高三第一轮复习函数及其表示
- 格式:doc
- 大小:845.00 KB
- 文档页数:18
第1节函数及其表示【基础知识】1.符号:f AB 表示集合A 到集合B 的一个映射,它有以下特点:(1)对应法则有方向性, :f AB 与:f B A 不同;(2)集合A 中任何一个元素,在f 下在集合B 中都有唯一的元素与对应;(3)象不一定有原象,象集C 与B 间关系是CB .2.函数是特殊的映射,它特殊在要求集合A 和B 都是非空数集.函数三要素是指定义域、值域、对应法则. 同一函数必须满足:定义域相同、对应法则相同.3.要注意()f a 与()f x 的区别与联系,()f a 表示x a 时,函数()f x 的值,它是一个常数,而()f x 是自变量x 的函数,对于非常数函数,它是一个变量,()f a 是()f x 的一个特殊值.4.区间是某些数集的一种重要表示形式,具有简单直观的优点.应注意理解其含义并准确使用.5.函数的表示方法有三种:解析法、图象法、列表法.1.符号:f AB 表示集合A 到集合B 的一个映射,它有以下特点:(1)对应法则有方向性, :f AB 与:f B A 不同;(2)集合A 中任何一个元素,在f 下在集合B 中都有唯一的元素与对应;(3)象不一定有原象,象集C 与B 间关系是C B .2.函数是特殊的映射,它特殊在要求集合A 和B 都是非空数集.函数三要素是指定义域、值域、对应法则. 同一函数必须满足:定义域相同、对应法则相同.3.要注意()f a 与()f x 的区别与联系,()f a 表示x a 时,函数()f x 的值,它是一个常数,而()f x 是自变量x 的函数,对于非常数函数,它是一个变量,()f a 是()f x 的一个特殊值.4.区间是某些数集的一种重要表示形式,具有简单直观的优点.应注意理解其含义并准确使用.5.函数的表示方法有三种:解析法、图象法、列表法.【规律技巧】1.判断一个对应是否为映射,关键看是否满足“集合A中元素的任意性,集合B中元素的唯一性”.2. 判断一个对应f:A→B是否为函数,一看是否为映射;二看A,B是否为非空数集.若是函数,则A是定义域,而值域是B的子集.3. 函数的三要素中,若定义域和对应关系相同,则值域一定相同.因此判断两个函数是否相同,只需判断定义域、对应关系是否分别相同.1.判断一个对应是否为映射,关键看是否满足“集合A中元素的任意性,集合B中元素的唯一性”.2. 判断一个对应f:A→B是否为函数,一看是否为映射;二看A,B是否为非空数集.若是函数,则A是定义域,而值域是B的子集.3. 函数的三要素中,若定义域和对应关系相同,则值域一定相同.因此判断两个函数是否相同,只需判断定义域、对应关系是否分别相同.【典例讲解】例1、有以下判断:(1)f(x)=|x|x与g(x)=1,x≥0,-1,x<0表示同一函数;(2)函数y=f(x)的图象与直线x=1的交点最多有1个;(3)f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;(4)若f(x)=|x-1|-|x|,则f f 12=0.其中正确判断的序号是________.【特别提醒】两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.【变式探究】试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2. 【针对训练】【1-1】给出四个命题:①函数是其定义域到值域的映射;②()32f x x x 是函数;③函数2(N)y x x =的图象是一条直线;④2()xf x x与g x x =是同一个函数.其中正确的有() A .1个B .2个C .3个D .4个【答案】A【1-2】下列对应法则f 为A 上的函数的个数是()①2Z N A B f x y x +=,=,:=;②Z AB Z f x y x =,=,:=;③[11]00A B f x y =-,,=,:=A .0 B .1 C .2 D .3【答案】B 【1-3】已知4,6()(2),6x x f x f x x,求(3)f .【答案】3【练习巩固】1、下列四组函数中,表示为同一函数的是()A .2(),()f x x g x x B.xx f 2)(与2)(xx g C .21(),()11x f x g x x x D.2()11,()1f x x xg x x【答案】A2、在下列图形中,表示y 是x 的函数关系的是________.【答案】①②f x x x A的值域为{1,1,3},则定义域A为 .3、已知函数()23,【答案】{1,2,3}。
第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。
第一节函数及其表示1.函数的概念及其表示(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.分段函数及其应用了解简单的分段函数,并能简单应用.知识点一函数与映射的概念函数映射两集合A,B设A、B是两个非空的数集设A、B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称f:A→B为从集合A到集合B的一个映射易误提醒易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.[自测练习]1.下列图形可以表示函数y=f(x)图象的是()知识点二函数的有关概念1.函数的定义域、值域(1)在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫作函数的定义域;函数值的集合{f(x)|x∈A}叫作函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.2.函数的表示方法表示函数的常用方法有解析法、图象法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.易误提醒(1)解决函数的一些问题时,易忽视“定义域优先”的原则.(2)误把分段函数理解为几个函数组成.必备方法求函数解析式的四种常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;函数的实际应用问题多用此法;(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f(x)与f或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).[自测练习]2.(2016·贵阳期末)函数f(x)=log2(x+1)的定义域为()A.(0,+∞)B.[-1,+∞)C.(-1,+∞)D.(1,+∞)3.f(x)与g(x)表示同一函数的是()A.f(x)=与g(x)=·B.f(x)=x与g(x)=C.y=x与y=()2D.f(x)=与g(x)=4.若函数f(x)=则f(f(2))=()A.-1B.2C.1D.0考点一函数的定义域问题|函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题探究角度有:1.求给定函数解析式的定义域;2.已知f(x)的定义域,求f(g(x))的定义域;3.已知定义域确定参数问题.探究一求给定解析式的定义域1.(2015·江西重点中学一联)函数f(x)=+lg(3-x)的定义域是()A.(3,+∞)B.(2,3)C.[2,3)D.(2,+∞)探究二已知f(x)的定义域,求f(g(x))的定义域2.若函数y=f(x)的定义域是[0,3],则函数g(x)=的定义域是()A.[0,1) B.[0,1]C.[0,1)∪(1,9] D.(0,1)探究三已知定义域求参数范围问题3.若函数f(x)=的定义域为R,则a的取值范围为________.函数定义域的三种类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f(x)的定义域为[a,b],则函数f(g(x))的定义域由不等式a≤g(x)≤b求出.考点二函数解析式的求法|(1)已知f(1-cos x)=sin2x,求f(x)的解析式;(2)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x)的解析式;(3)已知f(x)+2f=x(x≠0),求f(x)的解析式.函数解析式求法中的一个注意点利用换元法求解析式后易忽视函数的定义域,即换元字母的范围.求下列函数的解析式:(1)已知f=lg x,求f(x);(2)2f(x)-f(-x)=lg(x+1),求f(x).考点三分段函数|1.(2015·高考全国卷Ⅰ)已知函数f(x)=且f(a)=-3,则f(6-a)=()A.-B.-C.-D.-2.(2015·高考全国卷Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.3.分段函数的定义理解不清致误【典例】已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为________.[易误点评]本题易出现的错误主要有两个方面:(1)误以为1-a<1,1+a>1,没有对a进行讨论直接代入求解.(2)求解过程中忘记检验所求结果是否符合要求而致误.[防范措施](1)对于分段函数的求值问题,若自变量的取值范围不确定,应分情况求解.(2)检验所求自变量的值或范围是否符合题意求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.[跟踪练习]设函数f(x)=若f(a)+f(-1)=2,则a=()A.-3B.±3C.-1D.±1A组考点能力演练1.(2015·高考陕西卷)设f(x)=则f[f(-2)]=()A.-1 B.C.D.2.(2015·北京朝阳模拟)函数f(x)=+的定义域为()A.[0,+∞)B.(1,+∞)C.[0,1)∪(1,+∞)D.[0,1)3.已知函数f(x)的定义域为(-∞,+∞),如果f(x+2014)=,那么f·f(-7986)=()A.2014B.4C. D.4.(2016·岳阳质检)设函数f(x)=lg,则f+f的定义域为()A.(-9,0)∪(0,9)B.(-9,-1)∪(1,9)C.(-3,-1)∪(1,3)D.(-9,-3)∪(3,9)5.若函数f(x)=的定义域为实数集R,则实数a的取值范围为()A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(-∞,-2]∪[2,+∞)D.[-2,2]6.(2015·陕西二模)若函数f(x)=,则f(f(-99))=________.7.函数y=f(x)的定义域为[-2,4],则函数g(x)=f(x)+f(-x)的定义域为________.8.具有性质:f=-f(x)的函数,我们称为满足“倒负”变换的函数.下列函数:①y=x-;②y=x+;③y=其中满足“倒负”变换的函数是________.9.已知f(x)=x2-1,g(x)=(1)求f(g(2))和g(f(2))的值;(2)求f(g(x))的解析式.10.动点P从单位正方形ABCD的顶点A出发,顺次经过B,C,D绕边界一周,当x 表示点P的行程,y表示P A的长时,求y关于x的解析式,并求f的值.B组高考题型专练1.(2014·高考山东卷)函数f(x)=的定义域为()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)2.(2015·高考湖北卷)函数f(x)=+lg的定义域为()A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]3.(2015·高考山东卷)设函数f(x)=若f=4,则b=()A.1 B.C. D.4.(2015·高考浙江卷)存在函数f(x)满足:对于任意x∈R都有()A.f(sin2x)=sin x B.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|5.(2014·高考四川卷)设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=则f=________.答案:1.解析:本题考查函数的概念,根据函数的概念,定义域中一个x只能对应一个y,所以排除A,B,C,故选D.2.解析:由x+1>0知x>-1,故选C.答案:C3.解析:选项A,C中的函数定义域不同,选项D的函数解析式不同,只有选项B正确.4.解析:本题考查分段函数、复合函数的求值.由已知条件可知,f(2)=log2=-1,所以f(f(2))=f(-1)=(-1)2+1=2,故选B.答案:B1.解析:本题考查函数的定义域.由题意得解得2<x<3,故选B.答案:B2.解析:依题意得即0≤x<1,因此函数g(x)的定义域是[0,1),故选A..解析:函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,即2x2+2ax-a≥1,x2+2ax-a≥0恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.答案:[-1,0] 例1[解](1)f(1-cos x)=sin2x=1-cos2x,令t=1-cos x,则cos x=1-t,t∈[0,2],∴f(t)=1-(1-t)2=2t-t2,t∈[0,2],即f(x)=2x-x2,x∈[0,2].(2)设f(x)=ax2+bx+c(a≠0),由f(0)=2,得c=2,f(x+1)-f(x)=a(x+1)2+b(x+1)-ax2-bx=x-1,即2ax+a+b=x-1,∴即∴f(x)=x2-x+2.(3)∵f(x)+2f=x,∴f+2f(x)=.解方程组得f(x)=-(x≠0).变式1解:(1)令t=+1,则x=,∴f(t)=lg,即f(x)=lg(x>1).(2)∵2f(x)-f(-x)=lg(x+1),∴2f(-x)-f(x)=lg(1-x).解方程组得f(x)=lg(x+1)+lg(1-x)(-1<x<1).1.解析:因为f(x)=f(a)=-3,所以或解得a=7,所以f(6-a)=f(-1)=2-1-1-2=-,选A.答案:A2.解析:由于f(0)=2,f=1+,f=2<f,故排除选项C、D;当点P在BC上时,f(x)=BP+AP=tan x+,不难发现f(x)的图象是非线性的,排除选项A.故选B.答案:B1.[解析]当a>0时,1-a<1,1+a>1,由f(1-a)=f(1+a)可得2-2a+a=-1-a-2a,解得a=-,不合题意;当a<0时,1-a>1,1+a<1,由f(1-a)=f(1+a)可得-1+a-2a=2+2a+a,解得a=-.[答案]-变式解析:因为f(-1)==1,所以f(a)=1,当a≥0时,=1,所以a=1;当a<0时,=1,所以a=-1.故a=±1.答案:D1.解析:由f(-2)=2-2=,∴f[f(-2)]=f=1-=.答案:C2.解析:本题考查函数的定义域.