七年级上册有理数测试卷一
- 格式:doc
- 大小:98.88 KB
- 文档页数:4
人教版七年级数学上册《第一章有理数》测试卷-附有答案(考试时间:90分钟试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共8个小题每小题4分共32分。
在每小题给出的四个选项中只有一项是符合题目要求的。
a+表示且1.(2020·无锡市第一中学七年级期中)点A在数轴上点A所对应的数用21点A到原点的距离等于3 则a的值为()A.2-D.1 -或1 B.2-或2 C.2【答案】A【分析】根据绝对值的几何意义列绝对值方程解答即可.【详解】解:由题意得:|2a+1|=3当2a+1>0时有2a+1=3 解得a=1当2a+1<0时有2a+1=-3 解得a=-2所以a的值为1或-2.故答案为A.【点睛】本题考查了绝对值的几何意义根据绝对值的几何意义列出绝对值方程并求解是解答本题的关键.2.(2020·酒泉市第二中学)下列各组数中互为相反数的有()①-(-2)和-|-2|;②(-1)2和-12;③23和32;④(-2)3和-23A.④B.①②C.①②③D.①②④【答案】B【分析】先利用去括号法则、绝对值运算、有理数的乘方运算进行计算再根据相反数的定义即可得.【详解】解:①(2)2,22--=--=- 则这组数互为相反数 ②22(1)1,11-=-=- 则这组数互为相反数 ③3228,39== 则这组数不互为相反数 ④33(2)8,28-=--=- 则这组数不互为相反数综上 互为相反数的有①②故选:B .【点睛】本题考查了去括号法则、绝对值运算、有理数的乘方运算、相反数的定义 熟练掌握各运算法则和定义是解题关键.3.(2020·浙江)在3,1,1,3--这四个数中 比2-小的数是( )A .3-B .1-C .1D .3【答案】A【分析】根据有理数的大小关系求解即可.【详解】解:在这四个数中 32-<-故答案为:A .【点睛】本题考查了比较有理数大小的问题 掌握比较有理数大小的方法是解题的关键.4.(2020·多伦县第四中学七年级期中)当n 为正整数时 (﹣1)2n+1﹣(﹣1)2n 的值为( )A .0B .2C .﹣2D .2或﹣2 【答案】C【分析】1、 由n 为正整数 得2n 是偶数 2n+1是奇数;2、 根据 “指数是偶数时 负数的幂是正数” 以及 “指数是奇数时 负数的幂是负数"可得(-1)2n+1=-1 (-1)2n=1;3、 接下来根据有理数的加法法则进行计算即可.【详解】解:原式=(﹣1)2n+1﹣(﹣1)2n= -1-1= - 2 故选C.【点睛】本题主要考查负数的幂运算: 指数是偶数时 负数的幂是正数 指数是奇数时 负数的幂是负数.5.(2020·银川英才学校)如图 数轴的单位长度为1 若点A 和点C 所表示的两个数的绝对值相等 则点B 表示的数是( )A .-3B .-1C .1D .3【答案】B【分析】找到AC 的中点即为原点 进而看B 点在原点的哪边 距离原点几个单位即可.【详解】解:设AC 的中点为O 点 表示的数是0 所以点C 表示的数是-3 所以点B 表示的数是-1.故选:B【点睛】本题考查数轴上点的确定;找到原点的位置是解决本题的关键;用到的知识点为:两个数的绝对值相等 那么这两个数到原点的距离相等.6.(2020·靖江市靖城中学)如图 数轴上的,,A B C 三点所表示的数分别为a b c 、、 其中AB BC = 如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边【答案】C【分析】根据绝对值是数轴上表示数的点到原点的距离 分别判断出点A 、B 、C 到原点的距离的大小 从而得到原点的位置 即可得解.【详解】解:∵|a|>|c|>|b|∴点A 到原点的距离最大 点C 其次 点B 最小又∵AB=BC∴原点O 的位置是在点B 、C 之间且靠近点B 的地方.故选:C .【点睛】此题考查了实数与数轴 理解绝对值的定义是解题的关键.7.(2020·湖南天心·长郡中学七年级期中)如图点A所表示的数的绝对值是()A.3 B.﹣3 C.13D.13【答案】A【分析】根据负数的绝对值是其相反数解答即可.【详解】|-3|=3故选A.【点睛】此题考查绝对值问题关键是根据负数的绝对值是其相反数解答.8.(2020·重庆市荣昌区荣隆镇初级中学七年级期中)4月24日是中国航天日 1970年的这一天我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射标志着中国从此进入了太空时代它的运行轨道距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103【答案】C【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10 n为整数.确定n的值时要看把原数变成a时小数点移动了多少位 n的绝对值与小数点移动的位数相同.当原数绝对值>1时 n是正数;当原数的绝对值<1时 n是负数.【详解】解:将439000用科学记数法表示为4.39×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式其中1≤|a|<10 n为整数表示时关键要正确确定a的值以及n的值.二、填空题:本题共6个小题每题3分共18分。
