第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解
- 格式:doc
- 大小:400.50 KB
- 文档页数:17
本课程的说明:矩阵分析理论是在线性代数的基础上推广的(数学是在已有的基础理论上模仿,推广而发展的。
要大胆猜想,小心证明!) 矩阵分析理论的组成:四部分:一、基础知识(包括书上的前三章内容)重点、难点:约当标准形与多项式矩阵,矩阵的分解等; 二、矩阵分析(第四章:矩阵函数及其应用)重点、难点:范数,矩阵幂级数,微分方程组; 三、矩阵特征值的估计(第五章)重点、难点:Gerschgorin 圆盘定理;广义逆矩阵; 四、非负矩阵(第六章)(注:不讲)重点、难点:基本不等式,素矩阵,随机矩阵等。
§1 线性空间与度量空间一、线性空间: 1.数域:Df 1:若复数的一个非空集合P 含有非零的数,且其中任意两数的和、差、积、商(除数不为0)仍在这个集合中,则称数集P 为一个数域 eg 1:Q (有理数),R (实数),C (复数),Z (整数),N (自然数)中哪些是数域?哪些不是数域? 2.线性空间— 设P 是一个数域,V 是一个非空集合,若满足:<1> 可加性—指在V 上定义了一个二元运算(加法)即:V ∈∀βα, 经过该运算总存在唯一的元素V ∈γ与之对应,称γ为α与β的和,记βαγ+= 并满足:① αββα+=+② )()(γβαγβα++=++ ③ 零元素—=有θαθααθ+∈∀∈∃Vt s V .(线性空间必含θ)。
④ αβαβθβααβ-+∈∀∈∃=记的负元素为=有对V V<2> 数积:(数乘运算)—在P 与V 之间定义了另一种运算。
即V P k ∈∈∀α,经该运算后所得结果,仍为V 中一个唯一确定的元素(存在唯一确定的元素V ∈δ与之对应),称δ为k 与α的乘积。
记为αδk =并满足:① αα=⋅1② P l k ∈∀, αα)()(kl l k = ③ P l k ∈∀, αααl k l k +=+)( ④ γβα∈∀, βαβαk k k +=+)(则称V 为数域P 上的线性空间(向量空间)记为)...(∙+P V 习惯上V 中的元素—向量, θ—零向量, 负元素—负向量结论:可以证明,线性空间中的零向量是唯一的,负元素也是唯一的,且有:θα=⋅0 θθ=⋅k αα-=⋅-)1( )(βαβα-+=-eg2:}{阶矩阵是n m A A V ⨯= P —实数域R按照矩阵的加法和数与矩阵的乘法,就构成实数域R 上的线性空间,记为:n m R ⨯同样,若V 为n 维向量,则可构成R 上的n 维向量空间n R —线性空间。
矩阵的基本性质和运算法则矩阵是线性代数中的一个重要概念,是一个由数数组成的矩形阵列。
矩阵不仅有丰富的应用,比如在物理、经济、统计等领域中,还有着自身的基本性质和运算法则。
下面我们来谈谈矩阵的基本性质和运算法则。
一、矩阵的基本性质1.维数和元素矩阵的维数是指矩阵有多少行和多少列。
用矩阵的行数和列数来表示,如m×n的矩阵表示有m行,n列。
矩阵中的元素就是矩阵中的每一个数。
2.矩阵的转置矩阵的转置就是将矩阵的行和列交换,所得到的新矩阵称为原矩阵的转置矩阵。
如下所示:3 2 1 3 5A = 5 4 6 A^T = 2 47 8 9 1 6矩阵的转置可以表示为Aij = Aji, 1 ≤ i ≤ m, 1 ≤ j ≤ n。
3.矩阵的行列式矩阵的行列式是矩阵的一个标量值,它是由矩阵的元素按照某一特定的规律计算得到的。
矩阵的行列式常用来描述矩阵线性方程组的解的情况。
如果一个矩阵的行列式为0,则该矩阵是一个奇异矩阵。
二、矩阵的运算法则1.矩阵的加法矩阵的加法必须满足两个矩阵的维数相同,即都是m×n的矩阵才能进行加法运算。
对于矩阵A和矩阵B,它们的和可以表示为C=A+B,即在矩阵A和矩阵B的对应元素上相加得到矩阵C。
如下所示:1 2 4 5 5 7C = 3 4 +D = 1 3 =E = 4 76 7 5 4 11 112.矩阵的减法矩阵的减法也必须满足两个矩阵的维数相同。
对于矩阵A和矩阵B,它们的差可以表示为C=A-B,即在矩阵A和矩阵B的对应元素上相减得到矩阵C。
