLAB进行控制系统仿真和分析控制系统实验的目的和重要性,控制系统实验的方法和技巧全文总结和概括:本教案涵盖了控制工程基础的十个章节,主要包括控制系统的基本概念和特性、传递函数和频率响应分析、控制器设计方法和参数调整、状态空间描述和最优控制、非线性控制系统分析和鲁棒控制理论以及控制系统仿真与实验。
最优化方法
任课教师:赵俊锋
联系方式:zhaojf@
办公地点:勇字楼506
教材及主要参考书目
●实用最优化方法(第三版),唐焕文,秦学志
●应用最优化方法及MATLAB实现,刘兴高,胡云卿●最优化理论与方法,袁亚湘,孙文瑜
●非线性规划(第2版),宋士吉等译
●最优化计算方法,陈开周编
答疑安排
考核方式
学科总成绩
平时成绩
(30%)
课堂考勤(40%)平时作业
(30%)
课堂表现
(30%)
期末成绩
(70%)
课堂讨论
编程计算
闭卷考试
具体内容
●第一章绪论
●第二章无约束最优化方法●第三章约束最优化方法●第四章人工智能优化算法●第五章多目标优化算法
一
绪论最优化问题模型及分类最优化问题举例
课程简介二三四最优化问题数学基础。
3.2 平面对量基本定理, )1.问题导航(1)平面对量基本定理与向量的线性运算有何关系? (2)在平面对量基本定理中为何要求向量e 1,e 2不共线?(3)对于同一向量a ,若基底不同,则表示这一向量a 的实数λ1,λ2的值是否相同? 2.例题导读P 86例4.通过本例学习,学会应用平面对量基本定理解决实际问题. 试一试:教材P 87习题2-3 A 组T 7你会吗?P 86例5.通过本例学习,学会用已知向量表示其他向量. 试一试:教材P 87习题2-3 A 组T 5,T 6你会吗?1.平面对量基本定理(1)定理:假如e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:我们把不共线的向量e 1,e 2叫作表示这一平面内全部向量的一组基底. 2.三点共线的充要条件平面上三点A 、B 、C 共线的充要条件是:存在实数α、β,使得OA →=αOB →+βOC →.其中α+β=1,O 为平面内任意一点.1.推断正误.(正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内全部向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内全部向量.( ) (3)若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( )解析:(1)错误.依据基底的概念可知,平面内不共线的向量都可以作为该平面内向量的基底. (2)正确.依据平面对量基本定理知对平面内任意向量都可以由向量e 1,e 2线性表示. (3)错误.当e 1与e 2共线时,结论不肯定成立. 答案:(1)× (2)√ (3)×2.已知平行四边形ABCD ,下列各组向量中,是该平面内全部向量基底的是( ) A.AB →,DC → B.AD →,BC → C.AD →,CB → D .AB →,BC →解析:选D.由于AB →,BC →不共线,故是一组基底.3.已知向量a 与b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y =________.解析:由原式可得⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:34.已知向量a 与b 不共线,且AB →=a +4b ,BC →=-a +9b ,CD →=3a -b ,则共线的三点为________.解析:BD →=BC →+CD →=-a +9b +3a -b =2a +8b ,由于AB →=a +4b ,所以AB →=12BD →,所以A ,B ,D 三点共线.答案:A ,B ,D1.定理的实质平面对量基本定理的实质是向量的分解,即平面内任意向量都可以沿两个不共线的方向分解成两个向量和的形式.2.分解的唯一性平面对量基本定理中,平面内任意两个不共线的向量都可以作为基底,一旦选定一组基底,则给定向量沿着基底的分解是唯一的.3.体现的数学思想平面对量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择恰当的基底,将问题涉及的向量用基底化归,使问题得以解决.对基底的理解设e 1,e 2是同一平面内不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中不能作为平面内全部向量的一组基底的是________.(写出满足条件的序号)[解析] 由基底的定义可将此问题转化为推断各组中的两个向量是否共线的问题.若不共线,则它们可作为一组基底;若共线,则它们不能作为一组基底.①中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2可作为一组基底;②中,设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,-(2+λ)=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1可作为一组基底;③中,由于e 1-2e 2=-12(4e 2-2e 1),所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底;④中,设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,所以⎩⎪⎨⎪⎧1+λ=0,1-λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2可作为一组基底.