第 1 章测试卷有理数班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.如果温度上升2℃记做+2℃,那么温度下降3℃记做( )A. +2℃B. —2℃C. +3℃D. -3℃2.如图,数轴上被墨水遮盖的数可能为( )A. 1B. —1.5C. -3D. -4.23. 在数轴上,若点 M表示的有理数m 满足|m|>1,且m<0,则点M在数轴上的位置表示正确的是( )4.下列式子正确的是( )A. |-2|=-2B. |a|=aC. --|-2|<0D. -3<-45.数轴上表示-4与1的两点间的距离是( )A. 3B. -5C. 3D. 56.对于任何有理数a,下列一定为负数的是( )A. -(-3+a)B. -aC. -|a+1|D. -|a|-17.下列说法中不正确的是( )A. 最小的正整数是 1B. 最大的负整数是-1C. 有理数分为正数和负数D. 绝对值最小的有理数是08. 一个数a在数轴上对应的点是A,当点 A 在数轴上向左平移了 3个单位长度后到点 B,点A 与点 B 表示的数恰好互为相反数,则数a是( )A. -3B. -1.5C. 1.5D. 39.-|a|=-3.2,则a是( )A. 3.2B. -3.2C. ±3.2D. 以上都不对10.下列各式中,正确的是( )A. --|-2|>0 C. |-3|=-|3| D. |-6|<0二、填空题(本大题有 6 小题,每小题4分,共24分)11. -(-2)的相反数是,绝对值是 .12. 已知四个有理数在数轴上所对应的点分别为A,B,C,D,则这四个点从左到右的顺序为,离原点距离最近的点为 .13. 数轴上一个点到表示一1的点的距离是 4,那么这个点表示的数是 .14. 在数轴上表示数m的点到原点的距离为2,则m+1= .15.(1)所有不大于4 且大于-3的整数有;(2)不小于—4 的非正整数有;(3)若|a|+|b|=4,且a=-1,则b= .16. 已知数a与数b 互为相反数,且在数轴上表示数a,b的点A,B之间的距离为2020个单位长度,若a<b,则a= ,b= .三、解答题(本大题有8小题,共66分)17.(6分)在数轴上表示下列各数,并将它们按从小到大的顺序用“<”号连接.18.(6分)下表给出了某班6名学生的身高情况(单位:cm).学生A₁A₂A₃A₄A₅A₆身高166167172身高与班级平均身高的差+1-1-2+3值(1)完成表中空白部分;(2)他们的最高身高和最矮身高相差多少?(3)他们班级学生的平均身高是多少? 6名学生中有几名学生的身高超过班级平均身高?19. (6分)把下列各数填入相应的括号内:自然数:{ };负整数:{ };正分数:{ };负有理数:{ }.20.(8分)邮递员骑车从邮局出发,先向南骑行3km到达A 村,继续向南骑行5km到达B村,然后向北骑行14km到达 C村,最后回到邮局.(1)以邮局为原点,以向南方向为正方向,用0.5cm表示 1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?21.(8分)同学们都知道,表示 2 与之差的绝对值,实际上它的几何意义也可理解为2 与两数在数轴上所对应的两点之间的距离.试探索:(1)求表示的几何意义是什么?,则x的值是多少?22.(10分)如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点 A 表示点 G 表示 8.(1)点B 表示的有理数是,表示原点的是点;(2)图中的数轴上另有点M到点A、点G的距离之和为13,求这样的点 M表示的有理数;(3)若相邻两点之间的距离不变,将原点取在点D,则点C表示的有理数是,此时点 B 与点表示的有理数互为相反数.23.(10分)有5袋小麦,以每袋25 千克为基准,超过的千克数记做正数,不足的千克数记做负数,各袋大米的千克数如下表:袋号一二三四五每袋超出或不足的千克数—.2.1一.3一.1.2(1)第一袋大米的实际质量是多少千克?(2)把表中各数用“<”连接;(3)把各袋的袋号按袋中大米的质量从小到大排列,这一排列与(2)题中各数排列的顺序是否一致?24.(12分)把几个数用大括号括起来,相邻几个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016-x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合.