3 第二章整式的加减单元测试卷
- 格式:doc
- 大小:75.00 KB
- 文档页数:3
七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)一、单选题1.单项式32πx yz -的系数和次数分别是( )A .-2,6B . -2π,5C .-2,7D .-2π ,62.多项式233321x y x y --是( )A .二次三项式B .三次二项式C .四次三项式D .五次三项式3.下列语句错误的是( )A .数字0也是单项式B .单项式a -的系数与次数都是1C .12xy 是二次单项式 D .25m n 与22nm -是同类项4.下列化简结果正确的是( )A .-4a-a=-3aB .6x 2-2x 2=4C .6x 2y-6yx 2=0D .3x 2+2x 2=5x 45.下列说法正确的是( )A .25xy 的系数是5-B .单项式a 的系数为1、次数是0C .2325a b 的次数是6D .1xy x +-是二次三项式6.若关于x ,y 的多项式()223x axy bx y +---不含二次项,则a b -的值为( )A .0B .-2C .2D .-17.关于多项式3x 2﹣y ﹣3xy 3+x 5﹣1,下列说法错误的是( )A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣18.下列各组中的两项,属于同类项的是( )A .32x -与2x -B .12ab -与18baC .2x y 与2xy -D .4m 与4mn9.若一个多项式减去223a b -等于222a b +,则这个多项式是( )A .222a b -+B .222a b -C .222a b -D .222a b --二、填空题10.3227x y -的系数是 .11.若2m a b 与323n a b --是同类项,则m n +的值为 . 12.多项式233223xy x x y -+-的次数为 .13.一个多项式与2210x x --+的和是32x -,则这个多项式为 .三、解答题14.已知关于x 的多项式32322325mx x x x x nx -+-+-不含三次项和一次项,求n m 的值. 15.先化简,再求值:223252372x x x x ⎡⎤⎛⎫----⎪⎢⎥⎝⎭⎣⎦,其中2x =-. 四、综合题16.在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,并且a 是多项式﹣2x 2﹣4x+1的一次项系数,b 是数轴上最小的正整数,单项式-12x 2y 4的次数为c. (1)a = ,b = ,c = . (2)请你画出数轴,并把点A ,B ,C 表示在数轴上; (3)请你通过计算说明线段AB 与AC 之间的数量关系.17.已知整式 ()()3123a x x a ---+ .(1)若它是关于 x 的一次式,求 a 的值并写出常数项; (2)若它是关于 x 的三次二项式,求 a 的值并写出最高次项.18.计算:一个整式A 与多项式x2-x-1的和是多项式-2x2-3x+4.(1)请你求出整式A ; (2)当x=2时求整式A 的值19.已知多项式-3x m+1y 3+x 3y-3x 4-1是五次四项式,单项式3x 3n y 2的次数与这个多项式的次数相同.(1)求m ,n 的值.(2)把这个多项式按x 降幂排列.参考答案与解析1.【答案】B【解析】【解答】解:单项式32πx yz -的数字因数是2π-,所有字母的指数的和为3115++=所以该单项式的系数和次数分别是:2π-和5. 故答案为:B .【分析】根据单项式的系数和次数的定义逐项判断即可。
七年级数学上册《第二章整式的加减》单元测试卷及答案(人教版) 一、单选题1.整式:中,单项式有()A.2个B.3个C.4个D.5个2.计算aa5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a63.下面不是同类项的是()A.-2与12B.m与nC.−3m2n与m2n D.−m2n2与12m2n24.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6 B.2m﹣8 C.2m D.﹣2m5.下列各式中,去括号正确的是()A.−(2x+y)=−2x+y B.2(x−y)=2x−yC.3x−(2y+z)=3x−2y−z D.x−(−y+z)=x−y−z6.当(m+n)2+2004取最小值时,m2﹣n2+2|m|﹣2|n|=()A.0 B.-1C.0或﹣1 D.以上答案都不对7.关于x,y的多项式2mxy2−3x4−2y2与x4−xy2+5的和不含三次项,则m的值为()A.−13B.12C.−12D.08.在①+(+1)与﹣(﹣1);②﹣(+1)与+(﹣1);③+(+1)与﹣|﹣1|;④+|﹣1|与﹣(﹣1)中,互为相反数的是()A.①B.②C.③D.④二、填空题9.−2a3bc5的系数是,次数是.10.-a-(b+c)的相反数为.11.去括号: a−(−2b+c)=.12.若单项式−x n y3与单项式15x2y m的和仍然是一个单项式A,则A=13.三个连续奇数中,最小的一个是2n﹣1,则这三个连续奇数的和是.14.计算:(1)-36×( 712−59−14 )(2)23 a 2-8a- 12 +6a- 23 a 2+ 3215.先化简,再求值:2(a 2b+ab 2)﹣3(a 2b ﹣1)﹣2ab 2﹣4其中a =2019,b = 12019 .16.已知有理数 a 、b 、c 在数轴上的位置如图,化简: |a|−|a +b|+|c −a|+|b +c|17.已知A =2x 2−x +6,B =3x 2−4x −1求2A +B .18.已知﹣4xy n+1与52x m y 4是同类项,求2m+n 的值.19.某同学在做一道数学题:“已知两个多项式A 、B ,其中B=4x 2−5x +6,试求A -B ”时,把“A -B ”看成了“A+B ”,结果求出的答案是−7x 2+10x +12,请你帮他求出“A -B ”的正确答案.20.已知A=3a 2b-2ab 2+abc ,小明同学错将“2A-B ”看成“2A+B ”,算得结果为4a 2b-3ab 2+4abc .(1)求出2A-B 的结果;(2)小强同学说(1)中的结果的大小与c 的取值无关,正确吗?若a=18 ,b= 15 求(1)中式子的值.1.B2.D3.B4.D5.C6.A7.B8.C9.﹣ ;510.a +b +c11.a +2b −c12.−45x 2y 313.6n+314.(1)解:原式=-36× 712 -36×( −59 )-36×( −14 )=-21+ 20+9=8(2)解:原式=( 23 a 2- 23 a 2)+(-8a+6a)+( −12+32 ) =-2a+115.解:原式= 2a 2b +2ab 2−3a 2b +3−2ab 2−4=−a 2b −1当a =2019,b = 12019 时原式= −20192×12019−1=−2019−1=−202016.解:由数轴可得:原式=-a-[-(a+b )]+c-a-(b+c )=-a .17.解:2A +B =2(2x 2−x +6)+(3x 2−4x −1)=4x 2−2x +12+3x 2−4x −1=7x 2−6x +11.18.解:由题意得:m=1,n+1=4解得:m=1,n=3.∴2m+n=5.19.解:∵B=4x2-5x+6,求A-B时,把A-B看成了A+B,且结果是-7x2+10x+12 ∴A=-7x2+10x+12-4x2+5x-6=-11x2+15x+6∴A-B=-11x2+15x+6-4x2+5x-6=-15x2+20x.20.(1)解:∵2A+B=4a2b-3ab2+4abc∴B=4a2b-3ab2+4abc-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc= −2a2b+ab2+2abc2A-B=2(3a2b-2ab2+abc)-( −2a2b+ab2+2abc )=6a2b-4ab2+2abc +2a2b−ab2−2abc= 8a2b−5ab2(2)解:小强说的正确,因为化简后与c无关;a= 18,b= 15时,原式= 8×(18)2×15−5×18×(15)2=140−140=0。
第二章 整式的加减单元测试姓名; 分值一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x yx m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中准确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写准确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法准确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号准确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中准确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项. 求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
第二章 整式的加减单元测试卷三<一>、知识回顾:1、_________和_________统称整式。
2、所含_______相同,并且相同字母的_______也分别相等的项叫同类项。
所有的常数项_______(是/不是)同类项。
3、合并同类项的法则:把同类项的________相加,所得的结果作为____________,字母和字母的指数______________.4、去括号法则:(1)括号前是“+”号,把括号和前面的“+”号去掉,括号里各项都_______符号。
(2)括号前是“-”号,把括号和前面的“-”号去掉,括号里各项都______符号。
5、添括号法则:(1)所添括号前面是“+”号,括号里各项都_________符号 (2)所添括号前面是“-”号,括号里各项都_________符号 6、整式的加减的一般步骤:(1)如果有括号,那么__________;(2)如果有同类项,那么___________。
<二>、基础训练:一、选择题: 1、下列说法正确的是( ) A.0不是单项式 B.ab 是单项式 C. 2x y 的系数是0 D.32x -是整式2、下列单项式中,次数是5的是( ) A.53 B. 322x C. 23y x D. 2y x3、多项式3244327x x y m -+-的项数与次数分别是( ) A.4,9 B.4,6 C. 3,9 D. 3,104、长方形的一边长为a 3,另一边比它小b a -,则其周长为( )。
A.b a 210+B.a6 C.ba 46+ D.以上答案都不对。
5、下列各组单项式中属于同类项的是( )A.2222m n a b 和B.66xyz xy 和C.2234x y y x 和 D.ab ba -和6、多项式8x 2-3x+5与多项式3x 3+2mx 2-5x+7相加后,不含二次项,则常数m 的值是( )A. 2B. +4C. -2D.-8 7、)]([n m ---去括号得 ( )A 、n m -B 、n m --C 、n m +-D 、n m + 8、下列各题去括号所得结果正确的是( )A 、22(2)2x x y z x x y z --+=-++B 、(231)231x x y x x y --+-=+-+C 、3[5(1)]351x x x x x x ---=--+D 、22(1)(2)12x x x x ---=--- 9、将)(4)(2)(y x y x y x +-+++合并同类项得( ) A 、)(y x + B 、)(y x +- C 、y x +- D 、y x -10、如果m 是三次多项式,n 是三次多项式,那么m n +一定是( )A 、六次多项式B 、次数不高于三的整式C 、三次多项式D 、次数不低于三的整式 二、填空题11、单项式2237xyπ-的系数是_______,次数是_______。
1.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )A.3个B.4个C.5个D.6个2、下列说法正确的是( )A 、13 πx 2的系数是13B 、12 xy 2的系数为12x C 、-5x 2的系数为5 D 、-x 2的系数为-1 3.下面计算正确的是( )A .2233x x -=B 。