[答案] ③ 方法归纳同一平面内的两个向量能不能作为基底,关键是看它们共不共线,在同一平面内,只要两个向量不共线,就可以作为一组基底.1.(1)设O 是平行四边形ABCD 两对角线AC 与BD 的交点,下列向量组可作为表示这个平行四边形所在平面的全部向量的基底的是( )①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →. A .①② B .④ C .①③ D .①④(2)设a ,b 不共线,c =2a -b ,d =3a -2b ,试推断c ,d 能否作为基底.解:(1)选C.推断两个向量能否作基底,只需看两个向量是否共线,由图可知AD →与AB →不共线,CA →与DC →不共线,故①③可作为基底.(2)假设存在唯一实数λ,使得c =λd ,则2a -b =λ(3a -2b ),即(2-3λ)a +(2λ-1)b =0. 由于a ,b 不共线,所以⎩⎪⎨⎪⎧2-3λ=0,2λ-1=0⇒⎩⎨⎧λ=23,λ=12.所以这样的λ是不存在的,从而c ,d 不共线. 所以c ,d 能作为基底.用基底表示向量点,设OA →=a ,(1)如图,梯形ABCD 中AB ∥CD ,AB =2CD ,点O 为空间任意一OB →=b ,OC →=c ,则向量OD →用a ,b ,c 表示为( )A .a -b +2cB .a -b -2cC .-12a +12b +cD.12a -12b +c (2)如图所示,D 是BC 边的一个四等分点.试用基底AB →,AC →表示AD →,则AD →=________. (链接教材P 86例5)[解析] (1)由于AB ∥CD ,AB =2CD ,所以CD →=12BA →,OD →=OA →+AC →+CD → =OA →+OC →-OA →+12BA →=OC →+12(OA →-OB →)=12a -12b +c .(2)由于D 是BC 边的四等分点,所以BD →=14BC →=14(AC →-AB →),所以AD →=AB →+BD →=AB →+14(AC →-AB →)=34AB →+14AC →. [答案] (1)D (2)34AB →+14AC →若本例(2)中的条件不变,用基底AB →,AC →表示CD →.解:由于D 是BC 边的四等分点,所以CD →=34CB →=34(AB →-AC →)=34AB →-34AC →.即CD →=34AB →-34AC →.方法归纳(1)依据平面对量基本定理,任何一组基底都可以表示任意向量.用基底表示向量,实质上主要是利用三角形法则或平行四边形法则,进行向量的加减法运算.(2)要留意适当选择向量所在的三角形或平行四边形,利用已知向量表示未知向量,或找到已知向量与未知向量的关系,用方程的观点求出未知向量.2.(1)已知AM 为△ABC 的BC 边上的中线,若AB →=a ,AC →=b ,则AM →=( ) A.12(a -b ) B .-12(a -b ) C .-12(a +b ) D .12(a +b )(2)假如3e 1+4e 2=a ,2e 1+3e 2=b ,其中a ,b 为已知向量,则e 1=________,e 2=________(用a ,b 表示).(3)已知梯形ABCD 中,AB ∥DC ,且AB =2CD ,E 、F 分别是DC 、AB 的中点,设AD →=a ,AB →=b ,试以a 、b 为基底表示DC →、BC →、EF →.解:(1)选D.由于BC →=AC →-AB →=b -a , BM →=12BC →=12(b -a ),所以AM →=AB →+BM →=a +12(b -a )=12(a +b ).(2)由⎩⎪⎨⎪⎧a =3e 1+4e 2,b =2e 1+3e 2,解得e 1=3a -4b ,e 2=3b -2a .故填3a -4b 和3b -2a . (3)如图,连接FD ,由于DC ∥AB ,AB =2CD ,E 、F 分别是DC 、AB 的中点, 所以DC 綊FB ,所以四边形DCBF 为平行四边形. 所以DC →=FB →=12AB →=12b ,BC →=FD →=AD →-AF →=AD →-12AB →=a -12b ,EF →=DF →-DE →=-FD →-DE →=-BC →-12DC →=-⎝⎛⎭⎫a -12b -12×12b =14b -a .平面对量基本定理的应用且AB →=a ,AC →=如图,已知点G 是△ABC 的重心,若PQ 过△ABC 的重心G ,b ,AP →=m a ,AQ →=n b (m >0,n >0),试问m ,n 的倒数和是否为定值?若是,求出这个定值;若不是,说明理由.[解] 由于AB →=a ,AC →=b ,AD →=12(a +b ),所以AG →=23AD →=13(a +b ),由于P 、G 、Q 三点共线,则PG →∥GQ →⇔PG →=λGQ →(λ为正实数),由于PG →=AG →-AP →=13(a +b )-m a=⎝⎛⎭⎫13-m a +13b , GQ →=AQ →-AG →=n b -13(a +b )=-13a +⎝⎛⎭⎫n -13b , 所以⎝⎛⎭⎫13-m a +13b =λ⎣⎡⎦⎤-13a +⎝⎛⎭⎫n -13b , 可得⎝⎛⎭⎫13-m +13λa +⎝⎛⎭⎫13-λn +13λb =0, 由于a ,b 不共线, 则必有13-m +13λ=13-λn +13λ=0,消去λ,整理得3mn =m +n , 所以1m +1n =3为定值.