根据函数有意义的条件建立不等式组.要使函数f(x)有意义,则解得x≥0且x≠1,即函数定义域是[0,1)∪(1,+∞),故选C.3.3.解析:f=sin=1,f(-7986)=f(2014-10000)=lg10000=4,则f·f(-7986)=4.答案:B4.解析:利用函数f(x)的定义域建立不等式组求解.要使函数f(x)有意义,则>0,解得-3<x<3.所以要使f+f有意义,则解得所以定义域为(-9,-1)∪(1,9),故选B.答案:B5.解析:函数的定义域为R等价于对?x∈R,x2+ax+1≥0,令f(x)=x2+ax+1,结合二次函数的图象(图略),只需Δ=a2-4≤0即可,解得实数a的取值范围为[-2,2],故选D.6.解析:f(-99)=1+99=100,所以f(f(-99))=f(100)=lg100=2.答案:27.解析:由题意知解得-2≤x≤2.答案:[-2,2]8.解析:对于①,f(x)=x-,f=-x=-f(x),满足题意;对于②,f=+=f(x)≠-f(x),不满足题意;对于③,f=即f=故f=-f(x),满足题意.答案:①③9.解:(1)由已知,g(2)=1,f(2)=3,∴f(g(2))=f(1)=0,g(f(2))=g(3)=2.(2)当x>0时,g(x)=x-1,故f(g(x))=(x-1)2-1=x2-2x;当x<0时,g(x)=2-x,故f(g(x))=(2-x)2-1=x2-4x+3;∴f(g(x))=10.解:当P点在AB上运动时,y=x(0≤x≤1);当P点在BC上运动时,y==(1<x≤2);当P点在CD上运动时,y==(2<x≤3);当P点在DA上运动时,y=4-x(3<x≤4);综上可知,y=f(x)=∴f=.B组高考题型专练1.解析:∵f(x)有意义,∴∴x>2,∴f(x)的定义域为(2,+∞).答案:C2.解析:依题意知,,即,即函数的定义域为(2,3)∪(3,4].答案:C3.解析:f=f=f.当-b<1,即b>时,3×-b=4,解得b=(舍).当-b≥1,即b≤时,2-b=4,解得b=.故选D.答案:D4.解析:本题主要考查函数的概念,即对于任一变量x有唯一的y与之相对应.对于A,当x=或时,sin2x均为1,而sin x与x2+x此时均有两个值,故A、B错误;对于C,当x =1或-1时,x2+1=2,而|x+1|有两个值,故C错误,故选D.答案:D5.解析:∵f(x)的周期为2,∴f=f=f.又∵当x∈[-1,0)时,f(x)=-4x2+2,∴f=-4×2+2=1.答案:1。
函数基础知识梳理一、函数的概念与表示【知识清单】1.函数的概念:设A ,B 是两个 ,如果对于集合A 中的 一个数x ,按照某种确定的对应关系f ,使,在集合B 中都有 的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的 ;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的 .特别地,如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. 3.函数的表示法表示函数的常用方法有 、图象法和 . 4.分段函数(1)若函数在其定义域的不同子集上,因 不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的 ,其值域等于各段函数的值域的 ,分段函数虽由几个部分组成,但它表示的是一个函数. 【必备知识】 1.常见函数的定义域(1)分式函数中分母不等于0. (2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域为R . (4)零次幂的底数不能为0. (5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为 .(6)y =log a x (a >0,a ≠1)的定义域为 . (7)y =tan x 的定义域为 . 2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域:当a >0时,值域为 ;当a <0时,值域为 . (3)y =kx(k ≠0)的值域是 .(4)y =a x (a >0且a ≠1)的值域是 .(5)y =log a x (a >0且a ≠1)的值域是 . 补充(1)一次分式函数()()0ax b f x c cx d+=≠+的值域 ;(2)函数()()0,0bf x ax a b x =+>>的值域为 ;(3)函数()()0,0b f x ax a b x=->>的值域为 ; (4)函数()(),,R f x x a x b a b x =-+-∈的值域为),a b ⎡-+∞⎣; 函数()(),,R f x x a x b a b x =---∈的值域为,a b a b ⎡---⎤⎣⎦.二、函数的基本性质【知识清单】 1.函数的单调性 (1)单调函数的定义自左向右看图象是 的自左向右看图象是 的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.★函数单调性的证明:定义法“取值—作差—变形—定号—结论”。
高三数学一轮复习函数基础知识及考点归纳第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x 的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域2.抽象函数的定义域问题(1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出;(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.[题组训练]考点二求函数的解析式考点三分段函数(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解。
[题组训练]第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x 的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域2.抽象函数的定义域问题(1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出;(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.[题组训练]考点二求函数的解析式考点三分段函数(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解。
专题3.1 函数的概念及其表示(知识点讲解)【知识框架】【核心素养】1.以分式函数、对数函数及带二次根号的函数为载体,考查函数的定义域,凸显数学运算的核心素养.2.考查换元法、待定系数法、解方程组法等在求函数解析式中的应用,凸显数学运算的核心素养.【知识点展示】(一)函数的概念1.(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.(3)函数的表示方法:列表法、图像法、解析法.2.已知函数的具体解析式求定义域的方法(1)若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.3.抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. (二)求函数的解析式1.待定系数法:当函数的特征已经确定时,一般用待定系数法来确定函数解析式2.换元法:如果给定复合函数的解析式,求外函数的解析式,通常用换元法将内函数先换元,然后求出外函数的解析式3.配凑法:将f(g(x))右端的代数式配凑成关于g(x)的形式,进而求出f(x)的解析式4.解方程组法:如果给定两个函数的关系式,可以通过变量代换建立方程组,再通过方程组求出函数解析式.(三)分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【常考题型剖析】题型一 求函数的定义域例1.(2019·江苏高考真题)函数y _____. 【答案】[1,7]-. 【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.例2.(2022·北京·高考真题)函数1()f x x=+_________. 【答案】()(],00,1-∞⋃ 【解析】【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃例3.(2020·北京·高考真题)函数1()ln 1f x x x =++的定义域是____________. 【答案】(0,)+∞ 【解析】 【分析】根据分母不为零、真数大于零列不等式组,解得结果. 【详解】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞例4.(2013·全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B 【解析】 【详解】试题分析:因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .例5.(2021·黔西南州同源中学高一期中)已知函数()21y f x =+的定义域为[]3,5,则()y f x =的定义域为__________. 【答案】[]7,11【分析】根据复合函数的定义域,即可得到()f x 的定义域. 【详解】∵函数()21y f x =+的定义域为[]3,5,∴35x ≤≤,∴72111x ≤+≤, ∴()y f x =的定义域为[]7,11. 故答案为:[]7,11 【方法技巧】1.根据具体的函数解析式求定义域的策略已知解析式的函数,其定义域是使解析式有意义的自变量的取值集合,求解时只要根据函数解析式列出自变量满足的不等式(组),得出不等式(组)的解集即可. 2.求抽象函数的定义域的策略(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出; (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. 3.求函数定义域应注意的问题(1)不要对解析式进行化简变形,以免定义域发生变化;(2)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.题型二:已知函数的定义域求参数例6. (2021·浙江学军中学高一竞赛)若函数()f x R ,则a 的取值范围是_____________.【答案】][53,,22⎛⎫-∞-⋃+∞ ⎪⎝⎭【分析】函数定义域为R ,只需满足|21|||2x x a ++-≥恒成立即可,转化为分段函数求最值即可求解. 【详解】因为函数()f x =R , 所以|21|||2x x a ++-≥恒成立,令1()|21|||2||||2g x x x a x x a =++-=++-,当12a -<时,31,1()1,2131,2x a x a g x x a x a x a x ⎧⎪+->⎪⎪=++-<≤⎨⎪⎪-+-≤-⎪⎩,故当12x =-时,min 1()22g x a =+≥即可,解得32a ≤,当12a <-时,131,21()1,231,x a x g x x a a x x a x a ⎧+->-⎪⎪⎪=---<≤-⎨⎪-+-≤⎪⎪⎩,当12x =-时,min 1()22g x a =--≥,解得52a ≤-,当12a =-时,1()3||22g x x =+≥不恒成立.综上,52a ≤-或32a ≤.故答案为:][53,,22⎛⎫-∞-⋃+∞ ⎪⎝⎭例7.(2021·全国)函数y =则实数m 的取值范围是________. 【答案】03m ≤≤ 【分析】分0m =和0m ≠两种情况讨论求解 【详解】当0m =时,y =当0m ≠时,要使y =00m >⎧⎨∆≤⎩,即204120m m m >⎧⎨-≤⎩,得03m <≤,综上,03m ≤≤, 故答案为:03m ≤≤ 【总结提升】已知函数的定义域求参数问题的解题步骤(1)调整思维方向,根据已知函数,将给出的定义域问题转化为方程或不等式的解集问题;(2)根据方程或不等式的解集情况确定参数的取值或范围. 题型三:函数的解析式问题例8.(2022·全国·高考真题(理))已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D 【解析】 【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=-,()()()462210f f f +++=-,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解. 【详解】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-. 因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-. 所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑.故选:D 【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.例9.(2016·浙江·高考真题(文))设函数f(x)=x 3+3x 2+1.已知a≠0,且f(x)–f(a)=(x–b)(x–a)2,x ∈R ,则实数a=_____,b=______.【答案】-2,1 【解析】32323232()()313133f x f a x x a a x x a a -=++---=+--, 23222()()(2)(2)x b x a x a b x a ab x a b --=-+++-,所以223223{203a b a ab a b a a --=+=-=--,解得2{1a b =-=.例10.(2006·安徽·高考真题(理))函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________.【答案】15-【解析】 【详解】 解:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则.例11.(2021·上海高一专题练习)211x f x x ⎛⎫= ⎪-⎝⎭,则() f x =________. 【答案】21xx -(0x ≠且1x ≠±) 【分析】通过换元法,设1t x=(0t ≠且1)t ≠±,运算即可得解.【详解】 设1t x =(0t ≠且1)t ≠±,则()2211,111t t x f t t t t =∴==-⎛⎫- ⎪⎝⎭, 即()f x =21xx -,(0x ≠且1x ≠±) 故答案为:21xx -(0x ≠且1x ≠±) 例12.