235325a a a +=C .33x x +=D 。
10.2504ab ab -+= 4. 下列去括号正确的是() A.()5252+-=--x x B.()222421+-=+-x x C.()n m n m +=-323231 D. x m x m 232232--=⎪⎭⎫ ⎝⎛-- 5.下列各组中的两个单项式能合并的是() A .4和4x B .32323x y y x -和 C .c ab ab 221002和D .2m m 和 6.如果51=-n m ,那么-3()m n -的值是 ( ) A .-53 B.35 C.53 D.151 7.已知15m x n 和-92m 2n 是同类项,则∣2-4x ∣+∣4x -1∣的值为 ( ) A.1 B.3 C.8x -3 D.13 ( )8.已知-x+3y =5,则5(x -3y )2-8(x -3y )-5的值为 ( )A.80B.-170C.160D.60二、填空题(每小题4分,共28分) 9.多项式5253323+-+-y x y x xy 的次数是________.最高次项系数是__________。
10.任写两个与b a 221-是同类项的单项式:_________;_________。
11.多项式y x 23-与多项式y x 24-的差是_______________12、若单项式y x 25和n m y x 42是同类项,则n m + 的值为____________。
13、长方形的长是52+a ,宽是13-a ,则它的周长为___________。
第二章《整式的加减》核心素养单元测试卷考试分值:150分;考试时间:100分钟;一、单选题(每小题3分,共36分)1.下列各式符合代数式书写规则的是( ).A .35aB .19a ⨯C .223a D .c a ÷ 2.在下列各式子中:222,,,3541x x xy x x x π+++++,x -,3,5,xy y x,整式共有( ) A .7个 B .6个 C .5个D .4个 3.用a 表示的数一定是( )A .正数B .正数或负数C .正整数D .以上全不对4.下列表述不正确的是( )A .葡萄的单价是4元/kg ,4a 表示akg 葡萄的金额B .正方形的边长为,4a a 表示这个正方形的周长C .某校七年级有4个班,平均每个班有a 名男生,4a 表示全校七年级男生总数D .一个两位数的十位和个位数字分别为4和,4a a 表示这个两位数5.下列说法正确的是( )A .213x π的系数是13 B .22x y π-的次数是3,系数是2π- C .2x y 的系数是0 D .23x y 的次数是2,系数是36.关于多项式2231x y xy -+-,下列说法正确的是( ).A .次数是3B .常数项是1C .次数是5D .三次项是22x y7.某商品原价a 元,因商品滞销,厂家降价10%,后因供不应求,又提价10%,现在这种商品的价格是( )A .aB .0.9aC .0.99aD .1.1a8.新冠疫情期间间,某药店店对一品牌橡胶手套进行优惠促销,将原价m 元的橡胶手套每盒以(385m -)元售出,则以下四种说法中可以准确表达该药店促销方法的是A .将原价打6折之后,再降低8元B .将原价降低8元之后,再打3折C .将原价降低8元之后,再打6折D .将原价打8折之后,再降低6元9.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,10.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .1611.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:2222153324222x xy y x xy y ⎛⎫⎛⎫-+---+-= ⎪ ⎪⎝⎭⎝⎭ 2552xy y -+,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( )A .245x y -B .2y x -C .5xD .24x12.生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是( )A .8B .6C .4D .2二、填空题(每小题4分,共16分)13.去括号:a -(-2b +c )=____.14.若代数式﹣2xay 4与5x ²y 2+b 可以合并同类项,则ab =__.15.某公交车上原有(4a -2b )人,中途有一半人下车,又上来若干人,这时车上共有乘客(10a -6b )人,则中途上车的乘客有 ___________人.16.写出一个只含字母a ,b 的多项式,需满足以下条件:①五次四项式:①每一项必须同时含有字母a ,b ;①不含同类项:①当a ,b 互为相反数时,多项式的值为0.则该多项式可为______________.三、解答题(共98分)17.(10分)计算:(1)x 2﹣5xy +yx +2x 2.(2)5(x +y )﹣3(2x ﹣3y ).18.(8分)先化简,再求值:()224222⎡⎤---+⎣⎦x y xy xy x y xy ,其中x 与y 互为倒数. 我不小心把老师留的作出题弄丢了,只记得式子是9a b c -+-.我告诉你“a 的相反数是3,4b <且b 的绝对值是5.”c 与b 的和是7-.(1)分别求出a ,b ,c 的值;(2)求9a b c -+-的值.20.(10分)小丽放学回家后准备完成下面的题目: 化简()()226+8+652x x x x ---,发现系数“□”印刷不清楚(1)她把“□”猜成3,请你化简()()22368652x x x x -++-- (2)她妈妈说:你猜错了.我看到该题的答案是6.通过计算说明原题中“□”是几?21.(12分)“十四五”规划提出,要扩大保障租赁住房供给,完善住房保障体系.王大姐打算在新年来临之际给自己新分到的保障性住房进行简单的装修,王大姐的房屋结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示房屋地面总面积为______平方米;(2)已知房屋的高度为3.1米,若在客厅和卧室的四周墙壁上贴壁纸,用含m ,n 的代数式表示所需壁纸的面积(不扣除门窗所占的面积);(3)王大姐准备把房屋地面铺地砖,客厅和卧室的四周墙壁上贴壁纸,经调查铺地砖每平方米的平均费用约为80元,贴壁纸每平方米的平均费用约为52元,若3m =,1n =,本次房屋装修大约共需要多少元(结果精确到个位)?22.(12分)综合与实践问题情境:数学活动课上,老师展示了一个问题:如图,某公园有一块长为60米的长方形荒地,若要在此建造三个长为20米,宽为α米的小长方形花圃种植花草(阴影部分),为方便观赏,在花圃的周围开辟了宽度相等的小道(空白部分).(1)小道的宽度为________米(用含a 的代数式表示).(2)求小道的面积(用含a 的代数式表示).(3)当12a =时,求小道的面积.23.(12分)观察下列等式:2511166-=⨯ ① 21012277-=⨯ ① 21513388-=⨯ ① ……(1)请写出第四个等式:___________﹔(2)观察上述等式的规律,猜想第n 个等式.(用含n 的式子表示)24.(12分)(1)如图1,若大正方形的边长为a ,小正方形的边长为b ,则阴影部分的面积是 ;若将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,则它长为 ;宽为 ;面积为 .(2)由(1)可以得到一个公式: .(3)利用你得到的公式计算:2202220232021-⨯.25.(12分)《材料阅读》将若干个数组成一个正方形数阵,若任意一行、一列及对角线上的数字之和都相等,则称为具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”、“洛书”等.如:图1是一个三阶幻方,是将1、2、3、4、5、6、7、8、9九个数字填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.《模仿尝试》(1)将﹣2、﹣1、0、1、2、3、4、5、6这九个数填入图2的方格,使得每行、每列、每条对角线上的三个数之和都相等.(2)在图3中x=;(用a的代数式表示)(3)在(2)的条件下,当a=6时,在图4中填入九个数,使得每行、每列、每条对角线上的三个数之和都相等.《观察发现》构成三阶幻方的九个数,每个数同时加上或减去同一个数,所得到的九个数仍能构成三阶幻方.《结论应用》(1)将﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6着九个数填入图5的方格中,使得每行、每列、每条对角线上的三个数之和都相等.(2)若满足“幻方”的九个数字之和为27,请在图6的方格中写出符合题意的九个数.参考答案:1.A【分析】根据代数式的书写要求判断各项.【详解】解:A 选项符合代数式书写规则,故符合题意;B 选项不符合代数式书写规则,应为19a ; C 选项不符合代数式书写规则,应为83a ; D 选项不符合代数式书写规则,应为c a; 故选A【点睛】此题考查代数式,解题的关键是掌握代数式的书写要求.代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“⋅”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.B【分析】根据多项式与单项式统称为整式,判断即可.【详解】解:在代数式π(单项式),221x x ++(分式),x xy +(多项式),2354x x ++(多项式),x -(单项式),3(单项式),5xy (单项式),y x(分式)中,整式共有6个, 故选:B .【点睛】此题考查了整式,解题的关键是弄清整式的概念.3.D【分析】字母可以表示任何数,A 、B 、C 三个选项说法都不全面.【详解】字母可以表示任何数,即a 可以表示正数、0或负数,故选D.【点睛】本题考查了代数式,需要注意字母可以表示任意数,既可以是正数,也可以是负数和0,带有负号的数不一定就是负数.4.D【分析】根据“金额=单价⨯数量”、正方形的周长公式、“男生总人数=班级数⨯每班男生人数”、“两位数=十位数字10⨯+个位数字”逐项判断即可得.【详解】解:A 、葡萄的单价是4元/kg ,4a 表示akg 葡萄的金额,原表述正确;B 、正方形的边长为a ,4a 表示这个正方形的周长,原表述正确;C 、某校七年级有4个班,平均每个班有a 名男生,4a 表示全校七年级男生总数,原表述正确;D 、一个两位数的十位和个位数字分别为4和a ,40a +表示这个两位数,原表述错误;故选:D .【点睛】本题考查了列代数式,正确理解各语句的意思是解题关键.5.B【分析】单项式中的所有字母的指数和是单项式的次数,单项式中的数字因数是单项式的系数,利用概念逐一分析即可. 【详解】解:213x π的系数是13π,故A 不符合题意; 22x y π-的次数是3,系数是2π-,故B 符合题意;2x y 的系数是1,故C 不符合题意;23x y 的次数是3,系数是3,故D 不符合题意;故选:B.【点睛】本题考查的是单项式的系数与次数,掌握“单项式的系数与次数的含义”是解本题的关键.6.A【分析】根据多项式的项、次数等相关概念并结合多项式2231x y xy -+-进行分析,再分别判断即可.【详解】解:多项式−2x 2y +3xy−1,次数是3,常数项是−1,三次项是−2x 2y ,所以四个选项中只有A 正确; 故答案为:A .【点睛】本题考查了多项式的项的系数和次数定义的掌握情况.解题的关键是弄清多项式次数、常数项的定义.7.C【分析】降价10%是在a 的基础上减少了10%,价格为a (1−10%)元,后来提价10%,是在a (1−10%)的基础上增加了10%,所以是a (1−10%)(1+10%)元.【详解】解:a (1−10%)(1+10%)=0.99a (元),故选:C .【点睛】本题考查了列代数式的知识,易出差错的地方是降价10%后,又提价10%.解题关键是注意提价的10%不是在原价的基础上,而是在降价后的价格a (1−10%)上增加10%的.8.A【分析】根据原价和售价的关系,可得答案. 