方法归纳用向量解决平面几何问题的一般步骤 (1)选取不共线的两个平面对量作为基底.(2)将相关的向量用基底向量表示,将几何问题转化为向量问题. (3)利用向量学问进行向量运算,得出向量问题的解. (4)再将向量问题的解转化为平面几何问题的解.3.(1)如图,在矩形OACB 中,E 和F 分别是边AC 和BC 上的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF →,其中λ,μ∈R ,求λ,μ的值.(2)已知,在△AOB 中,点P 在直线AB 上,且满足OP →=2tP A →+tOB →(t ∈R ),求|P A →||PB →|的值.解:(1)在矩形OACB 中,OC →=OA →+OB →, OC →=λOE →+μOF →=λ(OA →+AE →)+μ(OB →+BF →)=λ(OA →+13OB →)+μ⎝⎛⎭⎫OB →+13OA → =3λ+μ3OA →+3μ+λ3OB →, 所以3λ+μ3=1,3μ+λ3=1,所以λ=μ=34.(2)P A →=OA →-OP →,所以OP →=2t (OA →-OP →)+tOB →,即(1+2t )OP →=2tOA →+tOB →,得OP →=2t 1+2t OA →+t 1+2tOB →.而P ,A ,B 三点共线,所以存在实数λ使得AP →=λAB →,即OP →=(1-λ)OA →+λOB →,所以2t 1+2t +t 1+2t =1,解得t =1,所以OP →=2P A →+OB →,得OP →-OB →=2P A →,即BP →=2P A →,有|P A →||PB →|=12.易错警示对平面对量基本定理理解不精确 致误如图,在△ABC 中,点M 是边BC 的中点,点N 在边AC 上,且AN =2NC .AM 与BN 相交于点P ,则AP ∶PM =( )A .1∶4B .4∶1C .4∶5D .5∶4[解析] 设BM →=e 1,CN →=e 2, 则AM →=AC →+CM →=-3e 2-e 1, BN →=BC →+CN →=2e 1+e 2.由于A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ,使得AP →=λAM →=-λe 1-3λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2, 而BA →=BC →+CA →=2e 1+3e 2,由平面对量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎨⎧λ=45,μ=35.所以AP →=45AM →,所以AP ∶PM =4∶1.[答案] B[错因与防范] (1)解答本题,经常由于对平面对量基本定理理解不精确 ,而导致不能正确地表示出BA →,进而得出AP ∶PM 的错误结果.(2)为避开可能消灭上述错误,应留意以下两点:①充分挖掘题目中的有利条件,利用等量关系列出方程(组),如本例中由AM 与BN 相交,得到相应三点共线,即A ,P ,M 与B ,P ,N 分别共线.由共线定理得两个方程,然后求解.②用基底表示向量也是用向量解决问题的基础.应依据条件机敏应用,通常以与待求向量亲密相关的两个不共线向量作为基底.4.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析:由题意DE →=BE →-BD →=23BC →-12BA →=23(AC →-AB →)+12AB →=-16AB →+23AC →,于是λ1=-16,λ2=23,故λ1+λ2=12.答案:121.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( ) A .不共线 B .共线 C .相等 D .不确定 解析:选B.由于a +b =3e 1-e 2,所以c =2(a +b ). 所以a +b 与c 共线.2.如图,在△ABC 中,已知D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.解析:CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,故λ=23.答案:233.如图,设点P ,Q 是线段AB 的三等分点,若OA →=a ,OB →=b ,则OP →=________,OQ=________(用a ,b 表示).解析:OP →=AP →-AO →=13AB →+OA →=13(OB →-OA →)+OA →=13OB →+23OA →=13b +23a , OQ →=AQ →-AO →=23AB →+OA →=23()OB →-OA →+OA →=23OB →+13OA →=13a +23b . 答案:13b +23a 13a +23b, [同学用书单独成册])[A.基础达标]1.