如下所示:1 2 4 5 -3 -3C = 3 4 -D = 1 3 =E = 2 16 7 5 4 1 33.矩阵的数乘矩阵的数乘指的是一个矩阵的每一个元素与一个数相乘所得到的新矩阵。
如下所示:1 2 2 42A = 3 4 -3B= -6 -126 7 -9 -154.矩阵的乘法矩阵的乘法是指由两个矩阵相乘所得到的新矩阵。
特征值、特征向量的定义:
设A 是n 阶矩阵. 如果数0λ和n 维非零列向量ξ,使得
A ξ=0λξ,
则称0λ是A 的特征值,ξ是A 的属于0λ的一个特征向量.
再强调一下,特征向量应是非零向量. 原因是,对任意n 阶矩阵A 和任意数0λ总有ολο0=A ,这样也就不会有什么“特征”了.
如果A 是奇异矩阵,那么齐次线性方程组Ax = ο 的非零解 ξ,使得
ξξ0=A ,
因此,数0是奇异矩阵A 的特征值,方程组Ax = ο 的非零解都是属于特征值0的特征向量.
由定义A ξ=0λξ,即(0λE – A )x = ο,即使该齐次线性方程组有非零解的0λ即为特征值,相应的非零解即为特征向量. 因此满足
|0λE – A | = 0 (1)
的0λ即为A 的特征值. 方程(1)称为A 的特征方程,特征值即为特征方程的根. 而相应于特征值0λ的特征向量即为齐次线性方程组(0λE – A )x = ο的非零解.
称关于0λ的一元n 次方程|0λE – A | = 0为矩阵A 的特征方程,称0λ的一元n 次多项式
f (0λ) = |0λE – A |
(2) 为矩阵A 的特征多项式.
特征值与特征向量的求法:
1) 计算A 的特征多项式||A E −λ.
2) 求出特征方程0=−λ||A E 的所有根n λλλ,,,L 21,它们就是A 的全部特征值. 对特征值i λ,解齐次线性方程组x A E i )(−λ=ο,它的非零解都是属于特征值i λ的特征向量,i =1, 2 ,…, n .。
第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p x q, B q x p,则|l p+AB| = |l q + BA|证明一:参照课本194 页,例4.3.证明二:利用AB 和BA 有相同的非零特征值的性质;从而l p+AB ,l q+BA 中不等于1 的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
nn定义:tr(A) a ii i ,etrA=exp(trA)i 1 i 1性质:1. tr( A B) tr(A) tr(B) ,线性性质;2. tr(A T ) tr(A) ;3. tr(AB) tr(BA) ;14. tr(P 1AP) tr(A) ;5. tr(x H Ax) tr(Axx H),x 为向量;nn6. tr(A) i ,tr(A k) i k;i 1 i 1从Schur 定理(或Jordan 标准形) 和(4)证明;7. A 0,则tr(A) 0 ,且等号成立的充要条件是A=0;8. A B(即A B 0),则tr(A) tr(B),且等号成立的充要条件是A=B( A B i(A) i(B) );9. 对于n阶方阵A,若存在正整数k,使得A k=0, 则tr(A)=0 (从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m x n复矩阵A和B, tr(A H B)是m x n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式2[x,y] w [x,x]. [y,y]得定理:对任意两个m x n 复矩阵A 和B|tr(A H B)|2w tr(冲A) • tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