(2021·黔西南州同源中学高一期中)已知函数()f x 满足2()()34f x f x x +-=+,则()f x =__________. 【答案】433x + 【分析】把x 化成x -,得到2()()34f x f x x -+=-+,构建方程组得到结果. 【详解】∵2()()34f x f x x +-=+, ∴2()()34f x f x x -+=-+, 联立方程组,可得4()33f x x =+.故答案为:433x + 【特别提醒】谨防求函数解析式的两种失误:(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围. (2)利用换元法求解析式时要注意新元的取值范围.如已知f=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞). 题型四:分段函数及其应用例13.(2012·江西·高考真题(文))设函数f (x )=21,1,2,1,x x x x⎧+≤⎪⎨>⎪⎩则f (f (3))=( )A .15B .3C .23D .139【答案】D 【解析】【详解】()231,33f >∴=,22213((3))()()1339f f f ==+=,故选D.例14.(2021·浙江·高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a ___________. 【答案】2 【解析】 【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值. 【详解】()()642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =,故答案为:2.例15.(2010·江苏·高考真题)若函数()21,01,0x x f x x ⎧+≥=⎨<⎩,则不等式2(1)(2)f x f x ->的解集合是______________【答案】(1)- 【解析】 【分析】分析给定的分段函数性质,再分段列出不等式组求解即可作答. 【详解】函数()21,01,0x x f x x ⎧+≥=⎨<⎩在[0,)+∞上单调递增,且()01f =,则2(1)(2)f x f x ->化为:22012x x x ≥⎧⎨->⎩或22010x x <⎧⎨->⎩,解得01x ≤或10x -<<, 所以不等式2(1)(2)f x f x ->的解集合是(1)-.故答案为:(1)-例16.(2018·天津·高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________. 【答案】1,28⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果. 【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.【总结提升】关于分段函数的命题角度主要有:一是分段函数求值,二是分段函数与方程、不等式结合.由于分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值、解方程(不等式)时,一定要注意自变量的值所在子集,再代入相应的解析式求值. 题型五:函数的值域(最值)问题例17.(2015·浙江·高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ ,()f x 的最小值是 .【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f⎡⎤-=-==⎣⎦.另外,当1x >时,也可以利用基本不等式,66626266,x x x x +-≥⨯-=-当且仅当,26,6,6x x x x===时,等号成立. 例18.(2015·福建·高考真题(理))若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.【答案】(]1,2【解析】【详解】试题分析:由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤. 考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当2x >时,由()4f x ≥,得log 1a x ≥,即log 21a ≥,即可求解实数a 的取值范围.【规律方法】函数值域的常见求法:(1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法.(2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法.(3)基本不等式法:要注意条件“一正,二定,三相等”.①应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解. ②条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.③求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围.2. 基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.(4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b );若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +k x(k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +k x (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +k x(k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决.*(5)导数法利用导函数求出最值,从而确定值域.。
高考数学一轮复习考点知识专题讲解函数的概念及其表示考点要求1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作y=f(x),x∈A.2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集. 3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.(×) (2)函数y =f (x )的图象可以是一条封闭曲线.(×) (3)y =x 0与y =1是同一个函数.(×) (4)函数f (x )=⎩⎨⎧x -1,x ≥0,x 2,x <0的定义域为R .(√)教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是()答案C2.下列各组函数相等的是()A .f (x )=x 2-2x -1(x ∈R ),g (s )=s 2-2s -1(s ∈Z )B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎨⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案C3.(2022·长沙质检)已知函数f (x )=⎩⎨⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12等于() A .-1B .2C.3D.12答案D解析∵f ⎝ ⎛⎭⎪⎫12=log 312<0,∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域 例1(1)函数f (x )=lg(x -1)+1x -2的定义域为() A .(1,+∞) B .(1,2)∪(2,+∞) C .[1,2)∪(2,+∞) D .[1,+∞) 答案B解析要使函数有意义,则⎩⎨⎧x -1>0,x -2≠0,解得x >1且x ≠2,所以f (x )的定义域为(1,2)∪(2,+∞).(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案[1,3]解析∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是() A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案B解析由题意,得⎩⎨⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞). 2.已知函数f (x )=x 1-2x,则函数f (x -1)x +1的定义域为() A .(-∞,1) B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案D解析令1-2x >0, 即2x <1,即x <0.∴f (x )的定义域为(-∞,0). ∴函数f (x -1)x +1中,有⎩⎨⎧x -1<0,x +1≠0,解得x <1且x ≠-1. 故函数f (x -1)x +1的定义域为(-∞,-1)∪(-1,1). 思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1(1)函数f (x )=11-4x2+ln(3x -1)的定义域为() A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12 C.⎣⎢⎡⎭⎪⎫-12,14D.⎣⎢⎡⎦⎥⎤-12,12 答案B解析要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎨⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12.(2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x 的定义域为__________. 答案[-1,0]解析由条件可知,函数的定义域需满足⎩⎨⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2(1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为______.答案f (x )=lg 2x -1(x >1)解析令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________.答案x 2+2x +1解析设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b , ∴2ax +b =2x +2, 则a =1,b =2. ∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1. 教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案-2x 3-43x解析∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x ,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x. 思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2(1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案-x 2+2x ,x ∈[0,2] 解析令t =1-sin x , ∴t ∈[0,2],sin x =1-t , ∴f (t )=1-sin 2x =1-(1-t )2 =-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝ ⎛⎭⎪⎫x 2+1x 2=x 4+1x 4,则f (x )=__________.答案x 2-2,x ∈[2,+∞) 解析∵f ⎝ ⎛⎭⎪⎫x 2+1x 2=⎝ ⎛⎭⎪⎫x 2+1x 22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3(1)已知f (x )=⎩⎨⎧cosπx ,x ≤1,f (x -1)+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值为()A.12B .-12C .-1D .1 答案D解析f ⎝ ⎛⎭⎪⎫43=f ⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3 =cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知函数f (x )=⎩⎨⎧log 2x ,x ≥1,-x +1,x <1.若f (a )=2,则a 的值为________; 若f (a )<2,则a 的取值范围是________. 答案4或-1(-1,4) 解析若f (a )=2,则⎩⎨⎧a ≥1,log 2a =2或⎩⎨⎧a <1,-a +1=2,解得a =4或a =-1, 若f (a )<2,则⎩⎨⎧a ≥1,log 2a <2或⎩⎨⎧a <1,-a +1<2,解得1≤a <4或-1<a <1,即-1<a <4. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于()A .-32B.22C.32D. 2 答案B解析f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22.2.(2022·百校联盟联考)已知函数f (x )=⎩⎨⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案0解析当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3(1)(2022·河北冀州一中模拟)设f (x )=⎩⎨⎧x +2x -3,x ≥1,x 2+1,x <1.则f (f (-1))=_______,f (x )的最小值是_______. 答案022-3 解析∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3. (2)(2022·重庆质检)已知函数f (x )=⎩⎨⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________. 答案⎝ ⎛⎭⎪⎫-12,+∞ 解析当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立. 