设e 1,e 2是平面内全部向量的一组基底,则下列四组向量中,不能作为基底的是( ) A .2e 1+e 2和2e 1-e 2 B .3e 1-2e 2和4e 2-6e 1 C .e 1+2e 2和e 2+2e 1 D .e 2和e 1+e 2解析:选B.由于B 中4e 2-6e 1=-2(3e 1-2e 2),所以3e 1-2e 2和4e 2-6e 1共线不能作为基底.2.四边形OABC 中,CB →=12OA →,若OA →=a ,OC →=b ,则AB →=( )A .a -12b B.a2-bC .b +a2 D .b -12a解析:选D.AB →=AO →+OC →+CB →=-a +b +12a =b -12a ,故选D.3.已知e 1,e 2不共线,a =λ1e 1+e 2,b =4e 1+2e 2,并且a ,b 共线,则下列各式正确的是( ) A .λ1=1 B .λ1=2 C .λ1=3 D .λ1=4 解析:选B.b =4e 1+2e 2=2(2e 1+e 2),由于a ,b 共线,所以λ1=2.4.若P 为△OAB 的边AB 上一点,且△OAP 的面积与△OAB 的面积之比为1∶3,则有( ) A.OP →=OA →+2OB → B.OP →=2OA →+OB → C.OP →=23OA →+13OB →D.OP →=13OA →+23OB →解析:选C.由于△OAP 的面积与△OAB 的面积之比为1∶3,所以AP →=13AB →,所以OP →-OA →=13(OB →-OA →),所以OP →=23OA →+13OB →.5.已知|OA →|=2,|OB →|=3,∠AOB =120°,点C 在∠AOB 内,∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn =( )A.32B . 3C.233D .32解析:选B.如图,过点C 作CM ∥OB ,CN ∥OA ,则OC →=OM →+ON →,设|ON →|=x , 则|OM →|=2x ,OC →=2x ·OA →|OA →|+x ·OB →|OB →|=xOA →+33xOB →,所以m =x ,n =3x 3,所以m n =x3x3= 3.6.如图,在平行四边形ABCD 中,AB →=a ,AD →=b ,M 是DC 的中点,以a ,b 为基底表示向量AM →=________.解析:AM →=AD →+DM →=AD →+12DC →=AD →+12AB →=b +12a .答案:b +12a7.设a ,b 是两个不共线向量,已知AB →=2a +k b ,CB →=a +b ,CD →=2a -b ,若A 、B 、D 三点共线,则k =________.解析:由于CB →=a +b ,CD →=2a -b ,所以BD →=CD →-CB →=(2a -b )-(a +b )=a -2b .由于A 、B 、D 三点共线,所以AB →=λBD →,所以2a +k b =λ(a -2b )=λa -2λb . 又a ,b 是两个不共线向量,所以⎩⎪⎨⎪⎧λ=2,k =-2λ,所以k =-4. 答案:-4 8.如图,A ,B ,C 是圆O 上的三点,CO 的延长线与线段BA 的延长线交于圆O 外一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.解析:由点D 是圆O 外一点,可设BD →=λBA →(λ>1),则OD →=OB →+λBA →=λOA →+(1-λ)OB →.又C ,O ,D 三点共线,令OD →=-μOC →(μ>1),则OC →=-λμ·OA →-1-λμOB →(λ>1,μ>1),所以m =-λμ,n =-1-λμ,且m +n=-λμ-1-λμ=-1μ∈(-1,0).答案:(-1,0) 9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC →=b ,试用a ,b 将MN →,NP →,PM →表示出来.解:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 的中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 解:(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1∶4.(2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN →,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎨⎧x +y 2=1,x 4+y =1⇒⎩⎨⎧x =47,y =67.[B.力量提升]1.在△ABC 中,N 是AC 边上一点,且AN →=12NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m 的值为( )A.19 B .13 C .1 D .3解析:选B.由于AN →=12NC →,所以BN →-BA →=12(BC →-BN →),则BN →=23BA →+13BC →;由于AP →=mAB →+29AC →,所以BP →-BA →=-mBA →+29(BC →-BA →),即BP →=(79-m )BA →+29BC →;由于P 是BN 上的一点,所以BN →=λBP →,所以79-m=49,即m =13. 2.