【详解】解:售价为(385m -),是原价m 乘以0.6,再减去8, 由此可得,促销方式为将原价打6折之后,再降低8元,故选A【点睛】本题考查代数式的实际意义,准确理解代数式表达的意义是解题的关键.9.D【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3;B 选项不满足m≤n ,则y=2n -1=-1;C 选项满足m≤n ,则y=2m+1=3;D 选项不满足m≤n ,则y=2n -1=1;故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.10.A【分析】用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n +1年后,大李和小王的年龄差仍然不变.【详解】解:a ﹣(a ﹣15)=15(岁)答:他们相差15岁.故选:A .【点睛】此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值.11.D 【分析】根据题意易得22222153532452222x xy y x xy y xy y ⎛⎫⎛⎫-+---+-+- ⎪ ⎪⎝⎭⎝⎭,然后进行求解即可. 【详解】解:由题意得:22222153532452222x xy y x xy y xy y ⎛⎫⎛⎫-+---+-+- ⎪ ⎪⎝⎭⎝⎭ 22222153583522x xy y x xy y xy y =-+-+-++- 24x = 故选:D .【点睛】本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.12.C【分析】利用已知得出数字个位数的变化规律进而得出答案.【详解】解:①21=2,22=4,23=8,24=16,25=32,…,①尾数每4个一循环,①2022÷4=505……2,①22022的个位数字应该是:4.故选:C .【点睛】此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键.13. a +2b -c【分析】根据去括号法则:如果括号前为减号,去掉括号后,括号里面的所有项的符号改变;反之如果括号前为加号,去掉括号后,括号里面的所有项的符号不变;【详解】a -(-2b +c )=a +2b -c故答案为:a +2b -c ;【点睛】本题主要考查去括号法则,解题的关键是能够熟练地掌握去添括号时项什么情况符号改变,什么情况项的符号不变即可.14.4【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,进行计算即可解答.【详解】解:①代数式42a x y -与225b x y +可以合并同类项,①a =2,2+b =4,①a =2,b =2,①ab =22=4,故答案为:4.【点睛】本题考查了合并同类项,熟练掌握同类项的定义是解题的关键.15.(8a -5b )【分析】先根据题意列出关于a 、b 的式子,再根据整式的加减法则计算即可.【详解】解:①公交车上原有(4a -2b )人,中途有一半人下车,①剩下的人数=12(4a -2b ), ①中途上车的乘客有=(10a -6b )-12(4a -2b )=(8a -5b )人. 答:中途上车的人数有(8a -5b )人.故答案为:(8a -5b ).【点睛】本题主要考查的是整式加减的应用,灵活运用整式的加减法则是解答本题的关键.16.323323a b a b ab a b +-+(答案不唯一)【分析】根据同类项的定义,相反数的定义以及多项式的项数和次数确定方法,即可求解.【详解】根据题意得:该多项式可为323323a b a b ab a b +-+.故答案为:323323a b a b ab a b +-+(答案不唯一).【点睛】本题主要考查了多项式的项数和次数确定方法,明确题意,列出多项式是解题的关键.17.(1)234x xy -;(2)14x y -+【分析】(1)根据整式加减运算,求解即可;(2)去括号,再根据整式加减运算求解即可.【详解】解:(1)2225234x xy yx x x xy -=-++(2)5()3(23)556914x y x y x y x y x y +--=+-+=-+【点睛】此题考查了整式加减运算以及去括号的规律,解题的关键是掌握整式加减运算法则. 18.4xy -;4-【分析】根据x 与y 互为倒数,可得1xy =,原式去括号合并同类项后得到最简结果,再把1xy =代入计算即可求出值.【详解】解:原式()224222=--++x y xy xy x y xy2244242=-+--x y xy xy x y xy4xy =-①x 与y 互为倒数,①1xy =,①原式4414=-=-⨯=-xy .【点睛】本题考查整式的加减—化简求值,熟练掌握去括号法则与合并同类项法则是解题的关键. 19.(1)3a =-,5b =-,2c =-(2)9【分析】(1)直接利用相反数、绝对值的定义分别得出a ,b ,c 的值,进而得出答案;;(2)将a ,b ,c 的值代入原式计算即可求出值.(1)解:根据题意得:3a =-,5b =且4b <,5b ∴=-,7b c +=-,2c ∴=- ;(2)解:当3a =-,5b =-,2c =-时,993529a b c -+-=+-+= .【点睛】本题考查了代数式求值,熟练掌握运算法则是解本题的关键.20.(1)226x -+(2)5【分析】(1)去括号,合并同类项即可;(2)设“□”为a ,去括号化简,可知化简结果与二次项无关,即可求解.(1)解:()()2268652x x x x 3-++-- 22368652x x x x =-++--226x =-+;(2)设“□”为a ,即有:()()()2226865256ax x x x a x -++--=-+, ①化简的结果为6,①()256a x -+的结果与二次项无关,即二次项的系数为0,①50a -=,即5a =,答:“□”是5.【点睛】本题主要考查了整式的加减以及合并同类项的知识,灵活运用合并同类项的知识是解答本题的关键.21.(1)()7326m n ++;(2)()99.2 6.2m +平方米;(3)10126元【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)先求出墙的总长度,再利用面积公式未求解即可;(3)先用壁纸每平方米的平均费用乘以所用壁纸的总面积,再用地砖每平方米的平均费用,两者相加即可得解.【详解】解:(1)地面总面积为:()()74233274m n +⨯+++⨯-=72036m n +++7326m n =++故答案为:7m +3n +26.(2)()()272423322m m ++⨯++=+(米)()3.132299.2 6.2m m ⨯+=+(平方米)所以所需壁纸面积为()99.2 6.2m +平方米.(3)当3m =,1n =时,地砖花费:()()807326807331264000m n ++=⨯⨯+⨯+=(元)墙纸花费:()()5299.2 6.25299.2 6.236125.6m +=⨯+⨯=(元)共花费:40006125.610125.610126+=≈(元)答:本次房屋改造大约共需要10126元【点睛】本题考查了列代数式,整式的混合运算;正确求出各个矩形的面积是解题的关键.22.(1)6034a - (2)3000150a -(3)1200平方米【分析】(1)根据图形可知,荒地长60米其值等于三块花圃的宽和四条小道的宽,据此即可作答;(2)结合(1)的结果先求出荒地的宽,进而得到荒地的面积,再用荒地的面积减去三块花圃的面积,即可求解;(3)代入(2)的结果中即可求解.(1)根据题意有:小道的宽度为:()60360344a a --÷=(米), 故答案为:6034a -; (2) 荒地的宽为:60332205042a a -⨯+=-(米), 即荒地的面积为:350603000902a a ⎛⎫-⨯=- ⎪⎝⎭(平方米), 三个花圃的面积为:20360a a ⨯⨯=(平方米),则小道的面积:()300090603000150a a a --=-(平方米),即小道的面积为:()3000150a -平方米;(3)①12a =,①30001503000150121200a -=-⨯=(平方米),即小道的面积为1200平方米.【点睛】本题主要考查了列代数式、代数式求值以及整式的加减混合运算的知识,明确题意、读懂图形是解答本题的关键.23.(1)22014499-=⨯;(2)25155n n n n n -=⨯++ 【分析】(1)把前三个等式都看作减法算式的话,每个算式的被减数分别是1,2,3,减数的分母分别是6=1+5,7=2+5,8=3+5,减数的分子分别是5=5⨯1,10=5⨯2,15=5⨯3,差分别是被减数的平方和以减数的分母作分母,以1作分子的分数的差;据此判断出第四个等式的被减数是4,减数的分母是9,分子是5的4倍,差等于42与19的乘积; (2)根据上述等式的规律,猜想第n 个等式为:55n n n -+=215n n ⨯+,然后把等式的左边化简,根据左边=右边,证明等式的准确性即可. 【详解】解:(1)把前三个等式左边都看作减法算式的话,每个算式的被减数分别是1,2,3,减数的分母分别是6=1+5,7=2+5,8=3+5,减数的分子分别是5=5⨯1,10=5⨯2,15=5⨯3;右边分别是被减数的平方和以减数的分母作分母,以1作分子的分数的差;据此判断出第四个等式的被减数是4,减数的分母是9,分子是5的4倍,差等于42与19的乘积; ①第四个等式为:4-209=42×19; (2)猜想:55n n n -+=215n n ⨯+(其中n 为正整数). 验证:n -55n n +=()555n n n n+-+=25n n +,所以左式=右式,所以猜想成立. 【点睛】此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出::第n 个等式为:55n n n -+=215n n ⨯+. 24.(1)22a b -,a +b ,a ﹣b ,(a +b )(a ﹣b );(2)22a b -=(a +b )(a ﹣b );(3)1【分析】(1)由图形所示,由正方形、长方形的面积公式可得此题结果;(2)由(1)结果可得等式22a b -=(a +b )(a ﹣b );(3)由(2)结论22a b -=(a +b )(a ﹣b ),可得2202220232021-⨯=1.【详解】解:(1)由题意得,图形中阴影部分的面积是22a b -;图2的长为a +b ,宽为a ﹣b ,其面积(a +b )(a ﹣b );故答案为:22a b -,a +b ,a ﹣b ,(a +b )(a ﹣b );(2)由(1)结果可得等式22a b -=(a +b )(a ﹣b ),故答案为:22a b -=(a +b )(a ﹣b );;(3)由(2)题结果22a b -=(a +b )(a ﹣b ),可得2202220232021-⨯()()220222022120221=-+-()222202220221=--22202220221=-+1=【点睛】此题考查了平方差公式几何背景的应用能力,关键是能用不同整式表示出图形面积,并能运用所得结论进行计算.25.《模仿尝试》(1)见解析;(2)4a ;(3)见解析;《结论应用》(1)见解析;(2)见解析【分析】《模仿尝试》(1)根据题意得:这九个数的和为18,所以每行、每列及对角线上的三个数的和为6,且中间数字可以为2,然后再根据三个数字的和为6,即可求解;(2)根据题意列出关于a ,x 的等式,再变形,即可求解;(3)根据a =6,可得410x a =+= ,39,33,24,15a a a a +=-=-=-= ,可得到左上角的数为7 ,再由每行、每列、每条对角线上的三个数之和都相等,即可求解;《结论应用》(1)根据题意可得:每行、每列、每条对角线上的三个数之和都等于-6,且中间数字可以为-2,然后再根据每行、每列、每条对角线上的三个数字的和为-6,即可求解;(2)根据题意可得:每行、每列、每条对角线上的三个数之和都等于9,且中间数字可以为3,然后再根据每行、每列、每条对角线上的三个数字的和为9,即可求解.【详解】解:《模仿尝试》(1)一2,-1,0,1,2,3,4,5,6这九个数的和为-6,所以每行、每列及对角线上的三个数的和为6,且中间数字可以为2,每行、每列、每条对角线上的三个数字的和为6可得出结果如下:(2)根据题意得:3331a a a a x a +++-=-++- ,解得:4x a =+ ;(3)当a =6时,410x a =+= ,39,33,24,15a a a a +=-=-=-= ,①每行、每列、每条对角线上的三个数之和都相等,①每行、每列、每条对角线上的三个数之和为9+4+5=18,①左上角的数为:18657--= ,然后再根据每行、每列、每条对角线上的三个数之和为18可得出结果如下:《结论应用》(1)①()1108642024663-----++++=- ,且每行、每列、每条对角线上的三个数之和都相等, ①每行、每列、每条对角线上的三个数之和都等于-6,①中间的数字可以为-2,每行、每列、每条对角线上的三个数字的和为-6可得出结果如下:(2)①满足“幻方”的九个数字之和为27, ①每行、每列、每条对角线上的三个数之和都等于127=93⨯ , ①中间的数字可以为3,每行、每列、每条对角线上的三个数字的和为9可得出结果如下:(答案不唯一).【点睛】本题主要考查了有理数的加法,解题的关键是根据幻方的特点以及有理数的加法法则得出横或列的三个数的和.。