综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是() A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3] 答案D解析∵f (x )=3-xlg x,∴⎩⎨⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()答案B解析A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2].3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎨⎧4x -12,x <1,a x,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于() A.12B.34C .1D .2 答案D解析f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫78=f (3)=a 3, 得a 3=8,解得a =2.4.下列函数中,与y =x 是相等函数的是() A .y =(x )2B .y =x 2 C .y =lg10x D .y =10lg x 答案C解析y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =(x )2=x 的定义域为[0,+∞),故不是相等函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是相等函数; 对于C 选项,函数y =lg10x =x ,且定义域为R ,故是相等函数;对于D 选项,y =10lg x =x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是相等函数.5.设函数f (x -2)=x 2+2x -2,则f (x )的表达式为() A .x 2-2x -2B .x 2-6x +6 C .x 2+6x -2D .x 2+6x +6 答案D解析令t =x -2,∴x =t +2,∴f (t )=(t +2)2+2(t +2)-2=t 2+6t +6, ∴f (x )=x 2+6x +6.6.函数f (x )=⎩⎨⎧2x-5,x ≤2,3sin x ,x >2,则f (x )的值域为()A .[-3,-1]B .(-∞,3]C .(-5,3]D .(-5,1] 答案C解析当x ≤2时,f (x )=2x -5, ∴0<2x ≤4,∴f (x )∈(-5,-1], 当x >2时,f (x )=3sin x , ∴f (x )∈[-3,3], ∴f (x )的值域为(-5,3].7.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是()答案A解析由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.8.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是() ①f (x )=x -1x ;②f (x )=ln 1-x1+x;③f (x )=1ex x-;④f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.A .②③B.①②④ C .②③④D.①④ 答案D解析对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意; 对于②,f (x )=ln1-x1+x, 则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =111exx-=e x -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于④,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x>1,即f⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足“倒负”变换.9.已知f (x 5)=lg x ,则f (100)=________. 答案25解析令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案(1,4]解析依题意⎩⎨⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.已知函数f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是________. 答案⎣⎢⎡⎭⎪⎫-1,12解析∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0). 故⎩⎨⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎨⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案[-2,0)∪(0,1] 解析当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.(2018·全国Ⅰ)设函数f (x )=⎩⎨⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是()A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) 答案D解析当x ≤0时,函数f (x )=2-x 是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎨⎧x +1<0,2x <0,2x <x +1或⎩⎨⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0. 14.设函数f (x )=⎩⎨⎧-x +λ,x <1(λ∈R ),2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案[2,+∞) 解析当a ≥1时,2a ≥2.∴f (f (a ))=f (2a )=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a , ∴λ-a ≥1,即λ≥a +1恒成立,由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.已知函数f (x +1)的定义域为(-2,0),则f (2x -1)的定义域为() A .(-1,0) B .(-2,0) C .(0,1) D.⎝ ⎛⎭⎪⎫-12,0答案C解析由题意,知-1<x +1<1,则f (x )的定义域为(-1,1).令-1<2x -1<1,得0<x <1.∴f (2x -1)的定义域为(0,1).16.若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中不具有H 性质的是() A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0)D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2答案B解析若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝ ⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝ ⎛⎭⎪⎫其中a =f ⎝ ⎛⎭⎪⎫x 1+x 22,b =f (x 1)+f (x 2)2.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.。
函 数一、函数及其表示自主梳理1.函数的基本概念 (1)函数定义设A ,B 是非空的 ,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中 ,称f :A →B 为从集合A 到集合B 的一个函数,x 的取值范围A 叫做函数的__________,__________________叫做函数的值域.(2)函数的三要素__________、________和____________. (3)函数的表示法表示函数的常用方法有:________、________、________. (4)函数相等如果两个函数的定义域和__________完全一致,则这两个函数相等,这是判定两函数相等的依据. (5)分段函数:在函数的________内,对于自变量x 的不同取值区间,有着不同的____________,这样的函数通常叫做分段函数.分段函数是一个函数,它的定义域是各段取值区间的________,值域是各段值域的________. 2.映射的概念 (1)映射的定义设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B中 确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的 .(2)由映射的定义可以看出,映射是 概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合,A 、B 必须是 数集.自我检测1.(2011·佛山模拟)设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列4个图形,其中能表示集合M 到N 的函数关系的有( )A .0个B .1个C .2个D .3个2.(2010·湖北)函数y =1log 0.5x -的定义域为( )A .(34,1)B .(34,+∞)C .(1,+∞)D .(34,1)∪(1,+∞)3.(2010·湖北)已知函数f(x)=⎩⎪⎨⎪⎧log 3x ,x >02x, x ≤0,则f(f (19))等于( )A .4 B.14C .-4D .-144.下列函数中,与函数y =x 相同的函数是( )A .y =x 2xB .y =(x )2C .y =lg 10xD .y =2log 2x5.(2011·衡水月考)函数y =lg(ax 2-ax +1)的定义域是R ,求a 的取值范围.探究点一 函数与映射的概念例1 (教材改编)下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; y =x 2,x ∈P ,y ∈Q ;(2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应.变式迁移1 已知映射f :A →B .其中B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是 ( )A .k >1B .k ≥1C .k <1D .k ≤1 探究点二 求函数的定义域例2 (1)求函数y =x +1+x -0-x的定义域;(2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域.变式迁移2 已知函数y =f (x )的定义域是[0,2],那么g (x )=f x 21+x +的定义域是________________________________________________________________________.探究点三 求函数的解析式例3 (1)已知f (2x+1)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(3)已知f (x )满足2f (x )+f (1x)=3x ,求f (x ).变式迁移3 (2011·武汉模拟)给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.探究点四 分段函数的应用例4 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4变式迁移4 (2010·江苏)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的范围是________________.1.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义; 第三类是不给出函数的解析式,而由f (x )的定义域确定函数f [g (x )]的定义域或由f [g (x )]的定义域确定函数f (x )的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决. 2.解析式的求法求函数解析式的一般方法是待定系数法和换元法,除此还有代入法、拼凑法和方程组法.(满分:75分)一、选择题(每小题5分,共25分)1.下列各组中的两个函数是同一函数的为 ( )(1)y 1=x +3x -5x +3,y 2=x -5;(2)y 1=x +1x -1,y 2=x +1x -1;(3)f (x )=x ,g (x )=x 2;(4)f (x )=3x 4-x 3,F (x )=x 3x -1;(5)f 1(x )=(2x -5)2,f 2(x )=2x -5.A .(1)(2)B .(2)(3)C .(4)D .(3)(5)2.函数y =f (x )的图象与直线x =1的公共点数目是 ( ) A .1 B .0 C .0或1 D .1或23.(2011·洛阳模拟)已知f (x )=⎩⎪⎨⎪⎧x +x ≤-,x 2-1<x,2x x,若f (x )=3,则x 的值是 ( )A .1B .1或32C .1,32或± 3D. 34.(2009·江西)函数y =x +-x 2-3x +4的定义域为 ( ) A .(-4,-1) B .(-4,1) C .(-1,1) D .(-1,1]5.(2011·台州模拟)设f :x →x 2是从集合A 到集合B 的映射,如果B ={1,2},则A ∩B 为 ( )A .∅B .{1} C6.下列四个命题:(1)f (x )=x -2+1-x 有意义;(2)函数是其定义域到值域的映射;(3)函数y =2x (x∈N )的图象是一条直线;(4)函数y =⎩⎪⎨⎪⎧x 2, x ≥0,-x 2,x <0的图象是抛物线.其中正确的命题个数是________.7.设f (x )=⎩⎪⎨⎪⎧3x +1 xx 2x,g (x )=⎩⎪⎨⎪⎧2-x 2x x,则f [g (3)]=________,g [f (-12)]=________.8.(2010·陕西)已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =______.三、解答题(共38分)9.(12分)(1)若f (x +1)=2x 2+1,求f (x )的表达式; (2)若2f (x )-f (-x )=x +1,求f (x )的表达式; (3)若函数f (x )=xax +b,f (2)=1,又方程f (x )=x 有唯一解,求f (x )的表达式.10.