如图,在△ABC 中,AB →=a ,AC →=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP →=m a +n b ,则m +n =( )A.12 B .23C.67D .1解析:选C.由题意可得AP →=2QP →,QB →=2QR →,由于AB →=a =AQ →+QB →=12AP →+2QR →,①AC →=AP →+PC →=AP →+RP →=AP →+QP →-QR → =AP →+12AP →-QR →=32AP →-QR →=b ,②由①②解方程求得AP →=27a +47b .再由AP →=m a +n b 可得m =27,n =47,m +n =67.3.如图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.解析:如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt △OCD 中,由于|OC →|=23,∠COD =30°, ∠OCD =90°,所以|OD →|=4,|CD →|=2,故OD →=4OA →, OE →=2OB →,即λ=4,μ=2,所以λ+μ=6. 答案:64.设点O 是面积为4的△ABC 内部一点,且有OA →+OB →+2OC →=0,则△AOC 的面积为________. 解析:如图,以OA ,OB 为邻边作▱OADB ,连接OD ,则OD →=OA →+OB →,结合条件OA →+OB →+2OC →=0知,OD →=-2OC →,设OD 交AB 于M ,则OD →=2OM →,所以OM →=-OC →,故O 为CM 的中点,所以S △AOC =12S △CAM =14S △ABC =14×4=1.答案:1 5.已知△OAB 中,延长BA 到C ,使AB =AC ,D 是将OB →分成2∶1两部分的一个分点,DC 和OA 交于点E ,设OA →=a ,OB →=b .(1)用a ,b 表示向量OC →,DC →;(2)若OE →=λOA →,求实数λ的值.解:(1)由于A 为BC 的中点,所以OA →=12(OB →+OC →),OC →=2a -b .DC →=OC →-OD →=OC →-23OB →=2a -b -23b =2a -53b .(2)由于OE →=λOA →,所以CE →=OE →-OC →=λOA →-OC →=λa -2a +b =(λ-2)a +b .由于CE →与CD →共线,所以存在实数m ,使得CE →=mCD →,即(λ-2)a +b =m (-2a +53b ),即(λ+2m -2)a +(1-53m )b =0.由于a ,b 不共线,所以⎩⎪⎨⎪⎧λ+2m -2=0,1-53m =0,解得λ=45.6.(选做题)如图所示,OM ∥AB ,点P 在由射线OM 、线段OB 及线段AB 的延长线围成的阴影区域内(不含边界)运动,且OP →=xOA →+yOB →.(1)求x 的取值范围;(2)当x =-12时,求y 的取值范围.解:(1)由于OP →=xOA →+yOB →,以OB 和OA 的反向延长线为两邻边作平行四边形,由向量加法的平行四边形法则可知OP 为此平行四边形的对角线,当OP 长度增大且靠近OM 时,x 趋向负无穷大,所以x 的取值范围是(-∞,0).(2)如图所示,当x =-12时,在OA 的反向延长线取点C ,使OC =12OA ,过C 作CE ∥OB ,分别交OM和AB 的延长线于点D ,E ,则CD =12OB ,CE =32OB ,要使P 点落在指定区域内,则P 点应落在DE 上,当点P 在点D 处时OP →=-12OA →+12OB →,当点P 在点E 处时OP →=-12OA →+32OB →,所以y 的取值范围是⎝⎛⎭⎫12,32.。
五年级上册优化探究一、课程概述五年级上册优化探究课程旨在培养学生的数学思维和解决问题的能力。
通过引导学生解决实际问题,帮助他们掌握优化策略,提高他们的创新能力和团队合作精神。
本课程将涵盖数学基础知识、优化策略、团队合作等方面的内容。
二、课程目标1. 掌握数学基础知识,包括整数、小数、分数等。
2. 学会运用优化策略解决问题,如时间安排、资源分配等。
3. 培养学生的创新思维和批判性思维,提高解决问题的能力。
4. 培养学生的团队合作精神和沟通能力。
三、课程内容第一章:数学基础知识1. 整数、小数、分数的概念及运算规则。
2. 平面几何的基本概念与计算方法。
3. 简单的统计知识。
第二章:优化策略1. 时间安排优化:理解时间安排的基本原则和方法,如工作量最大化、时间最小化等。
2. 资源分配优化:理解资源分配的基本原则和方法,如成本效益分析、资源利用最大化等。
3. 决策优化:理解决策优化的基本原则和方法,如风险评估、利益权衡等。
第三章:团队合作与沟通1. 团队合作:理解团队合作的重要性,学习如何在团队中发挥自己的作用。
2. 沟通技巧:学习有效的沟通技巧,包括倾听、表达、反馈等。
3. 团队建设活动:参与团队建设活动,提高团队合作能力。
四、教学方法1. 理论教学:通过讲解、演示、讨论等方式,帮助学生掌握基础知识。
2. 实践教学:通过问题解决、项目合作等方式,培养学生的实践能力。
3. 反思教学:通过反思、总结等方式,帮助学生深化理解,提高思维能力。
五、课程评价1. 平时成绩:包括课堂表现、作业完成情况等。
2. 期末考试:测试学生对基础知识和优化策略的掌握情况。