第五专题 矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例.证明二:利用AB 和BA 有相同的非零特征值的性质;从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:nnii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2.Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5.H H tr(x Ax)tr(Axx ),x =为向量; 6. nnkk i i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A HB)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c 为一常数。
考研数学矩阵的特征值与特征向量讲解我们在进行考研数学的复习时,需要把矩阵的特征值与特征向量的重点知识点复习好。
店铺为大家精心准备了考研数学矩阵的特征值和特征向量分析,欢迎大家前来阅读。
考研数学矩阵的特征值和特征向量解析矩阵的特征值与特征向量的定义:设为阶矩阵,若存在常数和向量,使得,则称为矩阵的特征值,称为矩阵的属于特征值的特征向量。
求特征值与特征向量的常用思路:1.根据定义求特征值和特征向量。
2.当已给出矩阵,通过求出特征值,然后通过求齐次线性方程组的基础解系,求出矩阵的属于特征值的线性无关的特征向量。
3.利用关联矩阵的特征值之间的关系求特征值,如互逆矩阵的特征值互为倒数;相似矩阵的特征值相同;和有相同的特征值等。
并利用关联矩阵特征向量之间的关系求矩阵的属于特征值的特征向量,如当可逆时,、与对应的特征值的特征向量相同等。
一般矩阵与实对称矩阵的特征值与特征向量的性质:1.阶矩阵的所有特征值之和等于矩阵的迹,阶矩阵的所有特征值之积等于矩阵的行列式。
2.设为阶矩阵的特征值,若为矩阵的属于特征值的特征向量,则也是矩阵的属于特征值的特征向量。
3.实对称矩阵的特征值都是实数。
4.矩阵的不同特征值所对应的特征向量线性无关,实对称矩阵的不同特征值所对应的特征向量正交。
考研数学复习指导技巧当然,把握数学高分的前提必须要熟知数学考查内容和具体考些什么。
数学主要是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的。
高数的基础应着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。
另一部分考查的是简单的分析综合能力。
因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。
最后就是数学的解应用题能力。
解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等知识。
矩阵的特征值求解技巧矩阵的特征值和特征向量是线性代数中重要的概念,对于解决矩阵的性质和应用问题有着重要的作用。
特征值求解是矩阵特征值问题的核心内容,本文将介绍特征值求解的技巧和方法。
一、特征值和特征向量的定义首先,我们需要理解特征值和特征向量的概念。
给定一个n阶矩阵A,如果存在数λ和非零向量X使得AX=λX,则称λ为矩阵A的一个特征值,X称为对应于特征值λ的特征向量。
二、特征值的求解1. 利用特征多项式对于n阶矩阵A,我们可以定义其特征多项式p(λ)=|A-λI|,其中I是n阶单位矩阵。
求解特征多项式的根即为矩阵的特征值。
2. 利用特征值的性质特征值的性质有助于我们求解特征值。
下面列举一些常见的性质:- 特征值与矩阵的行列式相等。
即det(A-λI)=0。
- 矩阵的特征值个数等于其矩阵的阶数。
- 如果矩阵A是n阶矩阵,那么矩阵A的特征值之和等于A的主对角线元素之和。
- 特征值互不相等,特征向量也互不相等。
即不同特征值对应的特征向量是线性无关的。
3. 利用特殊矩阵的性质对于特殊的矩阵,我们可以利用其性质来求解特征值。
例如,对于对称矩阵,其特征值一定是实数;对于三角矩阵,其特征值等于主对角线元素。
三、特征向量的求解特征向量的求解是在已知特征值的情况下进行的。
对于给定的特征值λ,我们可以利用矩阵特征方程(A-λI)X=0,利用高斯消元法或其他行列运算方法求解出特征向量。
四、实际问题中的应用特征值和特征向量在实际问题中有着广泛的应用,如:- 在物理学中,特征值和特征向量可以用来描述量子力学中的量子态和量子力学运算符的本征态和本征值。