(12分)已知f (x )=x 2+2x -3,用图象法表示函数g (x )=f x +|f x2,并写出g (x )的解析式.11.(14分)(2011·湛江模拟)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8, 0≤x ≤5,10.2, x >5.假定该产品产销平衡,那么根据上述统计规律: (1)要使工厂有盈利,产品x 应控制在什么范围?(2)工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?一、函数及其表示答案 自主梳理 1.(1)数集 任意一个数x 都有唯一确定的数f(x)和它对应 定义域 函数值的集合{f(x)|x∈A} (2)定义域 值域 对应关系 (3)解析法 列表法 图象法 (4)对应关系 (5)定义域 对应关系 并集 并集 2.(1)都有唯一 一个映射 (2)函数 非空自我检测1.B [对于题图(1):M 中属于(1,2]的元素,在N 中没有象,不符合定义;对于题图(2):M 中属于(43,2]的元素的象,不属于集合N ,因此它不表示M 到N 的函数关系;对于题图(3):符合M 到N 的函数关系;对于题图(4):其象不唯一,因此也不表示M 到N 的函数关系.]2.A 3.B 4.C5.解 函数y =lg(ax 2-ax +1)的定义域是R ,即ax 2-ax +1>0恒成立. ①当a =0时,1>0恒成立;②当a ≠0时,应有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0, ∴0<a <4.综上所述,a 的取值范围为0≤a <4. 课堂活动区例1 解题导引 函数是一种特殊的对应,要检验给定的两个变量之间是否具有函数关系,只需要检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量在其定义域中的每一个值,是否都有唯一确定的函数值.(2)解析 由于(1)中集合P 中元素0在集合Q 中没有对应元素,并且(3)中集合P 不是数集,所以(1)和(3)都不是集合P 上的函数.由题意知,(2)正确.变式迁移1 A [由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根.∴Δ=4(1-k )<0,∴k >1时满足题意.]例2 解题导引 在(2)中函数f (2x +1)的定义域为(0,1)是指x 的取值范围还是2x +1的取值范围?f (x )中的x 与f (2x +1)中的2x +1的取值范围有什么关系?解 (1)要使函数有意义,应有⎩⎪⎨⎪⎧x +1≥0,x -1≠0,2-x >0,2-x ≠1,即⎩⎪⎨⎪⎧x ≥-1,x ≠1,x <2,解得⎩⎪⎨⎪⎧-1≤x <2,x ≠1.所以函数的定义域是{x |-1≤x <1或1<x <2}. (2)∵f (2x +1)的定义域为(0,1), ∴1<2x +1<3,所以f (x )的定义域是(1,3).变式迁移2 (-1,-910)∪(-910,2]解析 由⎩⎪⎨⎪⎧0≤x 2≤2x +1>01+x +得-1<x ≤2且x ≠-910. 即定义域为(-1,-910)∪(-910,2].例3 解题导引 函数解析式的类型与求法(1)若已知函数的类型(如一次函数、二次函数),可用待定系数法.(2)已知复合函数f (g (x ))的解析式,可用换元法,此时要注意变量的取值范围.(3)已知f (x )满足某个等式,这个等式除f (x )是未知量外,还出现其他未知量,如f (-x )、f (1x)等,要根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).解 (1)令2x +1=t ,则x =2t -1,∴f (t )=lg 2t -1,∴f (x )=lg 2x -1,x ∈(1,+∞).(2)设f (x )=ax +b ,(a ≠0)则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴⎩⎪⎨⎪⎧a =2,b +5a =17,∴a =2,b =7,故f (x )=2x +7.(3)2f (x )+f (1x)=3x , ①把①中的x 换成1x,得学案5 函数的单调性与最值导学目标: 1.理解函数的单调性、最大值、最小值及其几何意义.2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值.自主梳理 1.单调性(1)定义:一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是______________.(2)单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么(x 1-x 2)(f (x 1)-f (x 2))>0⇔f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是________;(x 1-x 2)(f (x 1)-f (x 2))<0⇔f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是________.(3)单调区间:如果函数y =f (x )在某个区间上是增函数或减函数,那么说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的__________.(4)函数y =x +a x(a >0)在 (-∞,-a ),(a ,+∞)上是单调________;在(-a ,0),(0,a )上是单调______________;函数y =x +a x(a <0)在______________上单调递增.2.最值 一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M (f (x )≥M );②存在x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的____________.自我检测1.(2011·杭州模拟)若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是 ( )A .增函数B .减函数C .先增后减D .先减后增2.设f (x )是(-∞,+∞)上的增函数,a 为实数,则有 ( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)>f (a )3.下列函数在(0,1)上是增函数的是 ( ) A .y =1-2x B .y =x -1C .y =-x 2+2x D .y =54.(2011·合肥月考)设(a ,b ),(c ,d )都是函数f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是 ( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定5.当x ∈[0,5]时,函数f (x )=3x 2-4x +c 的值域为 ( )A .[c,55+c ]B .[-43+c ,c ]C .[-43+c,55+c ] D .[c,20+c ]探究点一 函数单调性的判定及证明例1 设函数f (x )=x +ax +b(a >b >0),求f (x )的单调区间,并说明f (x )在其单调区间上的单调性.变式迁移1 已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )=f (x )+1f x,讨论F (x )的单调性,并证明你的结论.探究点二 函数的单调性与最值例2 (2011·烟台模拟)已知函数f (x )=x 2+2x +ax,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.变式迁移2 已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,求实数a 的取值范围.探究点三 抽象函数的单调性例3 (2011·厦门模拟)已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.变式迁移3 已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.分类讨论及数形结合思想例 (12分)求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值. 【答题模板】解 f (x )=(x -a )2-1-a 2,对称轴为x =a .(1) 当a <0时,由图①可知,f (x )min =f (0)=-1,f (x )max =f (2)=3-4a .[3分](2)当0≤a <1时,由图②可知,f (x )min =f (a )=-1-a 2,f (x )max =f (2)=3-4a .[6分](3)当1<a ≤2时,由图③可知,f (x )min =f (a )=-1-a 2,f (x )max =f (0)=-1.[9分](4)当a >2时,由图④可知,f (x )min =f (2)=3-4a ,f (x )max =f (0)=-1. 综上,(1)当a <0时,f (x )min =-1,f (x )max =3-4a ;(2)当0≤a <1时,f (x )min =-1-a 2,f (x )max =3-4a ;(3)当1<a ≤2时,f (x )min =-1-a 2,f (x )max =-1; (4)当a >2时,f (x )min =3-4a ,f (x )max =-1.[12分] 【突破思维障碍】(1)二次函数的单调区间是由图象的对称轴确定的.故只需确定对称轴与区间的关系.由于对称轴是x =a ,而a 的取值不定,从而导致了分类讨论.(2)不是应该分a <0,0≤a ≤2,a >2三种情况讨论吗?为什么成了四种情况?这是由于抛物线的对称轴在区间[0,2]所对应的区域时,最小值是在顶点处取得,但最大值却有可能是f (0),也有可能是f (2).1.函数的单调性的判定与单调区间的确定常用方法有:(1)定义法;(2)导数法;(3)图象法;(4)单调性的运算性质.2.若函数f (x ),g (x )在区间D 上具有单调性,则在区间D 上具有以下性质: (1)f (x )与f (x )+C 具有相同的单调性.(2)f (x )与af (x ),当a >0时,具有相同的单调性,当a <0时,具有相反的单调性.(3)当f (x )恒不等于零时,f (x )与1f x具有相反的单调性.(4)当f (x ),g (x )都是增(减)函数时,则f (x )+g (x )是增(减)函数.(5)当f (x ),g (x )都是增(减)函数时,则f (x )·g (x )当两者都恒大于零时,是增(减)函数;当两者都恒小于零时,是减(增)函数.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·泉州模拟)“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2009·天津)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x , x ≥0,4x -x 2, x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是 ( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)3.(2009·宁夏,海南)用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4 B .5 C .6 D .74.(2011·丹东月考)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]5.(2011·葫芦岛模拟)已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号).①y =[f (x )]2是增函数;②y =1f x是减函数;③y =-f (x )是减函数; ④y =|f (x )|是增函数.8.设0<x <1,则函数y =1x +11-x的最小值是________.三、解答题(共38分)9.(12分)(2011·湖州模拟)已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围.10.(12分)已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围.11.(14分)(2011·鞍山模拟)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f a +f ba +b>0成立.(1)判断f (x )在[-1,1]上的单调性,并证明它;(2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.答案 自主梳理1.(1)增函数(减函数) (2)增函数 减函数 (3)单调区间 (4)递增 递减 (-∞,0),(0,+∞) 2.最大(小)值自我检测 1.B [由已知得a <0,b <0.所以二次函数对称轴为直线x =-b2a<0,且图象开口向下.]2.D [∵a 2+1>a ,f (x )在R 上单调递增,∴f (a 2+1)>f (a ).]3.C [常数函数不具有单调性.]4.D [在本题中,x 1,x 2不在同一单调区间内,故无法比较f (x 1)与f (x 2)的大小.]5.C [∵f (x )=3(x -23)2-43+c ,x ∈[0,5],∴当x =23时,f (x )min =-43+c ;当x =5时,f (x )max =55+c .]课堂活动区例1 解题导引 对于给出具体解析式的函数,判断或证明其在某区间上的单调性问题,可以结合定义(基本步骤为:取点,作差或作商,变形,判断)来求解.可导函数则可以利用导数求解.有些函数可以转化为两个或多个基本初等函数,利用其单调性可以方便求解.解 在定义域内任取x 1,x 2,且使x 1<x 2, 则Δx =x 2-x 1>0,Δy =f (x 2)-f (x 1)=x 2+a x 2+b -x 1+ax 1+b=x 2+a x 1+b -x 2+b x 1+a x 1+b x 2+b=b -a x 2-x 1x 1+b x 2+b.∵a >b >0,∴b -a <0,∴(b -a )(x 2-x 1)<0, 又∵x ∈(-∞,-b )∪(-b ,+∞),∴只有当x 1<x 2<-b ,或-b <x 1<x 2时,函数才单调.当x 1<x 2<-b ,或-b <x 1<x 2时,f (x 2)-f (x 1)<0,即Δy <0.