(1)集合{2016} 黄金集合,集合{-1,2017} 黄金集合.(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素? 如果存在,请直接写出答案,否则说明理由.(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素? 说明你的理由.第 1章测试卷有理数1. D2. C3. D4.C 5 D 6 . D 7 . C 8 . C 9 . C10. B 11. -2 2 12. BACD A 13. -5或314. 3或-115. (1)—2,—1,0,1,2,3,4 (2)-4,-3,-2,-1,0(3)±3 16. -1010 101017. 解:-|-4|=-4,-(-1)=1.在数轴上表示如图所示:所以18. 解:(1)第一行:164 163 168;第二行:+2 +7(2)172—163=9( cm).(3)班级平均身高:165cm;共有4名学生超过班级平均身高.19. 解:自然数:{1,0,+102};负整数:{—9,—70};正分数:{0.89,};负有理数20. (1)略 (2)9km (3)28km21. 解:(1)原式=|5|=5.(2)5与—3两数在数轴上所对应的两点之间的距离.(3)x=6或-4.22. (1)—2 C (2)—4.5或8.5 (3)—2 F23.(1)24.8千克 (2)—0.3<—0.2<—0.1<0.1<0.2(3)第三的质量<第一的质量<第四的质量<第二的质量<第五的质量与(2)中一致24. 解:(1)不是是(2)存在,最小元素是—2000.(3)该集合共有 24 个元素.理由如下:①若1008是该黄金集合中的一个元素,则它所对应的元素也为1008.②若1008不是该黄金集合中的元素,因为在黄金集合中,如果一个元素为a,那么另一个元素为2016—a,故黄金集合中的元素一定有偶数个,且黄金集合中每一对对应元素的和为 2016.因为,又该黄金集合中所有元素之和为M,且24190,若1008是该黄金集合中的元素,则22176+故1008不是该黄金集合中的元素,所以该黄金集合中元素的个数为 12×2=24.。
人教版七年级数学上册《第一章有理数》测试卷-附含答案1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+)(2018m m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。
人教版数学七年级上学期第一章有理数测试一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1. 如果向东行驶3km,记作+3km,那么向西行驶2km,记作A. +2kmB. -2kmC. +3kmD. -3km2. 下列各对数中,数值相等的是()A. -27与(-2)7B. -32与(-3)2C. -3×23与-32×2D. ―(―3)2与―(―2)33. 《战狼2》在2017年暑假档上映取得历史性票房突破,共收获5 490 000 000元,数据5 490 000 000用科学记数法表示为A. 5.49×1010B. 5.49×109C. 5.49×108D. 549×1074. 如果一个数的平方与这个数的差等于0,那么这个数只能是()A. 0B. -1C. 1D. . 0或15. 绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8B. 7C. 6D. 56. 计算:(-2)100+(-2)101的是()A. 2100B. -1C. -2D. -21007. 比-7.1大,而比1小的整数的个数是()A. 6B. 7C. 8D. 98. 2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A. 1.205×107B. 1.20×108C. 1.21×107D. 1.205×1049. 下列代数式中,值一定是正数的是( )A. x2B. |-x+1|C. (-x)2+2D. -x2+110. 已知8.622=73.96,若x2=0.7396,则x的值等于()A. 86. 2B. 862C. ±0.862D. ±862二、填空题(本题共有9个小题,每小题2分,共18分)11. 一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记;数-2的实际意义为,数+9的实际意义为 .12. 如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为___________.13. 某数的绝对值是5,那么这个数是 .134756≈(保留四个有效数字)14. ( )2=16,(-)3= .15. 