- 在工程中,特征值和特征向量可以用来描述系统的振动模态和固有频率。
- 在数据分析中,特征值和特征向量可以用来进行降维处理和特征选取。
总结:特征值和特征向量是矩阵的重要性质,通过求解特征值和特征向量,我们可以了解矩阵的本质、性质和应用。
特征值的求解可以利用特征多项式、特征值的性质和特殊矩阵的性质等方法,特征向量的求解可以通过矩阵特征方程进行求解。
线性代数知识点全面总结线性代数是数学的一个重要分支,在科学、工程、计算机科学等领域都有着广泛的应用。
下面就为大家全面总结一下线性代数的主要知识点。
一、行列式行列式是线性代数中的一个基本概念,它是一个数值。
对于一个二阶行列式,其计算公式为“左上角元素乘以右下角元素减去右上角元素乘以左下角元素”。
对于高阶行列式,可以通过按照某一行(列)展开来计算。
行列式具有很多重要的性质,比如:某一行(列)元素乘以同一数后,加到另一行(列)对应元素上,行列式的值不变;如果行列式某一行(列)元素全为零,则行列式的值为零;交换行列式的两行(列),行列式的值变号等。
二、矩阵矩阵是线性代数的核心概念之一。
它是一个按照矩形排列的数表。
矩阵可以进行加法、减法、数乘和乘法运算。
矩阵加法和减法要求两个矩阵的行数和列数都相同,对应位置的元素相加减。
数乘则是将矩阵的每个元素乘以一个数。
矩阵乘法相对复杂一些,只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘。
而且,矩阵乘法一般不满足交换律。
矩阵还有转置、逆等概念。
矩阵的转置是将行和列互换得到的新矩阵。
如果一个矩阵存在逆矩阵,那么它与原矩阵相乘得到单位矩阵。
三、线性方程组线性方程组是线性代数中的重要内容。
可以用矩阵的形式来表示线性方程组,通过对增广矩阵进行初等行变换来求解。
齐次线性方程组(常数项都为零的线性方程组)一定有零解,如果系数矩阵的秩小于未知数的个数,则有非零解。
非齐次线性方程组,如果系数矩阵的秩等于增广矩阵的秩,则有解;如果秩相等且等于未知数的个数,则有唯一解;如果秩相等但小于未知数的个数,则有无穷多解。
四、向量向量是既有大小又有方向的量。
在线性代数中,向量可以表示为行向量或列向量。
向量组的线性相关和线性无关是重要概念。
如果存在一组不全为零的数,使得向量组的线性组合等于零向量,则称向量组线性相关;否则,称向量组线性无关。
向量组的秩是指极大线性无关组中向量的个数。
五、特征值与特征向量对于一个方阵 A,如果存在一个数λ和一个非零向量 x,使得 Ax =λx,那么λ称为矩阵 A 的特征值,x 称为矩阵 A 对应于特征值λ的特征向量。
矩阵的特征值与特征向量专题讲解一、内容提要一、矩阵的特征值和特征向量 1、基本概念设A 为n 阶方阵,若存在数λ和n 为非零向量0,a ≠使Aa a λ=,则称λ是A 的特征值,a 是属于λ的特征向量;矩阵E A λ-称为A 的特征矩阵;E A λ-是λ的n 次多项式,称为A 的特征多项式;E A λ-=0称为A 的特征方程; 2、特征值、特征向量的求法(1)计算A 的特征值,即解特征方程E A λ-=0;(2)对每一个特征值0λ,求出相应的齐次线性方程组()00E A X λ-= 一个基础解系123,ξξξ,,...,则属于0λ的全部特征向量为11...s s k k ξξ++,其中1,...,s k k 为不全为零的任意常数; 3、特征值、特征向量的性质(1)A 与T A 的特征值相同(但特征向量一般不同);(2)属于同一特征值的特征向量的线性组合仍是属于该特征值的特征向量; (3)属于不同特征值的特征向量线性无关;(4)设()0Aa a a λ=≠,则(),,m kA A P A 的特征值分别为(),,m k P λλλ,其中()P x 为任一多项式,而a 仍为相应的特征向量; (5)若A 可逆,()0Aa a a λ=≠,则1λ是1A -的特征值;Aλ是*A 的特征值,a 仍为相应的特征向量;(6)设12n λλλ,,...是n 阶方阵的特征值,则有()11nni ii i i a tr A λ====∑∑(迹);1nii A λ==∏;推论:A 可逆当且仅当A 的特征值全不为零;(7)若A 为实对称阵,则A 的所有特征值均为实数,且属于不同特征值的特征向量彼此正交。