《整式的加减》单元测试卷班级 姓名 座号一.1.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )A.3个B.4个C.5个D.6个 2.单项式233xy z π-的系数和次数分别是( )A.-3,5B.-1,6C.-3π,6D.-3,7 3.下面计算正确的是( )A .2233x x -= B.235325a a a += C.33x x += D.10.2504ab ab -+= 4.多项式2112x x ---的各项分别是( ) A.21,,12x x - B.21,,12x x --- C.21,,12x x D.21,,12x x --5.下列去括号正确的是( )A.()5252+-=--x xB.()222421+-=+-x x C.()n m n m +=-323231D. x m x m 232232--=⎪⎭⎫ ⎝⎛--6.下列各组中的两个单项式能合并的是( ) A .4和4x B .32323x y y x -和C .c ab ab 221002和D .m 和2m7.如果51=-n m ,则-3()m n -的值是 ( )A .-53 B.35 C.53 D.1518.已知-51x 3y 2n 与2x 3m y 2是同类项,则mn 的值是( )A .1B .3C .6D .9二.填空题(每小题3分,共18分)9.任写两个与b a 221-是同类项的单项式: ; .10.多项式5253323+-+-y x y x xy 的次数是 ,最高次项系数是 _.11.多项式y x 23-与多项式y x 24-的差是 .12.张强同学到文具商店为学校美术组的10名同学购买铅笔和橡皮,已知铅笔每支m 元,橡皮每块n 元,若给每名同学买3支铅笔和4块橡皮,则一共需付款 元.13.已知单项式32b a m 与-3214-n b a 的和是单项式,则m = ,n = . 14.观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: . 三.解答题(共58分) 15.计算(每题4分共16分) (1)b a b a b a 2222134+-(2) (x -3y )-(y -2x )(3)()()222243258ab b a ab b a --- (4)ab ab a ab a 21]421[2122-)-(-+16.先化简,后求值(每题6分共12分) (1)()()ab b a b a 245352323+++-,其中21,1=-=b a(2)1]242[6422+y x xy xy y x )--(--,其中1,21==y x -.17.(7分)已知某船顺水航行2小时,逆水航行3小时,(1)已知轮船在静水中前进的速度是x 千米/时,水流的速度是y 千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?18.(7分)有这样一道题:“当a =2010,b =-2011时,求多项式 201292842853233233++++a b a b a a b a b a a ---的值.”小颖说:本题中a =2009,b =—2010是多余的条件;小彤马上反对说:这不可能,多项式中含有a 和b ,不给出b a ,的值怎么能求出多项式的值呢? 你同意哪名同学的观点?请说明理由.参考答案第二章《整式的加减》单元测试卷一、选择题1.B2.C3.D4.B5.A6.D7.C8.A 二.填空题9.b a 2,b a 22 (答案不唯一) 10.5,-2 11.x -12.n m 4030+ 13.4, 3 14.12122+=+n n n -)( 三.解答题15.(1)b a 223(2)y x 43- (3)2232ab b a + (4)ab a 52-16.(1)化简得ab b 22+,值=43- (2)化简得3252-xy y x +,值=47-17.(1)y x -5 (2)295千米 18.同意小颖的观点,因为该式化简得2012,所以值与b a ,无关.。
七年级数学(上)第二章《整式的加减》章节检测一、选择题(每小题3分,共30分)1.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a2.在下列式子3ab ,-4x ,75abc -,π,2m n -,0.81,1y ,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个3.下列整式中,去括号后得a-b+c 的是( )A .a-(b+c )B .-(a-b )+cC .-a-(b+c )D .a-(b-c )4.下列说法中正确的是( )A .a 的指数是0B .a 没有系数C .87-是单项式D .-32x 2y 3 的次数是7 5.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x -26.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .24 7.已知a ,b 为自然数,则多项式122a b a b x y +-+的次数应当是( ) A .a B .b C .a+b D .a ,b 中较大的数8.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2C .1D .无法确定9.有理数m ,n 在数轴上的位置如图1所示,则化简│n │-│m-n │的结果是( )A .mB .2n -mC .-mD .m -2n图110.某企业今年3月份的产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月 份的产值是( )A .(a-10%)(a+15%)万元B .a (1-10%)(1+15%)万元C .(a-10%+15%)万元D .a (1-10%+15%)万元二、填空题(每小题4分,共24分)11.计算:3(2x+1)-6x= .12.-πx2y的系数是,次数是.13.如果单项式x a+1y3与2x3y b是同类项,那么a b= .14.某厂第一年生产a件产品,第二年比第一年增加了20%,则两年共生产产品件.15.按图2所示的程序计算,若开始输入的值为x=5,则最后输出的结果是.图216.用大小相同的小三角形摆成如图3所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形个.图3三、解答题(共66分)17.(每小题4分,共8分)计算:(1)3ab-4ab-(-2ab);(2)3x2+x3-(2x2-2x)+(3x-x2).18.(8分)先化简,再求值:2(a2b+ab2)-2(a2b-1)-3(ab2+1),其中a=-2,b=2.19.(8分)已知多项式7x m+kx2-(3n+1)x+5是关于x的三次三项式,并且一次项系数为-7,求m+n-k的值.20.(10分)小明做一道数学题:“已知两个多项式A,B,A=……,B=x2+3x-2,计算2A+B的值.”小明误把“2A+B”看成“A+2B”,求得的结果为5x2-2x+3,请求出2A+B的正确结果.21.(10分)学校多功能报告厅共有20排座位,其中第一排有a个座位,后面每排比前一排多2个座位.(1)用式子表示最后一排的座位数.(2)若最后一排有60个座位,则第一排有多少个座位?22.(10分)有这样一道题“计算:(2m4-4m3n-2m2n2)-(m4-2m2n2)+(-m4+4m3n-n3)的值,其中14 m=,n=-1.”小强不小心把14m=错抄成了14m=-,但他的计算结果却也是正确的,你能说出这是为什么吗?23.(12分)已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b-2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长.(2)当a=2,b=3时,求此三角形的周长.(3)当a=2,三角形的周长为27时,求此三角形各边的长.参考答案一、1.D 2.B 3.D 4.C 5.C 6.C 7.D 8.A 9.C 10.B二、11.3 12.-π 3 13.8 14.2.2a 15.120 16.(3n+4)三、17.解:(1)3ab-4ab-(-2ab)=3ab-4ab+2ab=ab;(2)3x2+x3-(2x2-2x)+(3x-x2)=3x2+x3-2x2+2x+3x-x2=x3+5x.18.解:2(a2b+ab2)-2(a2b-1)-3(ab2+1)=2a2b+2ab2-2a2b+2-3ab2-3=-ab2-1.当a=-2,b=2时,原式=-(-2)×22-1=8-1=7.19.解:由题意,得m=3,k=0,-(3n+1)=-7.解得n=2.所以m+n-k=3+2-0=5.20.解:由题意,得A=(5x2-2x+3)-2(x2+3x-2)=5x2-2x+3-2x2-6x+4=3x2-8x+7.所以2A+B=2(3x2-8x+7)+(x2+3x-2)=6x2-16x+14+x2+3x-2=7x2-13x+12.21.解:(1)最后一排的座位数(单位:个)为a+2×19=a+38.(2)由题意,得a+38=60,解得a=22.若最后一排有60个座位,则第一排有22个座位.22.解:(2m4-4m3n-2m2n2)-(m4-2m2n2)+(-m4+4m3n-n3)=2m4-4m3n-2m2n2-m4+2m2n2-m4+4m3n-n3=-n3.由于原式化简后不存在含m的项,14m=错抄成了14m=-不影响计算结果,所以才会出现小强计算结果也是正确的.23.解:(1)第二条边长(单位:厘米)为(a+2b)-(b-2)=a+b+2;第三条边长(单位:厘米)为a+b+2-3=a+b-1;周长(单位:厘米)为(a+2b)+(a+b+2)+(a+b-1)=3a+4b+1.(2)当a=2,b=3时,此三角形的周长为3a+4b+1=3×2+4×3+1=19(厘米).(3)当a=2,三角形的周长为27时,3×2+4b+1=27.解得b=5.所以a+2b=12,a+b+2=9,a+b-1=6.第一条边长12厘米,第二条边长9厘米,第三条边长6厘米.。
人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.单项式πr2ℎ的次数是()A.1 B.2 C.3 D.42.在代数式x2+5,﹣1,x2﹣3x+4,π,5m 和x2+1x+1中,整式有()A.3个B.4个C.5个D.6个3.下列说法正确的是()A.1x +1是多项式B.3x+y3是单项式C.−mn5是五次单项式D.−x2y−2x3y是四次多项式4.多项式36x2−3x+5与3x3+12mx2−5x+7相加后,不含二次项,则常数m的值是()A.2 B.-8 C.-2 D.-35.下列选项中的单项式,与−ab2是同类项的是()A.−a2b B.3ab2C.3ab D.ab2c6.下面计算正确的是()A.3x2y−2y2x=xy B.ab−ba2=12abC.2a2+a=3a3D.m4+m4=m87.若整式−100a−m b2+100a3b n+4经过化简后结果等于4,则m n的值为()A.−8B.8 C.−9D.9 8.若x−2y=3,则2(x−2y)−x+2y−5的值是()A.−2B.2 C.4 D.−4二、填空题9.请写出一个只含有a,b两个字母的单项式,要求系数为−4,次数3,这个单项式可以是.10.多项式3x2﹣2xy2+xyz3的次数是.11.如果单项式5a m+1b n+5与a2m+1b2n+3是同类项,则m=,n=12.多项式(m﹣2)x|m|+mx﹣3是关于x的二次三项式,则m= .13.已知x2+2y-3=0,则3(x2+2xy)-(x2+6xy)+4y的值为14.化简:(1)3xy2−4x2y−2xy2+5x2y;(2)(mn+3m2)−(m2−2mn)15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.a2−3ab−2且a、b互为倒数,求3A−2B的值.17.若A=a2−4ab−5,B=3218.今年十月份,为方便民众出行,连江县成立了出租车公司,收费标准是:起步价5元,可乘坐3千米;3千米之后每千米加收1.8元.若某人乘坐了x千米(1)用代数式表示他应支付的费用;(2)若他乘坐了13千米,应支付多少元?1.C2.B3.D4.D5.B6.B7.D8.A9.−4ab 2或−4a 2b10.511.0;212.-213.614.(1)xy 2+x 2y(2)3mn +2m 215.﹣7.16.−2x +2y ,10.17.−6ab −11,−17. 18.(1)①当0x <≤3时,支付的费用为5;②当3x >时,支付的费用为()1.80.4x -元(2)23元。