数轴上和原点的距离等于3.5点表示的有理数是 .16. 计算:(-1)6+(-1)7=____________.17. 如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=_______.18. +5.7的相反数与-7.1的绝对值的和是 .19. 已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车.三、解答题20. 计算:(1)8+(― )―5―(―0.25) (2)―82+72÷36(3)7 ×1 ÷(-9+19) (4)25×(―18)+(―25)×12+25×(-10 )(5)(-79)÷2 + ×(-29) (6)(-1)3-(1-7)÷3×[3―(―3)2](7)2(x-3)-3(-x+1) (8) –a+2(a-1)-(3a+5)21. 一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?22. 有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1) ,(2) ,(3) .另有四个有理数3,-5,7,-13,可通过运算式(4) 使其结果等于24.23. 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8∶00(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?24. 画一条数轴,并在数轴上表示:3.5和它的相反数,-4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.25. 体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩斐然记录,其中"+"表示成绩大于15秒.-0.8 +1 -1.2 0-0.7 +0.6 -0.4 -0.1问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?26. 有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.试计算:a2=______,a3=____,a4=_____,a5=______.这排数有什么规律吗?由你发现的规律,请计算a2004是多少?四、提高题(本题有2个小题,共16分)27. 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是___________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值如果没有说明理由.28. 若a、b、c均为整数,且∣a-b∣3+∣c-a∣2=1,求∣a-c∣+∣c-b∣+∣b-a∣的值(8分)答案与解析一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1. 如果向东行驶3km,记作+3km,那么向西行驶2km,记作A. +2kmB. -2kmC. +3kmD. -3km【答案】B【解析】试题分析:∵向东行驶3km,记作+3km,∴向西行驶2km记作-2km.故选B.考点:正数和负数.2. 下列各对数中,数值相等的是()A. -27与(-2)7B. -32与(-3)2C. -3×23与-32×2D. ―(―3)2与―(―2)3【答案】A考点:有理数的乘方.3. 《战狼2》在2017年暑假档上映取得历史性票房突破,共收获5 490 000 000元,数据5 490 000 000用科学记数法表示为A. 5.49×1010B. 5.49×109C. 5.49×108D. 549×107【答案】B【解析】由科学记数法的定义知:5 490 000 000=5.49×109故选:B.4. 如果一个数的平方与这个数的差等于0,那么这个数只能是()A. 0B. -1C. 1D. . 0或1【答案】D【解析】试题分析:一个数的平方与这个数的差等于0,则这个数的平方等于其本身,而平方等于本身的数是0和1,则这个数只能是0或1.故选D.考点:有理数的乘方.5. 绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8B. 7C. 6D. 5【答案】C【解析】试题分析:根据绝对值的性质,由题意得,符合题意的正整数为1,2,3,它们的和是故选C.考点:绝对值.6. 计算:(-2)100+(-2)101的是()A. 2100B. -1C. -2D. -2100【答案】D【解析】试题分析:故选D.考点:有理数的乘方.7. 比-7.1大,而比1小的整数的个数是()A. 6B. 7C. 8D. 9【答案】C【解析】试题分析:比-7.1大而比1小的整数有:-7、-6、-5、-4、-3、-2、-1和0共8个.