2011高中数学总复习课件:变量间的相关关系、统计案例
- 格式:ppt
- 大小:1.83 MB
- 文档页数:63
学科教师辅导教案学员编号: 年 级:高一 课时数:3课时 学员姓名: 辅导科目:数学 学科教师:授课类型 T 同步知识梳理 C 相关专题训练T 能力提高教学目标星级★★★授课日期及时段 2016.教学内容 :变量间的相关关系、统计案例一、同步知识梳理 1. 变量间的相关关系2. 散点图以一个变量的取值为横坐标,另一个变量的相应取值为纵坐标,在直角坐标系中描点,这样的图形叫做散点图. 3. 回归直线方程与回归分析(1)直线方程y ^=a +bx ,叫做Y 对x 的回归直线方程,b 叫做回归系数.要确定回归直线方程,只要确定a 与回归系数b .(2)用最小二乘法求回归直线方程中的a ,b 有下列公式b ^=∑ni =1x i y i -n x y ∑ni =1x 2i -n x 2,a ^ =y -b ^ x ,其中的a ^ ,b ^表示是求得的a ,b 的估计值.(3)相关性检验①计算相关系数r ,r 有以下性质:|r |≤1,并且|r |越接近1,线性相关程度越强;|r |越接近0,线性相关程度越弱;②|r|>r0.05,表明有95%的把握认为变量x与Y直线之间具有线性相关关系,回归直线方程有意义;否则寻找回归直线方程毫无意义.二、题型解答题型一相关关系的判断思维点播判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图,根据散点图很容易看出两个变量之间是否具有相关性,是不是存在线性相关关系,是正相关还是负相关,相关关系是强还是弱.例15个学生的数学和物理成绩如下表:学生A B C D E学科数学8075706560物理7066686462画出散点图,并判断它们是否具有相关关系.解以x轴表示数学成绩,y轴表示物理成绩,可得到相应的散点图如图所示.由散点图可知,各组数据对应点大致在一条直线附近,所以两者之间具有相关关系,且为正相关.巩固(1)对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图①;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图②,由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关答案 C(2)(2012·课标全国)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12 D .1答案 D解析 利用相关系数的意义直接作出判断.样本点都在直线上时,其数据的估计值与真实值是相等的,即y i =y i ^,代入相关系数公式r =1-∑i =1n(y i -y i ^)2∑i =1n(y i -y )2=1.题型二 线性回归分析思维点播 (1)回归直线方程y ^=b ^x +a ^必过样本点的中心(x ,y ).(2)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过回归直线方程估计和预测变量的值.例2 某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:零件的个数x (个) 2 3 4 5 加工的时间y (小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的回归直线方程y ^=b ^x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时?(注:b^=∑i=1nx i y i-n x y∑i=1nx2i-n x2,a^=y-b^x)思维启迪求回归直线方程的系数b^时,为防止出错,应分别求出公式中的几个量,再代入公式.解(1)散点图如图.(2)由表中数据得:∑i=14x i y i=52.5,x=3.5,y=3.5,∑i=14x2i=54,∴b^=0.7,∴a^=1.05,∴y^=0.7x+1.05,回归直线如图所示.(3)将x=10代入回归直线方程,得y^=0.7×10+1.05=8.05,故预测加工10个零件约需要8.05小时.巩固1为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:时间x 1234 5命中率y 0.40.50.60.60.4小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为________.答案0.50.53解析小李这5天的平均投篮命中率y=0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x=3.根据表中数据可求得b^=0.01,a^=0.47,故回归直线方程为y^=0.47+0.01x,将x=6代入得6号打6小时篮球的投篮命中率约为0.53.巩 固2 (2013·大连模拟)某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归直线方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元答案 B解析 ∵x =4+2+3+54=72,y =49+26+39+544=42,又y ^ =b ^ x +a ^ 必过(x ,y ),∴42=72×9.4+a ^ ,∴a ^ =9.1.∴回归直线方程为y ^ =9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元).家庭作业1. 某地区调查了2~9岁的儿童的身高,由此建立的身高y (cm)与年龄x (岁)的回归模型为y ^=8.25x +60.13,下列叙述正确的是( )A .该地区一个10岁儿童的身高为142.63 cmB .该地区2~9岁的儿童每年身高约增加8.25 cmC .该地区9岁儿童的平均身高是134.38 cmD .利用这个模型可以准确地预算该地区每个2~9岁儿童的身高 答案 B2. 设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图), 以下结论中正确的是 ( )A .直线l 过点(x ,y )B .x 和y 的相关系数为直线l 的斜率C .x 和y 的相关系数在0到1之间D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同 答案 A解析 因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以B 、C 错误.D 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以D 错误.根据线性回归直线一定经过样本点中心可知A 正确.3. (2012·湖南)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由于回归直线方程中x 的系数为0.85, 因此y 与x 具有正的线性相关关系,故A 正确.又回归直线方程必过样本点中心(x ,y ),因此B 正确.由回归直线方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确. 当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确.4. 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.67x +54.9.零件数x (个) 10 2030 40 50 加工时间y (min)62758189现发现表中有一个数据看不清,请你推断出该数据的值为________. 答案 68解析 由已知可计算求出x =30,而回归直线必过点(x ,y ), 则y =0.67×30+54.9=75,设模糊数字为a ,则 a +62+75+81+895=75,计算得a =68.5.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( ) A.63.6万元 B.65.5万元 C.67.7万元D.72.0万元解析:由题意可知x =3.5,y =42,则42=9.4×3.5+a ^,a ^=9.1,y ^=9.4×6+9.1=65.5,答案应选B. 答案:A6.下列各图中所示两个变量具有相关关系的是( )A .①②B .①③C .②④D .②③答案:D7.已知x ,y 的取值如下表所示:x 0 1 3 4 y2.24.34.86.7从散点图分析,y 与x 线性相关,且y ^=0.95x +a ^,则a ^=__________.答案:2.6。