二、相似矩阵 1、定义设,A B 为n 阶方阵,若存在n 阶可逆阵P ,使1P AP B -=,称A 与B 相似,记为A ~B ; 2、A ~B 的性质T T A B ,,,M M kA kB A B ~~~()(),P A P B ~其中P 为任一多项式;()(),,,r A r B A B E A E B λλ==-=-⇒特征值相同,()()tr A tr B =;若A 可逆,则B 也可逆,且11A B --~。
第五章 矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设()ijn nA a ⨯=是数域P 上的n 阶矩阵,若对于数域P 中的数λ,存在数域P 上的非零n 维列向量X ,使得X AX λ=则称λ为矩阵A 的特征值,称X 为矩阵A 属于(或对应于)特征值λ的特征向量注意:1)()ijn nA a ⨯=是方阵;2)特征向量 X 是非零列向量; 3)方阵 ()ijn nA a ⨯= 与特征值 λ 对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A 的特征值与特征向量的步骤为: (1) 计算n 阶矩阵A 的特征多项式|λE -A |;(2) 求出特征方程|λE -A |=0的全部根,它们就是矩阵A 的全部特征值; (3) 设λ1 ,λ2 ,… ,λs 是A 的全部互异特征值。
对于每一个λi ,解齐次线性方程组()i E A X λ-=0,求出它的一个基础解系,该基础解系的向量就是A 属于特征值λi的线性无关的特征向量,方程组的全体非零解向量就是A 属于特征值λi 的全体特征向量.3. 特征值和特征向量的性质性质1 (1)若X 是矩阵A 属于特征值λ的特征向量,则kX (0k ≠)也是A 属于λ的特征向量;(2)若12,,,s X X X 是矩阵A 属于特征值λ的特征向量,则它们的非零线性组合1122s s k X k X k X +++也是A 属于λ的特征向量;(3)若A 是可逆矩阵,λ是A 的一个特征值,则λ1是A—1的一个特征值,λ||A 是A *的一个特征值;(4)设λ是n 阶矩阵A 的一个特征值,f (x )= a m x m + a m-1x m -1 + … + a 1x + a 0为一个多项式,则()f λ是f (A )的一个特征值。
性质2(1)nn n a a a +⋅⋅⋅++=+⋅⋅⋅++221121λλλ (2)|| 21A n =⋅⋅⋅λλλ性质3 n 阶矩阵A 和它的转置矩阵TA 有相同的特征值 性质4 n 阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A 、B 为n 阶矩阵,若存在可逆矩阵P ,使得B=P ―1AP则称A 与B 相似。
第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例4.3.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4. 1tr(P AP)tr(A)-=;5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例4.3.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4. 1tr(P AP)tr(A)-=;5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
特别当A和B为实对称阵或Hermit矩阵时0≤|tr(AB)|≤定理:设A和B为两个n阶Hermite阵,且A≥0,B≥0,则0≤tr(AB)≤λ1(B)tr(A) ≤tr(A)﹒tr(B)λ1(B)表示B的最大特征值。