第二章整式的加减(人教版)单元测试题(含答案)第二章整式的加减单元测试一、填空题(每题3分,共27分)1、单项式-3x减去单项式-4x2y+2x2y-5x2的和,列算式为,-5x2-4x2y-3x。
化简后的结果是-5x2-4x2y-3x。
2、当x=-2时,代数式-x+2x-1=1,x-2x+1=-x+1.3、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为-5x^2+2x+1.5、XXX从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则XXX卖报收入为0.5b-0.4a元。
6、计算:3x-3+5x-7=8x-10,(5a-3b)+(9a-b)=14a-4b。
7、计算:(m+3m+5m+…+2009m)-(2m+4m+6m+…+2008m)=1005m。
8、-a+2bc的相反数是a-2bc,3-π≈-0.1416,最大的负整数是-1.9、若多项式2x+3x^2+7的值为10,则多项式6x+9x^2-7的值为26.10、若(m+2)2x^3yn^-2是关于x,y的六次单项式,则m≠0,n=2.11、已知a^2+2ab=-8,b^2+2ab=14,则a^2+4ab+b^2=6.12、多项式3x^3-2x^2-7x+1是三次多项式,最高次项是3x^3,常数项是1.二、选择题(每题3分,共18分)13、下列等式中正确的是(D)。
A、2x-5=-(5-2x)B、7a+3=7(a+3)C、-a-b=-(a-b)D、2x-5=-(2x-5)14、下面的叙述错误的是(A)。
A、(a+2b)的意义是a与b的2倍的和的平方。
B、a+2b的意义是a与b的2倍的和。
C、(a^2/2b)的意义是a的立方除以2b的商。
D、2(a+b)^2的意义是a与b的和的平方的2倍。
15、下列代数式书写正确的是(C)。
A、a48B、x÷yC、a(x+y)D、116、-(a-b+c)变形后的结果是(B)。
【数学测试6套】人教版七年级数学上册第二章整式加减单元测试(含答案).doc人教版七年级上册数学单元练习题:第二章整式的加减一、选择题1.单项式的系数是()A. B. π C. 2 D.2.下列各组式子中,是同类项的是()A. 3x2y与-3xy2B. 3xy与-2yxC. 2x与2x2D. 5xy与5yz3.在式子a2+2,,ab2,,﹣8x,0中,整式有()A. 6个B. 5个C. 4个D. 3个4.下列各式计算结果正确的是()A. a+a=a2B. (a﹣1)2=a2﹣1C. a?a=a2D. (3a)3=9a25.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 36.下列说法错误的是()A. 2x2﹣3xy﹣1是二次三项式B. ﹣x+1不是单项式C. 的系数是D. ﹣22xab2的次数是67.计算2a3+3a3结果正确的是()A. 5a6B. 5a3C. 6a6D. 6a38.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=2bB. a=3bC. a=4bD. a=b10.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. ﹣1B. ﹣5C. 5D. 111.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题12.单项式﹣x3y的系数是________.13.多项式是a -2a -1 是________次________项式.14.下面是按一定规律排列的一列数:,- ,,- …那么第8个数是________.15.观察下列数:,,,,…按规律写出第6个数是________,第10个数是________,第n个数是________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________17.下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有________个★.三、解答题18.化简:(1)2x-5y-3x+y(2)19.先化简,再求值.,其中.20.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.21.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.参考答案一、选择题1.D2. B3.B4.C5. A6. D7. B8. C9.A 10.C 11. B二、填空题12. 13.三;三14. 15.;;16.x n+n217.(1+3n)三、解答题18.(1)解:2x-5y-3x+y=(2-3)x+(-5+1)y=-x-4y(2)解:=2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b19.解:原式=3x2-2xy- [x2-8x+8xy],=3x2-2xy- x2+4x-4xy,= x2-6xy+4x,当时,原式= ×(-2)2-6×(-2)×1+4×(-2),=10+12-8,=14.20.(1)解:上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则第一个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n )[10m+(10﹣n )]=100m (m+1)+n (10﹣n )(2)解:∵左边=(10m+n )(10m ﹣n+10), =(10m+n )[10(m+1)﹣n],=100m (m+1)﹣10mn+10n (m+1)﹣n 2 ,=100m (m+1)﹣10mn+10mn+10n ﹣n 2 , =100m (m+1)+n (10﹣n )=右边,∴(10m+n )[10m+(10﹣n )]=100m (m+1)+n (10﹣n )成立 21.(1)④4×6﹣52=﹣1(2)(2n ﹣1)(2n+1)﹣(2n )2=﹣1(3)解:左边=(2n ﹣1)(2n+1)﹣(2n )2=4n 2﹣1﹣4n 2=﹣1 所以(2)中所写的等式一定成立人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( ) A .-2x 2y 与xy 2B .x 2y 与x 2z C .3mn 与4nmD .-0.5ab 与abc2.已知苹果的单价为a 元/千克,香蕉的单价为b 元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab=6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________.12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A=2x2+3xy-2x-1,B=-x2+xy-1.(1)求3A+6B;(2)若3A+6B的值与x的取值无关,求y的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B =x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2 y9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12.原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2).当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1,所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨.答:这20辆汽人教版初中数学七年级上册第2章《整式加减》单元测试卷一、单选题(每小题只有一个正确答案)1.下列各式:ab ,2x y -,2x,–xy 2,0.1,1π,x 2+2xy+y 2,其中单项式有( ) A .5个B .4个C .3个D .2个2.多项式x 3–2x 2y 2+3y 2每项的系数和是() A .1B .2C .5D .63.若单项式–2335a bc 的系数、次数分别是m 、n ,则( )A .m=?35,n=6 B .m=35,n=6 C .m=–35,n=5 D .m=35,n=5 4.下列各式中,不是整式的是(). A .3aB .2x = 1C .0D .xy5.对[()]a b c d --+去括号后的结果是(). A .a b c d --+ B .a b c d +-- C .a b c d -++D .a b c d -+-6.单项式﹣x 2y 的系数与次数分别是() A.-,3B.-,4C.-π,3D.-π,47.下列各式计算正确的是(). A .(2)2a a b b --=- B .2(3)242xy y xy xy y --=- C .233336ab a b ab +=D .3()3xy y xy y +-=8.下列各组单项式属于同类项的是().A .2a 与22aB .3m -与2mC .223a b 与22ab D .22a 与23a9.一个两位数,十位上的数字比个位上的数字小2,设十位上的数字为x ,则这个两位数可以表示为(). A .22x +B .22x -C .112x -D .112x +10.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .611.规定一种新运算,a *b =a +b ,a #b =a ﹣b ,其中a 、b 为有理数,化简a 2b *3ab +5a 2b #4ab 的结果为() A .6a 2b +abB .﹣4a 2b +7abC .4a 2b ﹣7abD .6a 2b ﹣ab12.一个多项式加上2325y y --得到多项式3546y y --,则原来的多项式为() A.325321y y y ++- B.325326y y y --- C.325321y y y +-- D.325321y y y ---二、填空题13.多项式2239x xy π++ 人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每小题3分,共30分)1.建军的作业本中有四道列代数式的题目,其中错误的是().A .减去5等于x 的数是x +5B .4与a 的积的平方为4a 2C .m 与n 的和的倒数为1m n+ D .比x 的立方的2倍小5的数是2x 3-5 2.下列说法中,正确的是().A .15x +是多项式 B .213x π-的系数是13- C .2x 2-1的项是2x 2和1 D .3xy 2-y 2+6是三次三项式3.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是().A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 4.敏敏手中的纸条上写着多项式a 3+a x +1b -2a 2b 2,慧慧手中的纸条上写着单项式-a 3 b 4 c ,若这两个式子的次数相等,则x 的值为().A .5B .6C .7D .85.若多项式m 3+m x +1n -2m 2n 2与单项式-a 3 b 4 c 的次数相等,则x 的值为().A .5B .6C .7D .8图3图1 图25.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为().A.7 B.9 C.-7 D.-96.友龙在电脑中设置了一个运算程序:输入数a,加“?”键,再输入数b,得到运算a?b=2ab2+a2b. 若a=-2,b=3,则输出的值为().A.-9 B.-12 C.-24 D.67.