考点:数的大小比较8. 2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A. 1.205×107B. 1.20×108C. 1.21×107D. 1.205×104【答案】A【解析】根据科学记数法的表示方法(形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数)可得:12050000枚=1.205×107枚.故答案是:A.9. 下列代数式中,值一定是正数的是( )A. x2B. |-x+1|C. (-x)2+2D. -x2+1【答案】C【解析】试题分析:根据平方的性质可得:≥0,≥0;-≤0,则-+1≤1,+2≥2;根据绝对值的性质可得:≥0.考点:(1)平方的性质;(2)绝对值的性质10. 已知8.622=73.96,若x2=0.7396,则x的值等于()A. 86. 2B. 862C. ±0.862D. ±862【答案】C【解析】试题分析:算术平方根的小数点向左移动两位,则被开方数的小数点向左移动一位,则根据题意可得:x=±0.862.考点:平方根的性质二、填空题(本题共有9个小题,每小题2分,共18分)11. 一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记;数-2的实际意义为,数+9的实际意义为 .【答案】+2;-1;地下第2层;地面上第9层.【解析】规定向上为正,则向下为负,所以2楼表示的是以地面为基准向上2层,所以记为+1,地下第一层记作−1,−2表示的实际意义是地下2层,+9的实际意义为地上10层;故答案为:+1,−1,地下2层,地上10层.12. 如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为___________.【答案】-5,+1.【解析】试题分析:在数轴上与表示-2的点距离3个单位长度的点可能在右边,也可能在左边,所以表示的数是或1.考点:数轴13. 某数的绝对值是5,那么这个数是 .134756≈(保留四个有效数字)【答案】±5;1.348×105 .【解析】试题分析:考点:1、绝对值;2、有效数字.14. ( )2=16,(-)3= .【答案】±4;.【解析】由平方根的定义知:42=16,(-4)2=16,所以(±4)2=16;(-)3=(-) × (-) ×(-)=-,故答案为:±4;.15. 数轴上和原点的距离等于3.5点表示的有理数是 .【答案】± 3.5【解析】如图所示:数轴上和原点的距离等于3.5的点表示的有理数是±3.5.16. 计算:(-1)6+(-1)7=____________.【答案】0.【解析】试题分析:考点:有理数的运算.17. 如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=_______.【答案】3【解析】试题分析:互为倒数,,互为相反数,且,考点:1、倒数;2、相反数.18. +5.7的相反数与-7.1的绝对值的和是 .【答案】1.4【解析】试题分析:根据题意可得:-5.7+=1.4考点:有理数的计算19. 已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车.【答案】12【解析】试题分析:根据题意可得:51÷4=12(辆)……3(个),则至多能装配12辆汽车.考点:有理数的除法三、解答题20. 计算:(1)8+(― )―5―(―0.25) (2)―82+72÷36(3)7 ×1 ÷(-9+19) (4)25×(―18)+(―25)×12+25×(-10 )(5)(-79)÷2 + ×(-29) (6)(-1)3-(1-7)÷3×[3―(―3)2](7)2(x-3)-3(-x+1) (8) –a+2(a-1)-(3a+5)【答案】① 3 ;②-80 ;③;④ 0;⑤ -48 ;⑥ 0;⑦5x-9 ;⑧ -2a-7. 【解析】试题分析:(1)先化简再按有理数的运算顺序计算即可;(2)先算除法,后算加法;(3)先算括号里面的,再计算乘除;(4)先提出公因数25,再计算即可;(5)先算除法,再算加法;(6)先乘方,后乘除最后算加减,有括号要先算括号里面的;(7)先去括号再合并同类项即可;(8)先去括号再合并同类项即可.试题解析:(1)原式=8-5+0.25=3.25;(2)原式=-82+2=-80;(3)原式=7 ×1 ÷10=;(4)原式=25×(―18)- 25×12+25×(-10 )= 25×(-18-12-10)=-1000;(5)原式=-39.5-29=-68.5;(6)原式=-1-(-6)÷3×(3-9)=-1-2×6=-13;(7)原式=2x-6+3x-3=5x-9;(8)原式=–a+2a-2-3a-5=-2a-7.21. 一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?