∴y =f (x )在(-∞,-b )上是单调减函数,在(-b ,+∞)上也是单调减函数.变式迁移1 解 在R 上任取x 1、x 2,设x 1<x 2,∴f (x 2)>f (x 1),F (x 2)-F (x 1)=[f (x 2)+1f x 2]-[f (x 1)+1f x 1]=[f (x 2)-f (x 1)][1-1f x 1f x 2],∵f (x )是R 上的增函数,且f (5)=1,∴当x <5时,0<f (x )<1,而当x >5时f (x )>1; ①若x 1<x 2<5,则0<f (x 1)<f (x 2)<1,∴0<f (x 1)f (x 2)<1,∴1-1f x 1f x 2<0,∴F (x 2)<F (x 1);②若x 2>x 1>5,则f (x 2)>f (x 1)>1,∴f (x 1)·f (x 2)>1,∴1-1f x 1f x 2>0,∴F (x 2)>F (x 1).综上,F (x )在(-∞,5)为减函数,在(5,+∞)为增函数.例2 解 (1)当a =12时,f (x )=x +12x+2,设x 1,x 2∈[1,+∞)且x 1<x 2,f (x 1)-f (x 2)=x 1+12x 1-x 2-12x 2=(x 1-x 2)(1-12x 1x 2)∵x 1<x 2,∴x 1-x 2<0,又∵1<x 1<x 2,∴1-12x 1x 2>0,∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2) ∴f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=72.(2)方法一 在区间[1,+∞)上,f (x )=x 2+2x +a x>0恒成立,等价于x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞), y =x 2+2x +a =(x +1)2+a -1递增, ∴当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )恒成立, 故a >-3.方法二 f (x )=x +a x+2,x ∈[1,+∞),当a ≥0时,函数f (x )的值恒为正,满足题意,当a <0时,函数f (x )递增;当x =1时,f (x )min =3+a ,于是当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立, 故a >-3.方法三 在区间[1,+∞)上f (x )=x 2+2x +a x>0恒成立等价于x 2+2x +a >0恒成立.即a >-x 2-2x 恒成立.又∵x ∈[1,+∞),a >-x 2-2x 恒成立,∴a 应大于函数u =-x 2-2x ,x ∈[1,+∞)的最大值.∴a >-x 2-2x =-(x +1)2+1.当x =1时,u 取得最大值-3,∴a >-3. 变式迁移2 解 设1<x 1<x 2.∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a 2-(x 2-a x 2+a2)=(x 1-x 2)(1+ax 1x 2)<0.又∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2恒成立.∵1<x 1<x 2,x 1x 2>1,-x 1x 2<-1.∴a ≥-1,∴a 的取值范围是[-1,+∞).例3 解题导引 (1)对于抽象函数的问题要根据题设及所求的结论来适当取特殊值说明抽象函数的特点.证明f (x )为单调减函数,首选方法是用单调性的定义来证.(2)用函数的单调性求最值.(1)证明 设x 1>x 2, 则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2) =f (x 1-x 2)+f (x 2)-f (x 2) =f (x 1-x 2)又∵x >0时,f (x )<0.而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 又∵f (3)=f (2+1)=f (2)+f (1)=f (1)+f (1)+f (1) ∴f (3)=3f (1)=-2,f (-3)=-f (3)=2.∴f (x )在[-3,3]上的最大值为2,最小值为-2. 变式迁移3 解 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1, 由于当x >1时,f (x )<0,∴f (x 1x 2)<0,即f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2), ∴函数f (x )在区间(0,+∞)上是单调递减函数. (3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,∴f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数, ∴当x >0时,由f (|x |)<-2,得f (x )<f (9),∴x >9; 当x <0时,由f (|x |)<-2,得f (-x )<f (9), ∴-x >9,故x <-9,∴不等式的解集为{x |x >9或x <-9}. 课后练习区1.A [f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为f (x )在[1,+∞)上递增的充分不必要条件.]2.C [由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1.]3.C [由题意知函数f (x )是三个函数y 1=2x,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图象的最高点.]4.D [f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1.]5.A [∵f (-x )+f (x )=0,∴f (-x )=-f (x ). 又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0, ∴x 1>-x 2,x 2>-x 3,x 3>-x 1. 又∵f (x 1)>f (-x 2)=-f (x 2), f (x 2)>f (-x 3)=-f (x 3), f (x 3)>f (-x 1)=-f (x 1),∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.]6.[0,32]解析 y =⎩⎪⎨⎪⎧-x -x xx -x x.画图象如图所示:可知递增区间为[0,32].7.③解析 举例:设f (x )=x ,易知①②④均不正确. 8.4解析 y =1x +11-x =1x -x ,当0<x <1时,x (1-x )=-(x -12)2+14≤14.∴y ≥4.9.(1)证明 当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.………………………………………………………………………(5分)∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数.……………………………………………………………………………………………(6分)(2)解 由题意a -1x<2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立.……………………………………………………………………………………………(8分)∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x2>0,∴h (x )在(1,+∞)上单调递增.…………………………………………………………(10分) 故a ≤h (1),即a ≤3.∴a 的取值范围为(-∞,3].…………………………………………………………(12分) 10.解 设f (x )的最小值为g (a ),则只需g (a )≥0, 由题意知,f (x )的对称轴为-a2.(1)当-a2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.……………………………………………………………(4分)(2)当-a2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2.又-4≤a ≤4,故-4≤a ≤2.……………………………………………………………(8分) (3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7. 又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.………………………………………………(12分) 11.解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴f (x 1)-f (x 2)=f (x 1)+f (-x 2) =f x 1+f -x 2x 1+-x 2·(x 1-x 2),由已知得f x 1+f -x 2x 1+-x 2>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增.……………………………………………………………(4分) (2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1分∴-32≤x <-1.……………………………………………………………………………(9分)(3)∵f (1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.…………………………………………………………………(10分)问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立. 下面来求m 的取值范围.设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,自然对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0, ∴m ≤-2,或m ≥2.∴m 的取值范围是m =0或|m |≥2.……………………………………………………(14分) 2f (1x )+f (x )=3x, ②①×2-②,得3f (x )=6x -3x,∴f (x )=2x -1x.变式迁移3 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+∞).(2)设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c , 则f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2. ∴⎩⎪⎨⎪⎧a =1,b =-1.又f (0)=3,∴c =3,∴f (x )=x 2-x +3.例4 解题导引 ①本题可以先确定解析式,然后通过解方程f (x )=x 来确定解的个数;也可利用数形结合,更为简洁.②对于分段函数,一定要明确自变量所属的范围,以便于选择与之相应的对应关系. ③分段函数体现了数学的分类讨论思想,相应的问题处理应分段解决.C [方法一 若x ≤0,则f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧-2+b -+c =c ,-2+b -+c =-2, 解得⎩⎪⎨⎪⎧b =4,c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2, x ≤0,2, x >0.当x ≤0,由f (x )=x ,得x 2+4x +2=x ,解得x =-2,或x =-1;当x >0时,由f (x )=x ,得x =2. ∴方程f (x )=x 有3个解.方法二 由f (-4)=f (0)且f (-2)=-2,可得f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图(如图所示).方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.]变式迁移4 (-1,2-1)解析 函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0的图象如图所示:f (1-x 2)>f (2x )⇔⎩⎪⎨⎪⎧1-x 2>2x1-x 2>0,解得-1<x <2-1.课后练习区1.C [(1)定义域不同;(2)定义域不同;(3)对应关系不同;(4)定义域相同,且对应关系相同;(5)定义域不同.]2.C [有可能是没有交点的,如果有交点,那么对于x =1仅有一个函数值.]3.D [该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4),∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.]4.C5.D [由已知x 2=1或x 2=2,解之得,x =±1或x =±2,若1∈A ,则A ∩B ={1},若1∉A ,则A ∩B =∅,故A ∩B =∅或{1}.] 6.1解析 (1)x ≥2且x ≤1,不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)该图象是两个不同的抛物线的两部分组成的,不是抛物线.故只有(2)正确.7.7 31168.29.解 (1)令t =x +1,则x =t -1,∴f (t )=2(t -1)2+1=2t 2-4t +3,∴f (x )=2x 2-4x +3.………………………………………………………………………………………………(4分)(2)∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x ,得2f (-x )-f (x )=-x +1,……(6分)即有⎩⎪⎨⎪⎧2f x -f -x =x +12f -x -f x =-x +1,解方程组消去f (-x ),得f (x )=x3+1.……………………………………………………(8分)(3)由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x (1ax +b -1)=0,解此方程得x =0或x =1-ba,…(10分)又∵方程有唯一解, ∴1-b a =0,解得b =1,代入2a +b =2得a =12,∴f (x )=2xx +2.……………………………………………………………………………(12分)10.解 函数f (x )的图象如图所示,……………………………………(6分) g (x )=⎩⎪⎨⎪⎧x 2+2x -3 x ≤-3或x 0 -3<x …………………………………………………(12分)11.