有一个三位数,它的百位上的数字是a,十位上的数字比百位上的数字大1,个位上的数字比百位上的数字小1,则这个三位数一定是().A.2的倍数B.3的倍数C.5的倍数D.9的倍数8.已知y=x-1,则(x-y)2+(y-x)+1的值为().A.-1B.0 C.1 D.29.已知有理数a、b、c在数轴上的位置如图1所示,且a与b互为相反数,那么| a-c |-| b+c |的值为().A.0 B.1 C.a+b D.2c10.如图2,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,再将剪下的两个小长方形拼成一个新长方形,则新长方形的周长为().A.2a-3b B.4a-8b C.2a-4b D.4a-10b二、填空题(每小题3分,共24分)11.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电若不超过100度,每度按a元收费;若超过100度,那么超过部分每度按b元收费. 某户居民在一个月内用电160度,那么该户居民这个月应缴纳电费____________元.12.已知单项式2a3b n+1与单项式-3a m-2b2的和仍是单项式,则3m-4n=_________. 13.如图3,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示. 则打包带的长至少要____________.(用含x、y、z的代数式表示)14.已知(a+6)2+|b2-2b-3 |=0,则2b2-4b-a的值为_________.15.已知关于x的多项式(a+b)x4+(b-2)x3-2 (a+1)x2+2ax -15中,不含x3项和x2项,则当x=-2时,这个多项式的值为__________.16.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第100个单项式是________.17.已知x=34-12,y=32,求-x+(px-y2)-2(x-y2)的值,龙龙在做题时,把x 的值看成第1个第2个第3个第4个图4x=34,但最后也算出了正确的结果,若计算过程无误,由此可判定p 的值为_______. 18.出租车收费的标准因地而异,A 市的标准为:起步价10元,3千米后每千米为1.2元;B 市的标准为:起步价8元,3千米后每千米为1.4元. 则在A 市乘坐出租车x(x >3)千米比在B 市乘坐相同路程的出租车多花___________元. 三、解答题(共66分)19.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若x =-6,求所捂二次三项式的值.20.(8分)如图4,一只蚂蚁从点A 沿数轴向右爬2个单位到达点B. 若点A 表示的数a为32-,设点B 所表示的数为b .(1)求b 的值;(2)先化简223(2)[322()]a ab a b ab b ---++,再求值.21.(8分)已知A=-6x 2+4x ,B=-x 2-3x ,C=5x 2-7x +4,小明和小金在计算时对x 分别取了不同的数值,并进行了多次计算,但所得A -B +C 的结果却是一样的,你认为这可能吗?说明你的理由.22.(10分)张、王、李三家合办一个股份制企业,总股数为(5a 2-3a +3),每股20元,张家持有(2a 2+1)股,王家比张家少(a -1)股. (1)求王家和李家分别持有的股数.(2)若年终按持有股15%的比例支付股利,当a =300时,问李家能获得多少钱?23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:222(3)51x x x --=-+(1)填写下表:(2)归纳猜测第n个图形棋子的个数(用含n的代数式表示);(3)建军认为第671个图形有2016颗黑色棋子,你同意他的说法吗?请说明理由.24.(10分)观察代数式x-3x2+5x3-7x4+……并回答下列问题:(1)它的第100项是什么?(2)它的第n(n为正整数)项是什么?(3)当x=1时,求它的前2016项的和.参考答案一、选择题1.B.提示:列代数式表示“a与4的积的平方”为(4a)2.2.D.提示:选项A分母中含有字母,故不是多项式,选项B的系数是13π-,选项C的项是2x2和-1.3.A.提示:由于2月份产值是(1-10%)x万元,故3月份产值是在(1-10%)x万元的基础上增加了15%,即为(1-10%)(1+15%)x 万元.4.B.提示:由于-a3 b4 c的次数为8,则a3+a x+1b-2a2b2的次数x+1+1=8,故x=6. 5.D.提示:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,所以2×1-3=x,故x=-1;又因为2x-7=y,即2×(-1)-7=y,故y=-9.6.C.提示:当a=-2,b=3时,2ab2+a2b=2×(-2)×32+(-2)2×3=-24.7.B.提示:根据题意得100a+10(a+1)+(a-1)=111a+9=3(37a+3),故为3的倍数. 8.C.提示:由y=x-1,得y-x=-1或x-y=1,整体代入得,原式=12+(-1)+1=1. 9.A.提示:因为a与b互为相反数,所以a+b=0;根据数轴得a-c<0,b+c>0,故原式=-(a-c)-(b+c)=-a+c-b-c=-(a+b)=0.10.B.提示:根据示意图知,剪下的两个小长方形拼成的新长方形的长为(a-b),宽为(a -3b),所以新长方形的周长为2(a-b)+2(a-3b) =2a-2b+2a-6b=4a-8b.二、填空题11.(100a+60b). 提示:前100度按每度a元收费,故可收100a 元;超过100度的部分有60度,可收60b 元.12.11.提示:根据题意,两个单项式是同类项,所以m -2=3,n +1=2,故m =5,n =1. 13.2x +4y +6z. 提示:根据打包方式知,包带等于“长”的有2x ,包带等于“宽”的有4y ,包带等于“高”的有6z ,所以总长为2x +4y +6z.14.2.提示:由题意得a +6=0,b 2-2b -3=0,故a =-6,b 2-2b =3. 所以2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.15.5.提示:根据题意,得a =-1,b =2,所以这个多项式为x 4-2x -15. 当x =-2时,x 4-2x -15=(-2)4-2×(-2)-15=5.16.199x 100. 提示:由于x 的指数是连续自然数,而系数是连续奇数,即系数为(2n -1),故第100个单项式的系数为2×100-1=199. 所以这个单项式为199x 100.17.3.提示:-x +(px -y 2)-2(x -y 2)=-x +px -y 2-2x +2y 2=(p -3)x +y 2,因为把x 的值看错,但结果仍正确,所以x 的系数p -3=0,故p=3.18.(2.6-0.2x). 提示:在A 、B 两市乘车的费用分别为[10+1.2(x -3)]元和[8+1.4(x -3)]元,故A 市比B 市乘坐相同路程需多花[10+1.2(x -3)]-[8+1.4(x -3)]= (2.6-0.2x)元. 三、解答题 19.(1)设所捂的二次三项式为A ,则有A -2(x 2-3)=x 2-5x +1.所以A=(x 2-5x +1)+2(x 2-3)= x 2-5x +1+2x 2-6= 3x 2-5x -5. (2)当x=-2时,3x 2-5x -5=3×(-2)2-5×(-2)-5=17. 20.(1)由于31222-+=,所以12b =.(2)原式22(36)(3222)a ab a b ab b =---++2236328a ab a ab ab =---=-.当32a =-,b =12时,原式=-8×(32-)×12=6.21.可能. 理由如下:A -B +C=(-6x2人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分) 1、用代数式表示比b 的18小7的数() A.18b +7 B.18b -7 C.18(b -7) D.78b - 2、下列代数式中,不是单项式的是()A.5B.2x C.2x D.23a3、①;②;③;④分别是同类项的是()(A )①② ;(B )①③;(C )②③ ;(D )②④ 4、-( a-1)-(-a-2)+3的值是()(A )4;(B )6;(C )0;(D )与的值有关。
人教版第二章整式的加减单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)小明比小华大2岁,比小强小4岁.如果小华是m岁,小强是( )A.m﹣2B.m+2C.m+4D.m+62.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2可以合并同类项,那么m和n的值分别为( )A.2,3B.3,2C.﹣3,2D.3,﹣23.(3分)为落实“双减”政策,某校利用课后服务开展形式多样的活动,七、八、九年级共有50人参加书法学习,其中七年级的人数比八年级人数的2倍少1人,设八年级的人数为x人,则九年级的人数为( )A.48﹣3x B.49﹣3x C.51﹣3x D.52﹣3x4.(3分)多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,则m取值为( )A.3B.﹣1C.3或﹣1D.﹣3或15.(3分)下列说法错误的是( )A.π是单项式B.单项式﹣n的系数是﹣1C.单项式的次数是7D.是二次二项式6.(3分)用小棒按下面的规律拼摆八边形.萌萌、亮亮、乐乐、欢欢通过观察图形,找出了拼摆成的八边形的数量n和需要小棒的数量a之间的关系.下面说法正确的是( )A.萌萌:a=16+16n(n>3)B.亮亮:a=7n+1C.乐乐:a=8n﹣1D.欢欢:a=7n+n7.(3分)当a=1,b=﹣1时,代数式a+2b+2(a+2b)+1的值为( )A.3B.1C.0D.﹣28.(3分)如图,在一个直径是a+b的圆形纸板上挖去两个直径分别是a和b的小圆形纸板,则剩余纸板的面积是( )A.B.2πab C.D.π(a2﹣b2)9.(3分)探索规律:观察下面的一列单项式:x、﹣2x2、4x3、﹣8x4、16x5、…,根据其中的规律得出的第8个单项式是( )A.﹣64x8B.64x8C.128x8D.﹣128x810.(3分)在式子,﹣4x,abc,π,,0.81,,0中,单项式共有( )A.5个B.6个C.7个D.8个二.填空题(共6小题,满分18分,每小题3分)11.(3分)如果﹣4x3y n﹣4与3x3y是同类项,那么n= .12.(3分)一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付 元.13.(3分)若a+2b﹣1=0,则3a+6b的值是 .14.(3分)如图,正方形中阴影部分的面积为 .15.(3分)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|= .16.(3分)小明从东面上山西面下山,已知下山的路程是上山路程的三倍,上山的速度为a,下山的速度为b,则小明全程的平均速度为 .三.解答题(共9小题,满分72分)17.(6分)计算(1)x2﹣5y﹣4x2+y﹣1;(2)7a+3(a﹣3b)﹣2(b﹣3a).18.(6分)先化简,再求值:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2),其中.19.(8分)已知x,y为有理数,现规定一种新运算“※”,满足x※y=2x﹣y.(1)求3※4的值;(2)求(2※2a)※(﹣3a)的值.20.(8分)每年的6月5日是“世界环境日”,中国的主题是“建设人与自然和谐共生的现代化“,希望小学组织六年级同学开展收集废弃的塑料瓶活动,男生一共收集了180个,女生收集的个数是男生的2.5倍,女生一共收集了多少个?21.(8分)公租房作为一种保障性住房,租金低、设施全受到很多家庭的欢迎.某市为解决市民的住房问题,专门设计了如图所示的一种户型,并为每户卧室铺了木地板,其余部分铺了瓷砖.(1)木地板和瓷砖各需要铺多少平方米?(2)若a=1.5,b=2,地砖的价格为100元/平方米,木地板的价格为200元/平方米,则每套公租房铺地面所需费用为多少元?22.(8分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)用含x,y的代数式表示阴影部分的周长.(2)用含x,y的代数式表示阴影部分的面积.