武汉理工材料力学第07章a(应力状态)
- 格式:ppt
- 大小:5.43 MB
- 文档页数:95
第 七 章 应力状态 强度理论一、 判断题1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。
(√)2、单元体中正应力为最大值的截面上,剪应力必定为零。
(√)3、单元体中剪应力为最大值的截面上,正应力必定为零。
(×) 原因:正应力一般不为零。
4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。
(×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。
三向等拉或等压倒是为一个点。
5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。
(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上6、材料在静载作用下的失效形式主要有断裂和屈服两种。
(√)7、砖,石等脆性材料式样压缩时沿横截面断裂。
(×)8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。
(×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论9、纯剪应力状态的单元体既在体积改变,又有形状改变。
(×) 原因:只形状改变,体积不变10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管的冰不会被破坏,只是因为冰的强度比铸铁的强度高。
(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态二、 选择题1、危险截面是( C )所在的截面。
A 最大面积B 最小面积C 最大应力D 最大力2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。
A 单元体的形状可以是任意的B 单元体的形状不是任意的,只能是六面体微元C 不一定是六面体,五面体也可以,其他形状则不行D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B )A 单向应力状态B 二向应力状态C 三向应力状态D 各向等应力状态 5、分析处于平面应力状态的一点,说确的是( B )。
p
σα
α
τα
)
(−
B
各边边长,
d x d y
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
(2) 应力状态的分类
a、单向应力状态:只有一个主应力不等于零,另两个主应力
都等于零的应力状态。
b、二向应力状态:有两个主应力不等于零,另一个主应力
等于零的应力状态。
c、三向应力状态:三向主应力都不等于零的应力状态。
平面应力状态:单向应力状态和二向应力状态的总称。
空间应力状态:三向应力状态
简单应力状态:单向应力状态。
复杂应力状态:二向应力状态和三向应力状态的总称。
纯剪切应力状态:单元体上只存在剪应力无正应力。
y
x
σx
σy
σz
τxy τyx
τyz
τzy τzx
τxz
x
y
σx
σy
τyx
τxy
τ第一个下标表示微面元方向,第二个下标表示面元上力的方向
空间问题简化
为平面问题
α——由o
c
b
σττ
σ
ττ
τ
max τ
min
τα
D
A
H
3040MPa
7.27422
)
7.27(=−−
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
y
x
z。
第七章 应力状态和强度理论 习题解[习题7-1] 试从图示各构件中A 点和B 点处取出单元体,并表明单元体各面上的应力。
[习题7-1(a )]解:A 点处于单向压应力状态。
224412d F d F F A N A ππσ-=-==[习题7-1(b )]解:A 点处于纯剪切应力状态。
3316161d T d T W T P A ππτ-===MPa mm mm N 618.798014.310816336=⨯⋅⨯⨯=[习题7-1(b )]解:A 点处于纯剪切应力状态。
0=∑AM04.028.02.1=⨯--⨯B R )(333.1kN R B =)(333.1kN R Q B A -=-=MPa mmN A Q A 417.01204013335.15.12-=⨯⨯-=⨯=τB 点处于平面应力状态MPamm mm mm N I y M zB B 083.21204012130103.0333.1436=⨯⨯⨯⋅⨯⨯==σMPa mm mm mmN b I QS z zB 312.0401204012145)3040(1333433*-=⨯⨯⨯⨯⨯⨯-==τ[习题7-1(d )]解:A 点处于平面应力状态MPa mm mm N W M zA A 064.502014.3321103.39333=⨯⨯⋅⨯==σMPa mm mm N W T PA 064.502014.3161106.78333=⨯⨯⋅⨯==τ [习题7-2] 有一拉伸试样,横截面为mm mm 540⨯的矩形。
在与轴线成045=α角的面上切应力MPa 150=τ时,试样上将出现滑移线。
试求试样所受的轴向拉力F 。
解:AFx =σ;0=y σ;0=x τ 004590cos 90sin 20x yx τσστ+-=A F 2045=τ 出现滑移线,即进入屈服阶段,此时,1502045≤=AFτ kN N mm mm N A F 6060000540/30030022==⨯⨯==[习题7-3] 一拉杆由两段沿n m -面胶合而成。
第七章应力状态与应变状态分析7–1应力状态的概念一、一点的应力状态:过受力构件内一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态二、为什么要研究应力状态?三、怎样研究应力状态单元体:单元体——构件内的点的代表物,是包围被研究点的无限小的几何体,常用的是正六面体。
单元体的性质——a 、每个平面上,应力均布; b 、平行面上,应力相等。
四、普遍状态下的应力表示(图略6)五、剪应力互等定理过一点的两个正交面上,如果有与相交边垂直的剪应力分量,则两个面上的这两个剪应力分量一定等值、方向相对或相离。
yx xy ττ=六、原始单元体(已知单元体):七、主单元体、主平面、主应力1、主单元体:各侧面上剪应力均为零的单元体。
2、主平面:剪应力为零的截面。
3、主应力:主平面上的正应力。
4、主应力排列规定:按代数值大小,321σσσ≥≥5、三向应力状态:三个主应力都不为零的应力状态。
6、二向应力状态:一个主应力为零的应力状态。
7、单向应力状态:一个主应力不为零的应力状态。
7–2平面应力状态分析——解析法一、任意斜截面上的应力规定:1、σα截面外法线同向为正;2、t a 绕研究对象顺时针转为正;3、a 逆时针为正。
ατασσσσσα2sin 2cos 22xy y x y x --++= ατασστα2cos 2sin 2xy yx +-=二、极值应力yx xyσστα--=22tg 0 和两个极值:)、(20101παα+⎪⎩⎪⎨⎧+-±+=22minmax )2(2xy y x y x τσσσσσσ⎪⎩⎪⎨⎧+-±=22minmax )2(xy y x τσσττ7–3平面应力状态分析——图解法一、应力圆⎪⎪⎩⎪⎪⎨⎧+-=--++=ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy y x xy y x y x 对上述方程消去参数(2α),得:222222xy y x y x τσστσσσαα+⎪⎪⎭⎫ ⎝⎛-=+⎪⎪⎭⎫ ⎝⎛+-,此方程曲线为圆—应力圆 二、应力圆的画法1、建立应力坐标系,如下图所示,(注意选好比例尺)2、在坐标系内画出点A (σx ,τxy )和B (σy ,τyx )3、AB 与σa 轴的交点C 便是圆心4、以C 为圆心,以AC 为半径画圆——应力圆三、单元体与应力圆的对应关系1、α面上的应力(σα,τα)→应力圆上一点(σα,τα)2、α面的法线→应力圆的半径3、两面夹角α→两半径夹角2α;且转向一致。