证明:tr(AB)= tr(A1/2BA1/2) ≥0,又因为A1/2[λ1(B)I-B]A1/2≥0,所以λ1(B)tr(A)≥A1/2BA1/2,得tr(AB)= tr(A1/2BA1/2)≤tr(λ1(B) A)=λ1(B) tr(A)≤tr(A)﹒tr(B)推论:设A为Hermite矩阵,且A>0,则tr(A)tr(A-1)≥n另外,关于矩阵的迹的不等式还有很多,请参考《矩阵论中不等式》。
三、矩阵的秩矩阵的秩的概念是由Sylvester于1861年引进的。
它是矩阵的最重要的数字特征之一。
下面讨论有关矩阵秩的一些性质和不等式。
定义:矩阵A 的秩定义为它的行(或列)向量的最大无关组所包含的向量的个数。
记为rank(A)性质:1. rank(AB)min(rank(A),rank(B))≤;2. rank(A B)rank(A,B)rank(A)rank(B)+≤≤+;3.H Hrank(AA )rank(A )rank(A)==; 4. rank(A)rank(XA)rank(AY)rank(XAY)===,其中X 列满秩,Y 行满秩(消去法则)。
定理(Sylvester ):设A 和B 分别为m×n 和n×l 矩阵,则rank(A)rank(B)n rank(AB)+-≤m i n (r a n k (A ),r a≤ Sylveste 定理是关于两个矩阵乘积的秩的不等式。
其等号成立的充要条件请参考王松桂编写的《矩阵论中不等式》,三个矩阵乘积的秩的不等式也一并参考上述文献。
四、相对特征根定义:设A 和B 均为P 阶实对称阵,B>0,方程 |A-λB |=0的根称为A 相对于B 的特征根。
性质:|A-λB |=0等价于|B -1/2AB -1/2-λI|=0(因为B>0,所以B 1/2>0)注:求A相对于B的特征根问题转化为求B-1/2AB-1/2的特征根问题或AB-1的特征根。
因B-1/2AB-1/2是实对称阵,所以特征根为实数。
定义:使(A-λi B)l i=0的非零向量l i称为对应于λi 的A相对于B的特征向量。
性质:①设l是相对于λ的A B-1的特征向量,则A B-1l=λl 或 A (B-1l)=λB( B-1l)B-1l 为对应λ的A相对于B的特征向量(转化为求A B-1的特征向量问题)。
②设l是相对于λ的B-1/2AB-1/2的特征向量,则B-1/2AB-1/2l=λl可得A (B-1/2l)=λB(B-1/2l)则B-1/2l 为对应λ的A相对于B的特征向量(转化为求B-1/2AB-1/2对称阵的特征向量问题)。
五、向量范数与矩阵范数向量与矩阵的范数是描述向量和矩阵“大小”的一种度量。
先讨论向量范数。
1. 向量范数定义:设V为数域F上的线性空间,若对于V的任一向量x,对应一个实值函数x,并满足以下三个条件:(1)非负性 x 0≥,等号当且仅当x=0时成立; (2)齐次性 x x ,k,x V;α=α⋅α∈∈ (3)三角不等式x y x y ,x,y V +≤+∈。
则称x 为V 中向量x 的范数,简称为向量范数。
定义了范数的线性空间定义称为赋范线性空间。
例1. n x C ∈,它可表示成[]T12n x =ξξξ,i C ξ∈,1n22i 2i 1x ∆=⎛⎫=ξ ⎪⎝⎭∑就是一种范数,称为欧氏范数或2-范数。
证明:(i )非负性 1n22i 2i 1x 0=⎛⎫=ξ≥ ⎪⎝⎭∑,当且仅当()i 0i 1,2,,n ξ==时,即x =0时,2x=0(ii )齐次性11nn 2222i i 22i 1i 1x x ==⎛⎫⎛⎫α=αξ=α⋅ξ=α⋅ ⎪⎪⎝⎭⎝⎭∑∑(iii )三角不等式[]T12n y =ηηη ,i C η∈[]T1122n n x y +=ξ+ηξ+ηξ+ηn22i i 2i 1x y =+=ξ+η∑()22222i i i i i i i i i i 2Re 2ξ+η=ξ+η+ξη≤ξ+η+ξηn222i i 222i 1x y x y 2=+≤++ξη∑()222222222x y x y 2x y +=++根据Hölder 不等式:11nnnpqp q i i i i i 1i 1i 1a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,i i 11p,q 1,1,a ,b 0p q >+=> 11nnn2222i i i i 22i 1i 1i 1x y ===⎛⎫⎛⎫=ξη≥ξη ⎪ ⎪⎝⎭⎝⎭∑∑∑∴ 222x y x y +≤+2. 