(3)x=2,y=2.5时,计算阴影部分的面积.23.(8分)佳佳做一道题“已知两个多项式A,B,计算A﹣B”.佳佳误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请解决下列问题:(1)求出A;(2)求A﹣B的正确答案.24.(10分)南阳万德隆超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠方法低于200元不予优惠低于500元但不低于200元9折优惠不低于500元其中500元部分给予9折优惠,超过500元部分给予8折优惠(1)你一次性购物680元,那么实际付款 元;(2)某顾客在该超市一次性购物m元,当m小于500但不小于200时,他实际付款 元,当m大于或等于500时,他实际付款 元;(用含m的代数式表示)(3)班主任为了筹备元旦晚会,如果两次购物合计960元,第一次购物x(200<x<400)元,用含x的代数式表示两次购物班主任实际付款多少元?25.(10分)定义如下:存在数a,b,使得等式+=成立,则称数a,b为一对“互助数”,记为(a,b).比如:(0,0)是一对“互助数”.(1)若(1,b)是一对“互助数”,则b的值为 ;(2)若(﹣2,x)是一对“互助数”,求代数式(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)的值;(3)若(m,n)是一对“互助数”,满足等式m﹣n﹣(6m+2n﹣2)=0,求m和n的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)小明比小华大2岁,比小强小4岁.如果小华是m岁,小强是( )A.m﹣2B.m+2C.m+4D.m+6【解答】解:根据题意知,小明的年龄为(m+2)岁,则小强的年龄为m+2+4=m+6(岁),故选:D.2.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2可以合并同类项,那么m和n的值分别为( )A.2,3B.3,2C.﹣3,2D.3,﹣2【解答】解:由题意得:2m﹣5=1,n+2=3n﹣2,∴m=3,n=2,故选:B.3.(3分)为落实“双减”政策,某校利用课后服务开展形式多样的活动,七、八、九年级共有50人参加书法学习,其中七年级的人数比八年级人数的2倍少1人,设八年级的人数为x人,则九年级的人数为( )A.48﹣3x B.49﹣3x C.51﹣3x D.52﹣3x【解答】解:由题意得:七年级参加书法学习的人数为:(2x﹣1)人,则九年级参加书法学习的人数为:50﹣(2x﹣1)﹣x=(51﹣3x)人,故选:C.4.(3分)多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,则m取值为( )A.3B.﹣1C.3或﹣1D.﹣3或1【解答】解:∵多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,∴|m﹣1|=2,∴m=3,或m=﹣1,∵m﹣3≠0,∴m=﹣1,故选:B.5.(3分)下列说法错误的是( )A.π是单项式B.单项式﹣n的系数是﹣1C.单项式的次数是7D.是二次二项式【解答】解:A、π是单项式,故正确,不合题意;B、单项式﹣n的系数是﹣1,故正确,不合题意;C、单项式的次数是7,故正确,不合题意;D、不是整式,故错误,符合题意;故选:D.6.(3分)用小棒按下面的规律拼摆八边形.萌萌、亮亮、乐乐、欢欢通过观察图形,找出了拼摆成的八边形的数量n和需要小棒的数量a之间的关系.下面说法正确的是( )A.萌萌:a=16+16n(n>3)B.亮亮:a=7n+1C.乐乐:a=8n﹣1D.欢欢:a=7n+n【解答】解:根据题意,拼摆成n个八边形需要小棒的数量a=8+7(n﹣1)=7n+1,故选:B.7.(3分)当a=1,b=﹣1时,代数式a+2b+2(a+2b)+1的值为( )A.3B.1C.0D.﹣2【解答】解:a+2b+2(a+2b)+1=a+2b+2a+4b+1=3a+6b+1,当a=1,b=﹣1时,原式=3×1+6×(﹣1)+1=3+(﹣6)+1=3+1﹣6=﹣2,故选:D.8.(3分)如图,在一个直径是a+b的圆形纸板上挖去两个直径分别是a和b的小圆形纸板,则剩余纸板的面积是( )A.B.2πab C.D.π(a2﹣b2)【解答】解:由题意可得:剩余纸板的面积为:π()2﹣π()2﹣π()2==ab.故选:C.9.(3分)探索规律:观察下面的一列单项式:x、﹣2x2、4x3、﹣8x4、16x5、…,根据其中的规律得出的第8个单项式是( )A.﹣64x8B.64x8C.128x8D.﹣128x8【解答】解:根据题意得:第8个单项式是﹣27x8=﹣128x8.故选:D.10.(3分)在式子,﹣4x,abc,π,,0.81,,0中,单项式共有( )A.5个B.6个C.7个D.8个【解答】解:式子,﹣4x,abc,π,0.81,0是单项式,共6个,故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)如果﹣4x3y n﹣4与3x3y是同类项,那么n= 5 .【解答】解:∵﹣4x3y n﹣4与3x3y是同类项,∴n﹣4=1,解得:n=5.故答案为:5.12.(3分)一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付 (3a+7b) 元.【解答】解:一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付(3a+7b)元.故答案为:(3a+7b).13.(3分)若a+2b﹣1=0,则3a+6b的值是 3 .【解答】解:∵a+2b﹣1=0,∴a+2b=1,∴原式=3(a+2b)=3×1=3.故答案为:3.14.(3分)如图,正方形中阴影部分的面积为 2ab .【解答】解:.故答案为:2ab.15.(3分)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|= ﹣3b .【解答】解:由数轴上点的位置可得:c<b<0<a,且|a|<|b|,∴a﹣b>0,c﹣b<0,a+b+c<0,则|a﹣b|+|a+b+c|﹣|c﹣b|=a﹣b﹣a﹣b﹣c+c﹣b=﹣3b.故答案为:﹣3b16.(3分)小明从东面上山西面下山,已知下山的路程是上山路程的三倍,上山的速度为a,下山的速度为b,则小明全程的平均速度为 .【解答】解:设上山的路程是“1”,则下山的路程是“3”.∵上山的速度为a,下山的速度为b,∴上山的时间为,下山的时间,总时间为:+=,小明全程的平均速度为:(1+3)÷=,故答案为:.三.解答题(共9小题,满分72分)17.(6分)计算(1)x2﹣5y﹣4x2+y﹣1;(2)7a+3(a﹣3b)﹣2(b﹣3a).【解答】解:(1)原式=x2﹣4x2+y﹣5y﹣1=﹣3x2﹣4y﹣1;(2)原式=7a+3a﹣9b﹣2b+6a=16a﹣11b;18.(6分)先化简,再求值:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2),其中.【解答】解:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2)=12y2﹣6y+4+2y﹣2﹣2﹣12y2=﹣4y,∵,∴原式=﹣4×=﹣2.19.(8分)已知x,y为有理数,现规定一种新运算“※”,满足x※y=2x﹣y.(1)求3※4的值;(2)求(2※2a)※(﹣3a)的值.【解答】解:(1)3※4=2×3﹣4=6﹣4=2.(2)2※2a=2×2﹣2a=4﹣2a,(4﹣2a)※(﹣3a)=2×(4﹣2a)﹣(﹣3a)=8﹣4a+3a=8﹣a.20.(8分)每年的6月5日是“世界环境日”,中国的主题是“建设人与自然和谐共生的现代化“,希望小学组织六年级同学开展收集废弃的塑料瓶活动,男生一共收集了180个,女生收集的个数是男生的2.5倍,女生一共收集了多少个?【解答】解:180×2.5=450(个),答:女生一共收集了450个.21.(8分)公租房作为一种保障性住房,租金低、设施全受到很多家庭的欢迎.某市为解决市民的住房问题,专门设计了如图所示的一种户型,并为每户卧室铺了木地板,其余部分铺了瓷砖.(1)木地板和瓷砖各需要铺多少平方米?(2)若a=1.5,b=2,地砖的价格为100元/平方米,木地板的价格为200元/平方米,则每套公租房铺地面所需费用为多少元?【解答】解:(1)铺木地板的面积为:(5b﹣2b﹣b)×2a+(5a﹣2a)×2b=2b×2a+3a×2b=4ab+6ab=10ab(平方米);铺瓷砖的面积为:5a×5b﹣10ab=15ab(平方米).答:木地板需要铺10ab平方米,瓷砖需要铺15ab平方米.(2)当a=1.5,b=2时,10ab=10×1.5×2=30(平方米),15ab=15×1.5×2=45(平方米),∵地砖的价格为100元/平方米,木地板的价格为200元/平方米,∴每套公租房铺地面所需费用为:30×200+45×100=10500(元).答:每套公租房铺地面所需费用为10500元.22.(8分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)用含x,y的代数式表示阴影部分的周长.(2)用含x,y的代数式表示阴影部分的面积.(3)x=2,y=2.5时,计算阴影部分的面积.【解答】解:(1)根据题意得:2(y+3y+2.5x)=5x+8y;(2)根据题意得:y•2.5x+3y•0.5x=4xy;(3)当x=2,y=2.5时,S=4×2×2.5=20.23.(8分)佳佳做一道题“已知两个多项式A,B,计算A﹣B”.佳佳误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请解决下列问题:(1)求出A;(2)求A﹣B的正确答案.【解答】解:(1)∵A+B=9x2﹣2x+7,B=x2+3x﹣2∴A=9x2﹣2x+7﹣(x2+3x﹣2)=9x2﹣2x+7﹣x2﹣3x+2=8x2﹣5x+9;(2)A﹣B=8x2﹣5x+9﹣(x2+3x﹣2)=8x2﹣5x+9﹣x2﹣3x+2=7x2﹣8x+11.24.(10分)南阳万德隆超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠方法低于200元不予优惠低于500元但不低于200元9折优惠不低于500元其中500元部分给予9折优惠,超过500元部分给予8折优惠(1)你一次性购物680元,那么实际付款 594 元;(2)某顾客在该超市一次性购物m元,当m小于500但不小于200时,他实际付款 0.9x 元,当m大于或等于500时,他实际付款 (0.8x+50) 元;(用含m的代数式表示)(3)班主任为了筹备元旦晚会,如果两次购物合计960元,第一次购物x(200<x<400)元,用含x的代数式表示两次购物班主任实际付款多少元?【解答】解:(1)∵680>500,∴其中500元部分给予9折优惠,超过500元部分给予8折优惠.∴王老师一次性购物680元,他实际付款:500×90%+(680﹣500)×80%=450+144=594(元).故答案为:594.(2)当m小于500但不小于200时,他实际付款(0.9m元);当m大于或等于500时,他实际付款:500×90%+80%(m﹣500)=(0.8m+50)元.故答案为:0.9m;(0.8m+50);(3)∵第一次购物x元,∴第二次购物(960﹣x)元.∵200<x<400,∴560≤960﹣x≤760.∴两次购物王老师实际付款:90%x+500×90%+(960﹣x﹣500)×80%=0.9x+450+368﹣0.8x=(0.1x+818)元.25.(10分)定义如下:存在数a,b,使得等式+=成立,则称数a,b为一对“互助数”,记为(a,b).比如:(0,0)是一对“互助数”.(1)若(1,b)是一对“互助数”,则b的值为 ﹣4 ;(2)若(﹣2,x)是一对“互助数”,求代数式(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)的值;(3)若(m,n)是一对“互助数”,满足等式m﹣n﹣(6m+2n﹣2)=0,求m和n的值.【解答】解:(1)∵(1,b)是一对“互助数”,∴+=,解得:b=﹣4,故答案为:﹣4;(2)∵(﹣2,x)是一对“互助数”,∴﹣1+=,解得:x=8,(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)==,当x=8时,原式=+16+2=﹣14;(3)∵(m,n)是一对“互助数”,∴,化简得:n=﹣4m①,由m﹣n﹣(6m+2n﹣2)=0化简得,②,把①代入②中得,,解得:m=,则n==2,∴m=,n=2.。