解 依题意,G (x )=x +2,设利润函数为f (x ),则f (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8,0≤x ≤5,8.2-x , x >5.………………………………………………(4分)(1)要使工厂赢利,则有f (x )>0.当0≤x ≤5时,有-0.4x 2+3.2x -2.8>0,得1<x <7,所以1<x ≤5.………………………………………………………………(8分) 当x >5时,有8.2-x >0, 得x <8.2,所以5<x <8.2.综上所述,要使工厂赢利,应满足1<x <8.2,即产品应控制在大于100台小于820台的范围内.……………………………………………………………………………………(10分)(2)当0≤x ≤5时,f (x )=-0.4(x -4)2+3.6.故当x =4时,f (x )有最大值3.6.…………………………………………………………(12分) 而当x >5时,f (x )<8.2-5=3.2.所以当工厂生产400台产品时,赢利最大,x =4时,每台产品售价为R4=2.4(万元/百台)=240(元/台).……………………………………………………………………………(14分)学案6 函数的奇偶性与周期性导学目标: 1.了解函数奇偶性、周期性的含义.2.会判断奇偶性,会求函数的周期.3.会做有关函数单调性、奇偶性、周期性的综合问题.自主梳理1.函数奇偶性的定义如果对于函数f (x )定义域内任意一个x ,都有______________,则称f (x )为奇函数;如果对于函数f (x )定义域内任意一个x ,都有____________,则称f (x )为偶函数.2.奇偶函数的性质(1)f (x )为奇函数⇔f (-x )=-f (x )⇔f (-x )+f (x )=____; f (x )为偶函数⇔f (x )=f (-x )=f (|x |)⇔f (x )-f (-x )=____.(2)f (x )是偶函数⇔f (x )的图象关于____轴对称;f (x )是奇函数⇔f (x )的图象关于_____ ___ 对称.(3)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有________的单调性. 3.函数的周期性(1)定义:如果存在一个非零常数T ,使得对于函数定义域内的任意x ,都有f (x +T )=________,则称f (x )为________函数,其中T 称作f (x )的周期.若T 存在一个最小的正数,则称它为f (x )的________________.(2)性质: ①f (x +T )=f (x )常常写作f (x +T 2)=f (x -T2).②如果T 是函数y =f (x )的周期,则kT (k ∈Z 且k ≠0)也是y =f (x )的周期,即f (x +kT )=f (x ).③若对于函数f (x )的定义域内任一个自变量的值x 都有f (x +a )=-f (x )或f (x +a )=1f x或f (x +a )=-1f x(a 是常数且a ≠0),则f (x )是以______为一个周期的周期函数.自我检测1.已知函数f (x )=(m -1)x 2+(m -2)x +(m 2-7m +12)为偶函数,则m 的值是 ( ) A .1 B .2 C .3 D .42.(2011·茂名月考)如果奇函数f (x )在区间[3,7]上是增函数且最大值为5,那么f (x )在区间[-7,-3]上是 ( )A .增函数且最小值是-5B .增函数且最大值是-5C .减函数且最大值是-5D .减函数且最小值是-53.函数y =x -1x的图象 ( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称4.(2009·江西改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为 ( )A .-2B .-1C .1D .25.(2011·开封模拟)设函数f (x )=x +x +ax为奇函数,则a =________.探究点一 函数奇偶性的判定 例1 判断下列函数的奇偶性.(1)f (x )=(x +1)1-x 1+x ;(2)f (x )=x (12x -1+12); (3)f (x )=log 2(x +x 2+1);(4)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x ,x >0.变式迁移1 判断下列函数的奇偶性.(1)f (x )=x 2-x 3;(2)f (x )=x 2-1+1-x 2;(3)f (x )=4-x2|x +3|-3.探究点二 函数单调性与奇偶性的综合应用例2 函数y =f (x )(x ≠0)是奇函数,且当x ∈(0,+∞)时是增函数,若f (1)=0,求不等式f [x (x -12)]<0的解集.变式迁移2 (2011·承德模拟)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________.探究点三 函数性质的综合应用例3 (2009·山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0),在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.变式迁移3 定义在R 上的函数f (x )是偶函数,且f (x )=f (2-x ).若f (x )在区间[1,2]上是减函数,则f (x )( )A .在区间[-2,-1]上是增函数,在区间[3,4]上是增函数B .在区间[-2,-1]上是增函数,在区间[3,4]上是减函数C .在区间[-2,-1]上是减函数,在区间[3,4]上是增函数D .在区间[-2,-1]上是减函数,在区间[3,4]上是减函数转化与化归思想的应用例 (12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 【答题模板】解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), ∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.[2分] (2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.[4分]令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.[6分] (3)依题设有f (4×4)=f (4)+f (4)=2, f (16×4)=f (16)+f (4)=3,[7分] ∵f (3x +1)+f (2x -6)≤3,即f ((3x +1)(2x -6))≤f (64)[8分] ∵f (x )为偶函数,∴f (|(3x +1)(2x -6|)≤f (64).[10分]又∵f (x )在(0,+∞)上是增函数,f (x )的定义域为D. ∴0<|(3x +1)(2x -6)|≤64.[11分]解上式,得3<x ≤5或-73≤x <-13或-13<x <3.∴x 的取值范围为{x |-73≤x <-13或-13<x <3或3<x ≤5}.[12分]【突破思维障碍】在(3)中,通过变换已知条件,能变形出f (g (x ))≤f (a )的形式,但思维障碍在于f (x )在(0,+∞)上是增函数,g (x )是否大于0不可而知,这样就无法脱掉“f ”,若能结合(2)中f (x )是偶函数的结论,则有f (g (x ))=f (|g (x )|),又若能注意到f (x )的定义域为{x |x ≠0},这才能有|g (x )|>0,从而得出0<|g (x )|≤a ,解之得x 的范围.【易错点剖析】在(3)中,由f (|(3x +1)·(2x -6)|)≤f (64)脱掉“f ”的过程中,如果思维不缜密,不能及时回顾已知条件中函数的定义域中{x |x ≠0},易出现0≤|(3x +1)(2x -6)|≤64,导致结果错误.1.正确理解奇函数和偶函数的定义,必须把握好两个问题:①定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;②f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f (-x )=±f (x )⇔f (-x )±f (x )=0⇔f -xf x=±1(f (x )≠0).3.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也真.利用这一性质可简化一些函数图象的画法,也可以利用它判断函数的奇偶性.4.关于函数周期性常用的结论:对于函数f (x ),若有f (x +a )=-f (x )或f (x +a )=1f x或f (x +a )=-1f x(a 为常数且a ≠0),则f (x )的一个周期为2a(满分:75分)一、选择题(每小题5分,共25分)1.(2011·吉林模拟)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值为( )A .-13 B.13C.12 D .-122.(2010·银川一中高三年级第四次月考)已知定义域为{x |x ≠0}的函数f (x )为偶函数,且f (x )在区间(-∞,0)上是增函数,若f (-3)=0,则f xx<0的解集为 ( ) A .(-3,0)∪(0,3) B .(-∞,-3)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-3,0)∪(3,+∞)3.(2011·鞍山月考)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f x,当1≤x ≤2时,f (x )=x -2,则f (6.5)等于 ( )A .4.5B .-4.5C .0.5D .-0.54.(2010·山东)设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)等于 ( )A .3B .1C .-1D .-35.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)大小关系是 ( )A .f (-1)>f (2)B .f (-1)<f (2)C6.(2010·辽宁部分重点中学5月联考)若函数f (x )=⎩⎪⎨⎪⎧x -1,x >0,a , x =0,x +b ,x <0是奇函数,则a +b =________.7.(2011·咸阳月考)设函数f (x )是定义在R 上的奇函数,若f (x )满足f (x +3)=f (x ),且f (1)>1,f (2)=2m -3m +1,则m 的取值范围是________. 8.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (2)=2,则f (2 010)的值为________.三、解答题(共38分)9.(12分)(2011·汕头模拟)已知f (x )是定义在[-6,6]上的奇函数,且f (x )在[0,3]上是x 的一次式,在[3,6]上是x 的二次式,且当3≤x ≤6时,f (x )≤f (5)=3,f (6)=2,求f (x )的表达式.10.(12分)设函数f (x )=x 2-2|x |-1(-3≤x ≤3) (1)证明f (x )是偶函数; (2)画出这个函数的图象;(3)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数; (4)求函数的值域.11.(14分)(2011·舟山调研)已知函数f (x )=x 2+a x(x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在[2,+∞)上为增函数,求实数a 的取值范围.答案 自主梳理1.f (-x )=-f (x ) f (-x )=f(x ) 2.(1)0 0 (2)y 原点 (3)相反3.(1)f(x ) 周期 最小正周期 (2)③2a 自我检测1.B [因为f(x )为偶函数,所以奇次项系数为0,即m -2=0,m =2.] 2.A [奇函数的图象关于原点对称,对称区间上有相同的单调性.] 3.A [由f(-x)=-f(x),故函数为奇函数,图象关于原点对称.]4.C [f (-2 012)+f (2 011)=f (2 012)+f (2 011)=f (0)+f (1)=log 21+log 2(1+1)=1.] 5.-1解析 ∵f (-1)=0,∴f (1)=2(a +1)=0,∴a =-1.代入检验f(x)=xx 12-是奇函数,故a =-1.课堂活动区例1 解题导引 判断函数奇偶性的方法.(1)定义法:用函数奇偶性的定义判断.(先看定义域是否关于原点对称).(2)图象法:f(x)的图象关于原点对称,则f(x)为奇函数;f(x)的图象关于y 轴对称,则f(x )为偶函数. (3)基本函数法:把f(x)变形为g(x)与h(x)的和、差、积、商的形式,通过g(x)与h(x)的奇偶性判定出f(x)的奇偶性.解 (1)定义域要求xx+-11≥0且x ≠-1, ∴-1<x ≤1,∴f(x)定义域不关于原点对称,∴f(x )是非奇非偶函数.(2)函数定义域为(-∞,0)∪(0,+∞).∵f(-x )=-x )21121(+--x=-x )21212(+-x x =)21122(--x x x =)21121(+-xx =f(x). ∴f(x )是偶函数. (3)函数定义域为R .∵f (-x )=log 2(-x +x 2+1)=log 21x +x 2+1=-log 2(x +x 2+1) =-f (x ),∴f (x )是奇函数.(4)函数的定义域为(-∞,0)∪(0,+∞). 当x <0时,-x >0,则f (-x )=-(-x )2-x =-(x 2+x )=-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ).∴对任意x ∈(-∞,0)∪(0,+∞)都有f (-x )=-f (x ). 故f (x )为奇函数.变式迁移1 解 (1)由于f (-1)=2,f (1)=0,f (-1)≠f (1),f (-1)≠-f (1),从而函数f (x )既不是奇函数也不是偶函数.(2)f (x )的定义域为{-1,1},关于原点对称,又f (-1)=f (1)=0,f (-1)=-f (1)=0,∴f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|≠3得,f (x )定义域为[-2,0)∪(0,2].∴定义域关于原点对称,又f (x )=4-x 2x,f (-x )=-4-x2x∴f (-x )=-f (x ) ∴f (x )为奇函数.例2 解题导引 本题考查利用函数的单调性和奇偶性解不等式.解题的关键是利用函数的单调性、奇偶性化“抽象的不等式”为“具体的代数不等式”.在关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反. 解 ∵y =f (x )为奇函数,且在(0,+∞)上为增函数, ∴y =f (x )在(-∞,0)上单调递增, 且由f (1)=0得f (-1)=0.若f [x (x -12)]<0=f (1),则⎩⎪⎨⎪⎧x x -12xx -12即0<x (x -12)<1,解得12<x <1+174或1-174<x <0.。
