北大计量经济学讲义-工具变量与两阶段最小二乘法
- 格式:ppt
- 大小:236.50 KB
- 文档页数:5
两阶段最小二乘法步骤
两阶段最小二乘法是一种分离策略,将内生变量分离为可以被工具变量线性表出的部分,以及随机干扰部分。
其具体步骤如下:
1. 第一阶段:让工具变量z对内生x进行回归,得到估计值$x^$。
2. 第二阶段:利用$x^$对y做回归,得到系数估计值。
这种方法通过将估计分成两个步骤(阶段)回归,因此得名“两阶段最小二乘法”。
对于联立方程组,可以采用三阶段最小二乘法。
如果存在弱工具变量问题,可以采取对信息不太敏感的有限信息极大似然估计法。
第15章工具变量估计与两阶段最小二乘法摘要: 本章继续讨论如何解决模型中的内生解释变量(endogenous explanatory variables )问题。
遗漏变量(omitted variables )是导致内生性问题的一个原因。
本章采用工具变量法(method of instrumental variables,IV )来解决模型中的一个或多个解释变量的内生性问题。
所采用的估计方法被称为两阶段最小二乘估计(method of two stage least squares ,2SLS or TSLS),其受欢迎程度仅次于OLS. IV 也能在某些特定的情形下解决变量带误差(errorsin-variables )的问题.15.1 动机: 简单回归中的遗漏变量如何处理可能发生的变量遗漏带来的偏误,已有三种选择: 1)直接忽略,讨论偏误的方向;2)寻找一个合适的代理变量;3)如果该遗漏变量不随时间变化时,采用FE 或FD 方法。
工具变量法的思路:不是考虑如何处理遗漏变量(此时遗漏变量在误差项中),而是寻找被遗漏的解释变量的替代变量,使得替代变量和误差项不再存在相关性。
y =β0+β1x +u ,此时该模型不满足MLR.4,从而不能保证Cov (x,u )=0,特别地,假定Cov (x,u )≠0. 如果x 的替代变量z 同时满足下面两个条件:1) 工具外生性(instrument exogeneity )条件:Cov (z,u )=0,2) 工具相关性(instrument relevance )条件:Cov (z,x )≠0,则称z 为x 的工具变量(instrumental variable ),或简称工具(instrumental ). 几点说明:1) 工具变量的外生性意味着z 对y 没有偏效应(当x 和u 中遗漏变量被控制时),同时也和其它被遗漏变量不相关;2) 工具外生性检验在多数情况下只能通过经济行为或反思来判断;3) 工具相关性检验借助t 和F 检验就行;外生性和相关性假设足以帮助我们识别(Identification )出β1=COv(z,y)Cov(z,x),那么β1的工具变量估计(instrumental variables (IV) estimator )为:β̂1=∑(z i −z ̅)(y i −y ̅)n i=1∑(z i −z ̅)(x i −x ̅)n i=1, 其是β1的一致但有偏的估计;4)β̂1显然当z=x,该估计就是OLS 估计,但这要以x 和u 无关为条件,也即工具变量法适于u 和x 无关的情形。
两阶段最小二乘工具变量估计法【知识专栏】探究两阶段最小二乘工具变量估计法在经济学和社会科学领域,研究者常常面临着解决内生性问题的挑战。
内生性问题的存在会导致统计结果的偏误,从而影响对因果关系的准确性。
为了解决内生性问题,学者们提出了一种被广泛应用的估计方法,即两阶段最小二乘工具变量估计法(Two-Stage Least Squares,2SLS)。
一、深入解读内生性问题内生性是什么?从宏观角度看,内生性指的是解释变量与误差项之间存在相关关系,从而引发了对因果关系的混淆。
举个例子来说,假设我们想研究教育对收入的影响。
然而,由于教育受到家庭背景的影响,可能存在潜在的内生性问题。
也就是说,收入水平的高低可能既受到教育程度的影响,又受到家庭背景的影响,使得教育对收入的影响难以单独量化。
二、引入工具变量的作用为了解决内生性问题,我们需要引入工具变量。
什么是工具变量?简单来说,工具变量应该满足两个条件:与内生性解释变量相关,但与误差项不相关。
直观上理解,工具变量可以被看作是用来"替代"内生性解释变量的。
在前面教育与收入的例子中,一个可能的工具变量是父母的受教育水平。