【答案】250.【解析】试题分析:先计算出山脚与山顶的温度差,再计算出下降了几个0.8°C,然后乘以100即可;试题解析:(4-2)÷0.8×100=250(米)考点:有理数的混合运算.22. 有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1) ,(2) ,(3) .另有四个有理数3,-5,7,-13,可通过运算式(4) 使其结果等于24.【答案】本题答案不唯一,符合条件即可.【解析】试题分析:看懂规则,加上运算符合使结果等于24即可;试题解析:(1)4-10×(-6)÷3=24;(2)3×[10+4+(-6)]=24;(3)10-4-3×(-6)=24;(4)[7+(-13)×(-5)]÷3=24;考点:有理数的混合运算.23. 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8∶00(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?城市时差/ 时纽约-13巴黎-7东京+1芝加哥-14【答案】①21;②不可以打电话.【解析】试题分析:(1)用北京时间减去所求地的时差即可;(2)合适,通过与(1)相同的计算即可得出巴黎的时间,从而可确定;试题解析:(1)8-(-13)=21时;(2)巴黎现在的时间是8-(-7)=15时,可以打电话.考点:有理数加减法的应用.【答案】数轴详见解析;-3.5<-3<-2<-1<-0.5<1<3<3.5.【解析】试题分析:先按要求求出各数,再在数轴上表示出这些数,最后用“<”把它们连接起来即可.解:3.5的相反数是﹣3.5,﹣4的倒数是﹣,绝对值等于3的数是±3,最大的负整数是﹣1,(﹣1)2=1,在数轴上表示为:故﹣4<﹣3.5<﹣3<﹣1<﹣<1<3<3.5.25. 体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩斐然记录,其中"+"表示成绩大于15秒.-0.8 +1 -1.2 0-0.7 +0.6 -0.4 -0.1问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?【答案】①75%;②14.8.【解析】试题分析:(1)从表格中得出,达标的人数为6人,求出达标率;(2)根据平均数的公式求出平均成绩.试题解析:(1)成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%;(2)-0.8+1-1.2+0-0.7+0.6-0.4-0.1=-1.615-1.6÷8=14.8秒答:(1)这个小组男生的达标率为75%.(2)这个小组男生的平均成绩是14.8秒.26. 有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.试计算:a2=______,a3=____,a4=_____,a5=______.这排数有什么规律吗?由你发现的规律,请计算a2004是多少?【答案】-1.【解析】分析:根据规定进行计算,发现:=,=2, ,=-1, ,=.从而发现3个一循环.按照这个规律计算即可.本题解析:由题意得:,,,,…可以发现,2,-1这三个数反复出现.∵2004÷3=668,其余数为0,∴a2004=a3=-1.点睛:此类题型首先要计算几个特殊数值,然后发现循环的规律,从而计算出最后的结果.四、提高题(本题有2个小题,共16分)27. 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是___________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值如果没有说明理由.【答案】①7;(2)-5,-4,-3,-2,-1,0,1,2;(3)有最小值为3.【解析】试题分析:(1)、根据绝对值的计算法则得出答案;(2)、结合两点之间的距离得出整数的值;(3)、根据数轴上两点之间的距离公式得出最小值.试题解析:(1)、原式=7(2)、表示x到-5和2的距离和为7,-5≤x≤2,则整数为—5,—4,—3,—2,—1,0,1,2;(3)、表示x到3和6的距离最小值,则根据数轴可得:当3≤x≤6时距离有最小值,最小值为3.考点:数轴上点的距离28. 若a、b、c均为整数,且∣a-b∣3+∣c-a∣2=1,求∣a-c∣+∣c-b∣+∣b-a∣的值(8分)【答案】2.【解析】试题分析先判断出a、b、c有两个数相等,不妨设为a=b,然后表示出c,再求出|a-c|,即可得解.试题解析:∵∣a-b∣3+∣c-a∣2=1,并且a、b、c均为整数,∵∣a-b∣和∣c-a∣=0或1,∴当∣a-b∣=1时∣c-a∣=0,则c=a, ∣c-b∣=1∴∣a-c∣+∣c-b∣+∣b-a∣=0+1+1=2当∣a-b∣=0时∣c-a∣=1,则b=a, ∣c-b∣=1,∣a-c∣+∣c-b∣+∣b-a∣=1+1+0=2.点睛:本题考查了绝对值的性质和有理数的乘方,判断出a、b、c有两个数相等是解题的关键.。