常用的向量范数(设向量为[]T12n x =ξξξ)1-范数:ni 1i 1x==ξ∑;∞-范数:1i nx i max ∞≤≤=ξ;P-范数:1npp i p i 1x =⎛⎫=ξ ⎪⎝⎭∑ (p>1, p=1, 2,…,∞,);2-范数:()1H22x x x=;椭圆范数(2-范数的推广):()1H2Axx Ax=,A 为Hermite 正定阵.加权范数:1n22i i wi 1xw =⎛⎫=ξ ⎪⎝⎭∑,当[]12n A W diag w w w ==,i w 0>证明:px显然满足非负性和齐次性(iii )[]T12n y =ηηη1npp i p i 1x =⎛⎫=ξ ⎪⎝⎭∑,1n pp i pi 1y =⎛⎫=η ⎪⎝⎭∑,1npp ii p i 1x y =⎛⎫+=ξ+η ⎪⎝⎭∑()nnppp 1i i i ii ipi 1i 1nnp 1p 1i ii i iii 1i 1x y-==--==+=ξ+η=ξ+ηξ+η≤ξ+ηξ+ξ+ηη∑∑∑∑应用Hölder 不等式()11nnnqpp 1p 1q p ii i i ii i 1i 1i 1--===⎡⎤⎡⎤ξ+ηξ≤ξ+ηξ⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑ ()11nnnqpp 1p 1q p iii i ii i 1i 1i 1--===⎡⎤⎡⎤ξ+ηη≤ξ+ηη⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑()111p 1q p p q+=⇒-= ∴111nnnnqpppp p p iii i i i i 1i 1i 1i1====⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥ξ+η≤ξ+ξ+η ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑∑∑∑ 111nnn pppp p p i i i i i 1i 1i 1===⎛⎫⎛⎫⎛⎫ξ+η≤ξ+η ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑即 p p px y x y+≤+3. 向量范数的等价性 定理 设α、β为nC 的两种向量范数,则必定存在正数m 、M ,使得m xx M xαβα≤≤,(m 、M 与x无关),称此为向量范数的等价性。
同时有11x x x Mmβαβ≤≤注:(1)对某一向量X 而言,如果它的某一种范数小(或大),那么它的其它范数也小(或大)。
(2)不同的向量范数可能大小不同,但在考虑向量序列的收敛性问题时,却表现出明显的一致性。
4、矩阵范数向量范数的概念推广到矩阵情况。
因为一个m ×n 阶矩阵可以看成一个mn 维向量,所以m nC ⨯中任何一种向量范数都可以认为是m ×n 阶矩阵的矩阵范数。
1. 矩阵范数定义:设m n C ⨯表示数域C 上全体m n⨯阶矩阵的集合。
若对于m n C ⨯中任一矩阵A ,均对应一个实值函数A ,并满足以下四个条件:(1)非负性:A 0≥ ,等号当且仅当A=0时成立; (2)齐次性:A A ,C;α=αα∈(3)三角不等式:m n A B A B ,A,B C ⨯+≤+∈,则称A 为广义矩阵范数;(4)相容性:AB A B ≤⋅,则称A 为矩阵范数。
5. 常用的矩阵范数(1)Frobenius 范数(F-范数)F-范数:12n2ij Fi j 1Aa =⎛⎫= ⎪⎝⎭∑,=矩阵和向量之间常以乘积的形式出现,因而需要考虑矩阵范数与向量范数的协调性。
定义:如果矩阵范数A 和向量范数x 满足Ax A x ≤⋅则称这两种范数是相容的。
给一种向量范数后,我们总可以找到一个矩阵范数与之相容。
(2)诱导范数设A ∈C m ×n ,x ∈C n , x 为x 的某种向量范数, 记x 1A max Ax == 则A 是矩阵A 的且与x 相容的矩阵范数,也称之为A 的诱导范数或算子范数。