虽然父母的教育水平与学生的收入相关,但从概念上来说,父母的教育水平与学生的收入并没有直接的关系。
父母的教育水平既可以用来代替学生的教育水平,也可以帮助我们解决内生性问题。
三、两阶段最小二乘法在引入工具变量后,我们需要进行两个阶段的回归分析。
在第一阶段,我们使用工具变量来回归解释变量,得到预测值。
我们再在第二阶段,使用这些预测值来估计因果效应。
在这两个阶段中,我们使用最小二乘法进行回归分析。
四、两阶段最小二乘法的具体步骤1. 选择合适的工具变量。
2. 在第一阶段,使用工具变量回归解释变量,得到预测值。
3. 确认预测值的有效性和合理性,进行合理性检验。
4. 在第二阶段,使用预测值和其他解释变量,进行回归分析并估计因果效应。
5. 进行统计显著性检验,判断估计结果的可靠性。
工具变量法与最小二乘法的联系引言在经济学研究中,经常会遇到因果关系的分析问题。
然而,由于一些内生性问题,经济变量之间的因果关系不容易准确确定。
在这种情况下,研究者常常会使用工具变量法来解决内生性问题。
而在回归分析中,最小二乘法是最常用的估计方法之一。
本文将讨论工具变量法与最小二乘法的联系,并探讨它们在经济研究中的应用。
第一节:最小二乘法的基本原理最小二乘法是回归分析中最常用的估计方法之一。
其基本思想是通过最小化实际观测值与拟合值之间的残差平方和,来估计模型参数。
最小二乘法在非内生性问题下具有较好的性质和可解释性,因此被广泛应用于经济学研究。
第二节:工具变量法的基本原理工具变量法是一种解决内生性问题的方法。
当存在内生性问题时,直接使用最小二乘法估计结果可能是无偏且一致的,但标准误差可能会被低估,导致统计显著性的判断错误。
工具变量法通过引入一个或多个与内生变量相关但与误差项不相关的工具变量,将内生变量的影响通过工具变量间接传递给被解释变量,从而实现对内生性问题的处理。
第三节:虽然最小二乘法和工具变量法在解决经济研究中的问题时采用不同的方法,但它们之间存在联系。
首先,最小二乘法可以视为工具变量法的一种特殊情况,在非内生时可以直接使用。
其次,最小二乘法可以通过工具变量法来解决内生性问题,从而得到更准确的估计结果。
工具变量法通过引入工具变量来处理内生性问题,而这些工具变量的选择和使用通常需要基于最小二乘法的思想。
例如,研究者可以利用工具变量与内生变量相关的结构特点,通过最小二乘法来选择合适的工具变量。
这种联系使得最小二乘法和工具变量法之间相辅相成,共同构建了解决内生性问题的分析框架。
第四节:工具变量法与最小二乘法的应用工具变量法和最小二乘法在实际应用中都非常重要。
最小二乘法常被用于线性回归分析,估计参数的一致性和渐进正态性。
而工具变量法则广泛应用于处理内生性问题,如评估教育对收入的影响、估计负债对企业投资决策的影响等。
两阶段最小二乘法定义“同学们,今天咱们来聊聊两阶段最小二乘法。
”我站在讲台上,看着下面一双双充满求知欲的眼睛说道。
那什么是两阶段最小二乘法呢?简单来说,它是一种用于解决内生性问题的计量经济学方法。
比如说,我们想研究教育程度对收入的影响,但可能存在一些其他因素,既影响教育程度又影响收入,这就是内生性问题。
举个例子吧,假设我们要研究一个地区的经济发展水平和环境污染之间的关系。
经济发展水平可能是内生变量,因为可能有一些其他未被观察到的因素,既影响经济发展又影响环境污染。
如果我们直接用普通最小二乘法去估计,可能会得到有偏差的结果。
两阶段最小二乘法就分两个阶段来处理这个问题。
在第一阶段,我们找到一个工具变量,这个工具变量要和内生变量相关,但又不能直接影响因变量。
然后用这个工具变量去预测内生变量。
在第二阶段,我们把第一阶段预测得到的内生变量的值代入到模型中,用普通最小二乘法进行估计。
比如说,在刚才那个例子中,我们可以找一个和经济发展水平相关的工具变量,比如这个地区的基础设施建设情况。
基础设施建设好可能会促进经济发展,但它对环境污染的直接影响相对较小。
在第一阶段,我们用基础设施建设情况去预测经济发展水平,得到预测值。
在第二阶段,我们把这个预测值代入到模型中,来估计经济发展水平对环境污染的影响。
两阶段最小二乘法的优点就在于它能有效地处理内生性问题,让我们得到更可靠的估计结果。
但是它也不是完美的,它对工具变量的要求比较高,如果工具变量选择不当,可能会导致估计结果更糟糕。
再给大家说个实际的例子,有研究想知道广告投入对产品销量的影响。