第二章 整式的加减单元检测题(时间:120分钟 满分:150分)一、 选择题:(本大题10个小题,每小题4分,共40分)1.下列各式中,不是整式的是 ( )A .3a B.2x=1 C.0 D.x+y2.下列各式中,书写格式正确的是 ( )A .4·21B .3÷2y C.xy ·3 D.ab ( ) 3.用整式表示“比a 的平方的一半小1的数”是 ( )A.(21a)2B. 21a 2-1C. 21(a -1)2D. (21a -1)2 ( ) 4.在整式5abc ,-7x 2+1,-52x ,2131,24y x 中,单项式共有 ( ) A.1个 B.2个 C.3个 D.4个 ( )5.已知15m x n 和-92m 2n 是同类项,则∣2-4x ∣+∣4x -1∣的值为 ( ) A.1 B.3 C.8x -3 D.13 ( )6.已知-x+3y =5,则5(x -3y )2-8(x -3y )-5的值为 ( )A.80B.-170C.160D.60 ( )7.下列整式的运算中,结果正确的是 ( )A.3+x =3xB.y+y+y=y 3C.6ab -ab=6D.-41st+0.25st=0 ( ) 8.将多项式3x 2y -xy 2+x 3y 3-x 4y 4-1按字母x 的降幂排列,所得结果是( )A.-1-xy 2+3x 2y+x 3y 3-x 4y 4B. -x 4y 4+ x 3y 3+3 x 2y -x y 2-1C. -x 4y 4+ x 3y 3-xy 2+3x 2y -1D. -1+3 x 2y -x y 2+x 3y 3-x 4y 49.已知a<b,那么a -b 和它的相反数的差的绝对值是 ( )A.b -aB.2b -2aC.-2aD.2b10.下列说法错误的是 ( )A.-xy 的系数是-1B.3x 3-2x 2y 2-23y 3 C.当a<2b 时,2a+b+2∣a -2b ∣=5b D.多项式8)1(32x -中x 2的系数是-3 二、填空题:(本大题10个小题,每小题3分,共30分)11.-3ab 2c 3的系数是 ,次数是12.多项式1+a+b 4-a 2b 是 次 项式.13.把多项式2xy 2-x 2y -x 3y 3-7按x 的升幂排列是14.设a 、b 表示两数,则两数的平方和是 ,两数和的平方是15.若三个连续奇数中间一个是2n+1(n ≠0的整数),则这三个连续奇数的和为16.化简3a 2b -3(a 2b -ab 2)-3ab 2=17.一个多项式加上-2+x -x 2得到x 2-1,则这个多项式是18.m 、n 互为相反数,则(3m -2n )-(2m -3n )=19.如图,用灰白两色正方形瓷砖铺设地面,第n 个图案中灰色瓷砖块数为20.若3a 1+n b 2与21a 3b 3+m 的和仍是单项式,则m= ,n= 三、解答题:(本大题8个小题,每小题10分,共80分)解答时每小题必须给出必要的演算过程或推理步骤。
《第2章整式的加减》单元测试卷班级______ 姓名_________座号______ 家长签名__________一、选择题(每题2分,共22分)1.在n 2,33-m ,22-,32m -,22b π中,单项式的个数有( )A. 1个B.2个C.3个D.4个 2、下列代数式书写正确的是()A 、48aB 、y x ÷C 、)(y x a +D 、211abc.不是整式. 3x 2﹣y+5xy 2是二次三项式 5.下列合并同类项正确的是() A. B.C. D. 6.)]([c b a ---去括号应得()A. c b a -+-B.c b a +--C.c b a ---D.c b a ++- 7.化简)2()2()2(++---x x x 的结果等于()A .63-x B.2-x C.23-x D.3-x8.某工厂第一年生产a 件产品,第二年比第一年增产了20%,则两年共325a b ab +=770m m -=33622ab ab a b +=-+=a b a b ab 2222A . 4x ﹣5x ﹣5B . ﹣4x +5x+5C . 4x ﹣x+5D . 4x ﹣5( )A .2a+b B .2a C . a D .b二、填空题(除12、13、17题每空一分外,其余每题3分,共34分) 12.单项式的系数是 ,次数是 .13多项式172332+--x x x 是次项式,最高次项是___,常数项是__。
14.一个多项式加上22x x -+-得21x -,则此多项式应为_____________. 15.已知与是同类项,则2m+n 的值是 .16. 三个连续自然数中最小的一个数是4n+1,则它们的和是 . 17.计算()()=+---xy y y xy 2.=-+-7533x x ,)9()35(b a b a -+-= ____。
ab b ab 92842--+-=____18.已知轮船在静水中前进的速度是m 千米/时,水流速度是n 千米/时,则轮船在逆水中航行的速度是 千米/时.19.如果A 是x 的5次多项式,B 是x 的5次多项式,那么A ﹣B 是_______20若(3x 2﹣3x+2)﹣(﹣x 2+3x ﹣3)=Ax 2﹣Bx+C ,则A 、B 、C 的值是______,________,_________. 21.多项式是关于x 的二次三项式,则n 的值是_____22.观察:x ,﹣2x 2,4x 3,﹣8x 4,…的规律,推断第n 个数据应为 . 三、解答题23.(12分)化简)2(43xy xy xy ---.)34()135(232a a a a --+-)(4)()(3222222y z z y y x ---+--32009)214(2)2(++--y x y x24. 化简求值:(5分)(1)()()23523132a a a +---,其中31-=a(7分)(2)已知(x+1)2+|y ﹣1|=0,求2(xy ﹣5xy 2)﹣(3xy 2﹣xy )值.25.(7分)一位同学做一道题:已知两个多项式A 、B ,计算2A+B ,他误将“2A+B•”看成“A+2B ”求得的结果为2927x x -+,已知232B x x =+-,求2A+B 的正确答案.26.一种笔售价为20元/支,如果买10支以上(不含10支),售价18元/支.(6分)(1)用代数式表示买n支笔所需金额.(2)按照这种规定,会不会出现多买比少买反而付钱少的情况?(3)如果需要10支笔,那么怎么样购买比较省钱?27.(7分)小明的爸爸打算用53m的篱笆隔成一个长方形的花圃,一条边靠墙,如图1.(墙长20m)(1)如果设花圃平行于墙的一边为xm,那么垂直于墙的另一边可以表示为m,花圃的面积可以表示为m2.(2)如果设花圃垂直于墙的一边为xm,那么平行于墙的另一边可以表示为m,花圃的面积可以表示为m2.(3)如图2所示,根据实际的需要还要在平行于墙的一边安装1扇l m宽的木门,小明建议花圃的长比宽多6rn;爸爸建议花圃的长比宽多3m,请你通过计算来说明,谁的建议更合理.。
第二章 整式的加减 单元检测题班级: 姓名: 得分:一、选择题1.原产量吨,增产30%之后的产量应为(A )n %)301(-吨 (B )n %)301(+吨(C )%30+n 吨 (D )n %30吨2.下列说法正确的是(A )231x π的系数为31 (B )221xy 的系数为x 21 (C )25x -的系数为5 (D )23x 的系数为33.下列计算正确的是(A )x x x x -=+-694 (B )02121=-a a (C )x x x =-23 (D )xy xy xy 32=-4.买一个足球需要m 元,买一个篮球要n 元,则买4个足球、7个篮球共需要元(A )n m 74+ (B )mn 28(C )n m 47+ (D )mn 115.计算:3562+-a a 与1252-+a a 的差,结果正确的是(A )432+-a a (B )232+-a a(C )272+-a a (D )472+-a a二、填空题6.列示表示:p 的3倍的41是 . 7.34.0xy 的次数为 .8.多项式154122--+ab ab b 次数为 . 9.写出235y x -的一个同类项 .10.三个连续奇数,中中间一个是n ,则这三个数的和为 .11.观察下列算式:1010122=+=-;3121222=+=-;5232322=+=-;7343422=+=-;9454522=+=-;……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: .三、解答题12.计算(1)6321+-st st (2)67482323---++-a a a a a a(3)355264733---+++xy xy x xy xy13.计算(1))32(3)32(2a b b a -+-(2))]2([2)32(3)(222222y xy x x xy x xy x +------14.先化简,再求值(1))23(31423223x x x x x x -+--+,其中3-=x(2))43()3(5212222c a ac b a c a ac b a -+---,其中1-=a ,2=b ,2-=c15.如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为r 米,广场长为a 米,宽为b 米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留).16.(9分)小明在实践课中做了一个长方形模型,模型一边长为b a 23+,另一边比它小b a -,则长方形模型周长为多少?17.张华在一次测验中计算一个多项式加上xz yz xy 235+-时,误认为减去此式,计算出错误结果为xz yz xy +-62,试求出正确答案.18.每家乐超市出售一种商品,其原价格为a 元,现有三种调价方案:(1)先提价20%,再降价20%;(2)先降价20%,再提价20%;(3)先提价15%,再降价15%.问用这三种方案调价结果是否一样?最后是不是都恢复了原价?。
第二章整式的加减单元测试卷
一、选择题
1.下列各项中的数量关系不能用式子2a+3b表示的是()
A.小红去商场买了2个单价为a元的本子和3支单价为b元的笔,
她共花了多少钱?
B.全班同学都报名参加了课外活动小组,其中报2个小组的有a名
同学,报3个小组的有b名同学,全班共有多少名同学?
C.小亮看书特别快,他借了一本课外书,5天就看完了,他有两天是
每天看a页,有三天是每天看b页,这本书一共有多少页?
D.为了奖励“学雷锋先进个人”,学校买了两种奖品,其中2元的
笔记本a本,3元的笔记本b本,学校买这些奖品共花了多少钱?
2.若-3x m+1y2017与2x2015y n是同类项,则|m-n|的值是()
A.0
B.1
C.2
D.3
3.观察下列图形及图形所对应的算式,根据你发现的规律计算
1+8+16+24+…+8n(n是正整数)的结果为()
A.(2n+1)2
B.(2n-1)2
C.(n+2)2
D.n2
4.下列运算正确的是()
A.3x3-5x3=-2x
B.6x3-2x3=3x
C.3x(x-4)=3x2-12x
D.-3(2x-4)=-6x-12
二、填空题
1.三个连续奇数,设中间一个为2n+1,则这三个数的和是________.
2.某地为了改造环境,计划从2016年开始用五年时间植树绿化荒山.
如果每年植树绿化x公顷荒山,那么这五年内植树绿化荒山_____公顷.
3.同类项-a3b,3a3b,-a3b的和是_______________________.
4.若多项式2x2+3y+7的值为8,则多项式6x2+9y+8的值为()
5.组成多项式6x2-2x+7的各项是()
6.如图,它是一个程序计算器,用字母及符号把它的程序表达出来
________,如果输入m=3,那么输出_____.
7.将2(x+y)+3(x+y)-4(x+y)合并同类项,得()
三、解答题
1.用火柴棒按下列方式搭建三角形:
(1)填表:
(2)当三角形的个数为n时,火柴棒的根数为多少?
(3)当n=1008时,火柴棒的根数是多少?
2.张华在一次测验中计算一个多项式加上5xy-3yz+2xz时,不小心
看成减去5xy-3yz+2xz,计算出错误结果为2xy+6yz-4xz,试求出原题目的正确答案.
3.一辆出租车从A地出发,在一条东西走向的街道上往返行驶,每次
行驶的路程(记向东为正)记录如下(9<x<26,单位:km):
(1)说出这辆出租车每次行驶的方向;
(2)这辆出租车一共行驶了多少路程?。