人教版七年级数学上册《第一章有理数》测试题-附带答案(考试时间:90分钟 试卷满分:120分)一 选择题:本题共10个小题 每小题3分 共30分。
在每小题给出的四个选项中 只有一项是符合题目要求的。
1.(2021·山西临汾市·九年级二模)在人类生活中 早就存在着收入与支出 盈利与亏本等具有相反意义的现象 可以用正负数表示这些相反意义的量.我国古代数学名著《九章算术》一书中也明确提出“正负术”.最早使用负数的国家是( ) A .印度 B .法国C .阿拉伯D .中国【答案】D【分析】根据负数的使用历史进行解答即可. 【详解】最早使用负数的国家是中国.故选:D .【点睛】本题考查的是正数和负数 关键是了解掌握负数的使用历史.2.(2021·江苏南通市·九年级二模)新冠肺炎疫情阻击战中 南通是全省唯一主城区没有发本土确诊病例的安全岛.接种新冠疫苗 是巩固抗疫成果最经济 最有效的手段.截止4月24日24时 南通全市已累计接种新冠疫苗102.37万针.其中 102.37万用科学记数法表示为( ) A .81.023710⨯ B .70.1023710⨯ C .61.023710⨯ D .4102.3710⨯ 【答案】C【分析】用科学记数法表示较大的数时 一般形式为a ×10n 其中1≤|a |<10 n 为整数 且n 比原来的整数位数少1 据此判断即可.【详解】解:102.37万=61.023710⨯ 故选C .【点睛】此题主要考查了用科学记数法表示较大的数 一般形式为a ×10n 其中1≤|a |<10 确定a 与n 的值是解题的关键.3.(2021·河南初一期中)如图 关于A B C 这三部分数集的个数 下列说法正确的是( ) A .A C 两部分有无数个 B 部分只有一个0 B .A B C 三部分有无数个 C .A B C 三部分都只有一个 D .A 部分只有一个 B C 两部分有无数个【答案】A【分析】根据有理数的分类可以看出A指的是负整数B指的是整数中除了正整数与负整数外的部分整数C指的是正整数最后根据各数性质进一步判断即可.【解析】由图可得:A指的是负整数B指的是整数中除了正整数与负整数外的部分整数C指的是正整数∵整数中除了正整数与负整数外的部分整数只有0负整数与正整数都有无数个∴A C两部分有无数个B只有一个.故选:A.【点睛】本题主要考查了有理数的分类熟练掌握相关概念是解题关键.4.(2020·北京四中初三月考)如图数轴上A B两点所表示的数互为倒数则关于原点的说法正确的是()A.一定在点A的左侧B.一定与线段AB的中点重合C.可能在点B的右侧D.一定与点A或点B重合【答案】C【分析】根据倒数的定义可知A B两点所表示的数符号相同依此求解即可.【解析】∵数轴上A B两点所表示的数互为倒数∴A B两点所表示的数符号相同如果A B两点所表示的数都是正数那么原点在点A的左侧如果A B两点所表示的数都是负数那么原点在点B的右侧∴原点可能在点A的左侧或点B的右侧.故选C.【点睛】本题考查了数轴倒数的定义由题意得到A B两点所表示的数符号相同是解题的关键.5.(2021·湖南株洲市·七年级期中)计算20192020202221.5(1)3⎛⎫-⨯⨯-⎪⎝⎭的结果是()A.23B.32C.23-D.32-【答案】D【分析】根据乘方的意义进行简便运算再根据有理数乘法计算即可.【详解】解:20192020202221.5(1)3⎛⎫-⨯⨯-⎪⎝⎭=2019202021.513⎛⎫-⨯⨯⎪⎝⎭=20202019221.5 1.533-⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯个个=2019221.5 1.51.533-⨯⋅⋅⋅⨯⨯⨯个=32- 故选:D . 【点睛】本题考查了有理数的混合运算 解题关键是熟练依据乘方的意义进行简便运算 准确进行计算.6.(2021·四川达州市·中考真题)生活中常用的十进制是用0~9这十个数字来表示数 满十进一 例:121102=⨯+ 212210101102=⨯⨯+⨯+ 计算机也常用十六进制来表示字符代码 它是用0~F 来表示0~15 满十六进一 它与十进制对应的数如下表:例:十六进制2B 对应十进制的数为2161143⨯+= 10C 对应十进制的数为1161601612268⨯⨯+⨯+= 那么十六进制中14E 对应十进制的数为( )A .28B .62C .238D .334【答案】D【分析】在表格中找到字母E 对应的十进制数 根据满十六进一计算可得.【详解】由题意得 十六进制中14E 对应十进制的数为:1×16×16+4×16+14=334 故选D . 【点睛】本题主要考查有理数的混合运算 解题的关键是掌握十进制与十六进制间的转换及有理数的混合运算顺序和运算法则.7.