高三数学第一轮复习10函数的概念及表示·知识梳理·模块01:函数的概念设D 是一个非空的实数集,如果按照某种确定的对应关系f ,使对集合D 中任意给定的x ,都有唯一的实数y 与之对应,就称这个对应关系f 为集合D 上的一个函数(function),记作(),y f x x D =∈。
其中x 叫做自变量(independent variable),其取值范围(数集D )称为该函数的定义域(domain)。
当自变量x 取值0x 时,由对应关系f 所确定的对应于0x 的值0y ,称为函数在0x 处的函数值,记作()0y f x =。
所有函数值组成的集合(){},y y f x x D =∈称为这个函数的值域。
[知识补充]1、函数定义中要求对定义域中的任何一个x ,在值域中有且只有一个y 值和它对应;但并不要求对于值域中的每一个y 也只能有一个x 和它相对应,即函数的对应法则可以是1对1,也可以多对1,但不可以1对多(即定义域中一个x 对应域中一个以上的y )。
2、定义域与值域都必须是非空数集。
3、定义域的表示方法有:集合表示法、区间表示法。
4、对应关系常用小写字母,如f g h 、、等表示。
模块02:函数的定义域求解和简单值域问题(具体值域方法后面会详细介绍)1、一般定义域注意分式、根式、负指数幂、对数等自然定义域:2、抽象函数定义域求解:①定义域永远是自变量的取值范围,自变量一般都用x 表示;②f 的作用区域保持不变,即f 后面那个大括号的范围保持不变.3、已知函数定义域求参数(通常转化为恒成立问题,参数必要时注意分类讨论)。
模块03:函数解析式的确定、相同的函数及函数的运算1、常见的方法:①换元法(将对应关系内的整体转化为一个新的变量);②配凑法(根据具体解析式凑出复合变量的形式,从而求出解析式);③待定系数法(已知函数特征,求解析式可用待定系数法,设出待定系数,根据已知条件建立方程组求出待定系数的值);④赋值法-构造方程组法(指给定的关于某些变量的一般关系式,赋予适当的数值或代数式后,通过运算推理,最后得出结论的一种解题方法)...等等。
第1讲 函数及其表示1.函数的基本概念(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A . (2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集. (3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据. 2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法. 3.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.映射是一种特殊的函数,映射中的集合A,B 可以是数集,也可以是点集或其他集合,这两个集合有先后顺序。
A 到B 的映射与B 到A 的映射是不同的。
而函数是数集到数集的映射,所以函数是特殊的映射,但是映射不一定是函数。
4.求函数的定义域的主要依据是:(1)分式的分母不能等于零;(2)偶次方根的被开方数必须大于等于零;(3)对数函数x y a log =的真数0>x ;(4)指数函数x a y =和对数函数x y a log =的底数0>a 且1≠a ;(5)零次幂0x 的底数0≠x ; (6)由实际问题确定函数的定义域,不仅要考虑解析式有意义,还要有实际意义。
求复合函数y =f (t ),t =q (x )的定义域的方法:①若y =f (t )的定义域为(a ,b ),则解不等式得a <q (x )<b 即可求出y =f (q (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )的值域即为f (t )的定义域.5.两个防范 (1)解决函数问题,必须优先考虑函数的定义域. (2) 函数的定义域和值域必须用集合表示,也可以用区间表示,但是不能用不等式表示。
6. 三个要素函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.7.求函数的解析式的主要方法有以下四种:①待定系数法:如果知道函数解析式的类型(函数是二次函数、指数函数和对数函数等)时,可以用待定系数法;②代入法:如果已知原函数)(x f 的解析式,求复合函数)]([x g f 的解析式时,可以用代入法;③换元法:如果已知复合函数)]([x g f 的解析式,求原函数)(x f 的解析式时,可以用换元法。
换元时,注意新“元”的范围;④解方程组法:如果已知抽象函数的解析式,可以用解方程组的方法。
8. 区间的概念和记号 设,a b R ∈,且a b <,我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为],[b a 。
(2)满足不等式b x a <<的实数x 的集合叫做开区间,表示为),(b a 。
(3)满足不等式a x b ≤<或b x a ≤<的实数x 的集合叫做半闭半开区间,分别表示为),[b a 和],(b a 。
这里的实数a 和b 叫做相应区间的端点。
(4)实数R 可以用区间表示为),,(+∞-∞“∞”读作“无穷大”,“∞-”读作“负无穷大”,“∞+”读作“正无穷大”。
我们可以把满足a x ≥的实数x 表示为),[+∞a(5)不等式b x a ≤≤中,a 可以小于等于b ,也可以大于b ,当b a >时,不等式表示的是空集;但是区间],[b a 中,一定是b a <,它不可能是空集。
9.分段函数在函数的定义域内,对于自变量的不同取值区间,有着不同的对应法则,则称这个函数为分段函数。
分段函数是一个函数,而不是几个函数。
分段函数书写时,注意格式规范,一般在左边的区间写在上面,右边的区间写在下面,每一段自变量的取值范围的交集为空集,所有段的自变量的取值范围的并集是函数的定义域。
分段函数的首先分段处理,最后综合。
考点一 求函数的定义域【例1】►求下列函数的定义域:(1)f (x )=|x -2|-1log 2(x -1);(2)f (x )=ln (x +1)-x 2-3x +4.解 (1)要使函数f (x )有意义,必须且只须⎩⎪⎨⎪⎧|x -2|-1≥0,x -1>0,x -1≠1.解不等式组得x ≥3,因此函数f (x )的定义域为[3,+∞).(2)要使函数有意义,必须且只须⎩⎪⎨⎪⎧ x +1>0,-x 2-3x +4>0,即⎩⎪⎨⎪⎧x >-1,(x +4)(x -1)<0,解得:-1<x <1.因此f (x )的定义域为(-1,1).求函数定义域的主要依据是(1)分式的分母不能为零;(2)偶次方根的被开方式其值非负;(3)对数式中真数大于零,底数大于零且不等于1. 【训练1】 (1)已知f (x )的定义域为⎣⎡⎦⎤-12,12,求函数y =f ⎝⎛⎭⎫x 2-x -12的定义域; (2)已知函数f (3-2x )的定义域为[-1,2],求f (x )的定义域.解 (1)令x 2-x -12=t ,知f (t )的定义域为⎩⎨⎧⎭⎬⎫t ⎪⎪-12≤t ≤12,∴-12≤x 2-x -12≤12,整理得⎩⎪⎨⎪⎧x 2-x ≥0,x 2-x -1≤0⇒⎩⎪⎨⎪⎧x ≤0或x ≥1,1-52≤x ≤1+52,∴所求函数的定义域为⎣⎢⎡⎦⎥⎤1-52,0∪⎣⎢⎡⎦⎥⎤1,1+52.(2)用换元思想,令3-2x =t ,f (t )的定义域即为f (x )的定义域,∵t =3-2x (x ∈[-1,2]),∴-1≤t ≤5,故f (x )的定义域为[-1,5].考点二 求函数的解析式【例2】(1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x );(2)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.解 (1)令t =2x +1,则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1.(2)x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).①以-x 代x 得,2f (-x )-f (x )=lg(-x +1).②由①②消去f (-x )得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).求函数解析式的方法主要有:(1)代入法;(2)换元法;(3)待定系数法;(4)解函数方程等.【训练2】 (1)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,试求f (x )的表达式.(2)已知f (x )+2f (1x )=2x +1,求f (x ).解 (1)由题意可设f (x )=ax 2+bx (a ≠0),则a (x +1)2+b (x +1)=ax 2+bx +x +1ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1∴⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =12,b =12.因此f (x )=12x 2+12x .(2)由已知得⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =2x +1,f ⎝⎛⎭⎫1x +2f (x )=2x+1,消去f ⎝⎛⎭⎫1x ,得f (x )=4+x -2x23x. 考点三 分段函数【例3】►(2011·辽宁)设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( ).A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析 f (x )≤2⇔⎩⎪⎨⎪⎧ x ≤1,21-x ≤2或⎩⎪⎨⎪⎧x >1,1-log 2x ≤2⇔0≤x ≤1或x >1,故选D.分段函数是一类重要的函数模型.解决分段函数问题,关键抓住在不同的段内研究问题,如本例中,需分x ≤1和x >1时分别解得x 的范围,再求其并集.【训练3】 (2011·江苏)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析 分类讨论:(1)当a >0时,1-a <1,1+a >1.这时f (1-a )=2(1-a )+a =2-a ;f (1+a )=-(1+a )-2a =-1-3a . 由f (1-a )=f (1+a ),得2-a =-1-3a ,解得a =-32,不符合题意,舍去.(2)当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a ;f (1+a )=2(1+a )+a =2+3a , 由f (1-a )=f (1+a ),得-1-a =2+3a ,解得a =-34.综合(1),(2)知a 的值为-34.答案 -34忽视函数的定义域【问题诊断】 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.如果是复合函数,应该根据复合函数单调性的判断方法,首先判断两个简单函数的单调性,根据同增异减的法则求解函数的单调区间.由于思维定势的原因,考生容易忽视定义域,导致错误.【防范措施】 研究函数的任何问题时,把求函数的定义域放在首位,即遵循“定义域优先”的原则. 【示例】 求函数y =log 13(x 2-3x )的单调区间.错因 忽视函数的定义域,把函数y =log 13t 的定义域误认为R 导致出错.实录 设t =x 2-3x .∵函数t 的对称轴为直线x =32,故t 在⎝⎛⎭⎫-∞,32上单调递减,在⎝⎛⎭⎫32,+∞上单调递增. ∴函数y =log 13(x 2-3x )的单调递增区间是⎝⎛⎭⎫-∞,32,单调递减区间是⎝⎛⎭⎫32,+∞.正解 设t =x 2-3x ,由t >0,得x <0或x >3,即函数的定义域为(-∞,0)∪(3,+∞).函数t 的对称轴为直线x =32,故t 在(-∞,0)上单调递减,在()3,+∞上单调递增.而函数y =log 13t 为单调递减函数,由复合函数的单调性可知,函数y =log 13(x 2-3x )的单调递增区间是(-∞,0),单调递减区间是(3,+∞).【试一试】 求函数f (x )=log 2(x 2-2x -3)的单调区间.[尝试解答] 由x 2-2x -3>0,得x <-1或x >3,即函数的定义域为(-∞,-1)∪(3,+∞).令t =x 2-2x -3,则其对称轴为x =1,故t 在(-∞,-1)上是减函数,在(3,+∞)上是增函数.又y =log 2t 为单调增函数.故函数y =log 2(x 2-2x -3)的单调增区间为(3,+∞),单调减区间为(-∞,-1). 1.函数f (x )=log 2(3x +1)的值域为( ).A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞) 2.(2011·江西)若f (x )=1log 12(2x +1),则f (x )的定义域为( ).A.⎝⎛⎭⎫-12,0B.⎝⎛⎦⎤-12,0C.⎝⎛⎭⎫-12,+∞ D .(0,+∞) 3.下列各对函数中,表示同一函数的是( ).A .f (x )=lg x 2,g (x )=2lg xB .f (x )=lg x +1x -1,g (x )=lg(x +1)-lg(x -1)C .f (u )=1+u1-u,g (v )= 1+v1-vD .f (x )=(x )2,g (x )=x 2 4.(2010·陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( ).A .y =⎣⎡⎦⎤x 10B .y =⎣⎡⎦⎤x +310C .y =⎣⎡⎦⎤x +410D .y =⎣⎡⎦⎤x +510 5.函数y =f (x )的图象如图所示.那么,f (x )的定义域是________; 值域是________;其中只与x 的一个值对应的y 值的范围是________.6.⎪⎩⎪⎨⎧≥<<--≤+=2 221 1|1|)(2x x x x x x x f ,那么f (f (-2))= ;如果3)(=a f ,那么实数a = 。