但可能存在一些其他因素,比如市场趋势、季节变化等,既影响广告投入又影响销量。
这时候就可以用两阶段最小二乘法。
找到一个合适的工具变量,比如同行业其他公司的广告投入情况,来解决内生性问题。
同学们,希望通过今天的讲解,大家对两阶段最小二乘法有了更清楚的认识和理解。
以后在遇到类似问题的时候,能想到用这种方法来解决。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第15章工具变量估计与两阶段最小二乘法【圣第15章工具变量估计与两阶段最小二乘法15.1复习笔记一、动机:简单回归模型中的遗漏变量1.面对可能发生的遗漏变量偏误(或无法观测异质性)的四种选择(1)忽略遗漏变量问题,承受有偏而又不一致估计量,若能把估计值与关键参数的偏误方向一同给出,则该方法便令人满意。
(2)试图为无法观测变量寻找并使用一个适宜的代理变量,该方法试图通过用代理变量取代无法观测变量来解决遗漏变量的问题,但并不是总可以找到一个好的代理。
(3)假定遗漏变量不随时间变化,运用固定效应或一阶差分方法。
(4)将无法观测变量留在误差项中,但不是用OLS 估计模型,而是运用一种承认存在遗漏变量的估计方法,工具变量法。
2.工具变量法简单回归模型01y x uββ=++其中x 与u 相关:()Cov 0,x u ≠(1)为了在x 和u 相关时得到0β和1β的一致估计量,需要有一个可观测到的变量z,z 满足两个假定:①z 与u 不相关,即Cov(z,u)=0;②z 与x 相关,即Cov(z,x)≠0。
满足这两个条件,则z 称为x 的工具变量,简称为x 的工具。
z 满足①式称为工具外生性条件,工具外生性意味着,z 应当对y 无偏效应(一旦x 和u 中的遗漏变量被控制),也不应当与其他影响y 的无法观测因素相关。
z 满足②式意味着z 必然与内生解释变量x 有着或正或负的关系。
这个条件被称为工具相关性。
(2)工具变量的两个要求之间的差别①Cov(z,u)是z 与无法观测误差u 的协方差,通常无法对它进行检验:在绝大多数情形中,必须借助于经济行为或反思来维持这一假定。
②给定一个来自总体的随机样本,z 与x(在总体中)相关的条件则可加以检验。
最容易的方法是估计一个x 与z 之间的简单回归。
在总体中,有01x z vππ=++从而,由于()()1Cov /ar V ,x z z π=所以式Cov(z,x)≠0中的假定当且仅当10π≠时成立。
第15章 工具变量估计与两阶段最小二乘法在本章中,我们进一步研究多元回归模型中的内生解释变量(endogenous explanatory variable )问题。
在第3章中,我们推导出,遗漏一个重要变量时OLS 估计量的偏误;在第5章中,我们说明了在遗漏变量(omitted variable )的情况下,OLS 通常是非一致性的。
第9章则证明了,对未观测到的解释变量给出适宜的代理变量,能消除(或至少减轻)遗漏变量偏误。
不幸的是,我们不是总能得到适宜的代理变量。
在前两章中,我们解释了存在不随时间变化的遗漏变量的情况下,对综列数据如何用固定效应估计或一阶差分来估计随时间变化的自变量的影响。
尽管这些方法非常有用,可我们不是总能获得综列数据的。
即使能获得,如果我们的兴趣在于变量的影响,而该变量不随时间变化,它对于我们也几无用处:一阶差分或固定效应估计排除了不随时间变化的变量。
此外,迄今为止我们已研究出的综列数据法还不能解决与解释变量相关的随时间而变化的遗漏变量的问题。
在本章中,我们对内生性问题采用了一个不同的方法。
你将看到如何用工具变量法(IV )来解决一个或多个解释变量的内生性问题。
就应用计量经济学中线性方程的估计而言,两阶段最小二乘法(2SLS 或TSLS )是第二受人欢迎的,仅次于普通最小二乘。
我们一开始先说明,在存在遗漏变量的情况下,如何用IV 法来获得一致性估计量。
此外,IV 能用于解决含误差变量(errors-in-variable )的问题,至少是在某些假定下。
下一章将证明运用IV 法如何估计联立方程模型。
我们对工具变量估计的论述严格遵照我们在第1篇中对普通最小二乘的推导,其中假定我们有一个来自基本总体的随机样本。
这个起点很合人意,因为除了简化符号之外,它还强调了应根据基本总体来表述对IV 估计所做的重要的假定(正如用OLS 时一样)。
如我们在第2篇中所示,OLS 可以应用于时间序列数据,而工具变量法也一样可以。