(2021.湖南永州市.七年级期末)若“!”是一种数学运算符号 并且1!=1 2!=2×1 3!=3×2×1 4!=4×3×2×1 (2021)2020!的值等于( ) A .2021 B .2020 C .2021! D .2020!【答案】A【分析】根据题意列出有理数混合运算的式子 进而可得出结论. 【详解】解:1!=1 2!=2×1 3!=3×2×1 4!=4×3×2×1 …∴2021!202120202019 (1)==20212020!20202019 (1)⨯⨯⨯⨯⨯⨯⨯故选A . 【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2021·成都天府七中初一月考)若a b 为有理数 下列判断正确的个数是( )(1)12a ++总是正数 (2)()224a ab +-总是正数 (3)()255ab +-的最大值为5 (4)()223ab -+的最大值是3.A .1B .2C .3D .4【答案】B【分析】根据绝对值 偶次方的非负性进行判断即可.【解析】∵10a +≥ ∴12a ++>0 即12a ++总是正数 (1)正确 ∵20a ≥ ()240ab -≥∴当20a =即a=0时 ()240ab -> 故()224a ab +-是正数当()240ab -=时 则0a ≠ 即20a > 故()224a ab +-是正数 故(2)正确()255ab +-的最小值为5 故(3)错误 ()223ab -+的最大值是2 故(4)错误.故选:B.【点睛】此题考查绝对值的性质 偶次方的性质 最大值及最小值的确定是难点. 9.(2021·重庆潼南区·七年级期末)如果四个不同的正整数m n pq 满足(4)(4)(4)(4)9m n p q ----= 则m n p q +++等于( )A .12B .14C .16D .18【答案】C【分析】由题意确定出m n p q 的值 代入原式计算即可求出值.【详解】解:∵四个互不相同的正整数m n p q 满足(4-m )(4-n )(4-p )(4-q )=9 ∴满足题意可能为:4-m =1 4-n =-1 4-p =3 4-q =-3 解得:m =3 n =5 p =1 q =7 则m +n +p +q =16.故选:C .【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.10.(2021·广东省初一月考)如图 在纸面所在的平面内 一只电子蚂蚁从数轴上表示原点的位置O 点出发 按向上 向右 向下 向右的方向依次不断移动 每次移动1个单位 其移动路线如图所示 第1次移动到1A 20第2次移动到2A 第3次移动到3A …… 第n 次移动到n A 则△O 22019A A 的面积是( )A.504 B.10092C.20112D.505【答案】B【分析】根据图可得移动4次完成一个循环观察图形得出OA4n=2n处在数轴上的点为A4n和A4n-1.由OA2016=1008推出OA2019=1009由此即可解决问题.【解析】解:观察图形可知:OA4n=2n且点A4n和点A4n-1在数轴上又2016=504×4∴A2016在数轴上且OA2016=1008∵2019=505×4-1∴点A2019在数轴上OA2019=1009∴△OA2A2019的面积=12×1009×1=10092故选:B.【点睛】本题考查三角形的面积数轴等知识解题的关键是学会探究规律利用规律解决问题属于常考题型.二填空题:本题共8个小题每题3分共24分。
第一章《有理数》达标检测第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-1的绝对值是【】A.1B.0C.-1D.±12.下列说法中,正确的是【】A.一个数的绝对值一定是正数B.任何正数一定大于它的倒数C.-a一定是负数D.0与任何一个数相乘,积一定是03.下面计算中,正确的是【】A.-(-2)2=22B.(-3)2=6C.-34=(-3)4D.(-0.1)2=0.124.下列说法不正确的是【】A.正整数、0、负整数统称为整数B.大于0的数叫正数C.有理数包括正数和负数D.有理数包括整数和分数5.在-(-3),|-3|,-32,(-3)3中,正数有【】A.1个B.2个C.3个D.4个6.若A,B两点在数轴上的位置如图所示,则A,B两点间的距离是【】A.-3B.5C.6D.77.下列数据是近似数的是【】A.王哲林单场拿下25个篮板B.姚明身高约226cmC.朱芳雨在亚俱杯中单节拿下16分D.在NBA联赛中,热火队取得27连胜8.下列各式中正确的是【】A.-4-3=-1B.5-(-5)=0C.10+(-7)=-3D.-5-4-(-4)=-59.若有理数a,b在数轴上的位置如图所示,则下列结论正确的是【】A.ab>0B.ab>0C.a-b>0D.a-b<010.下列说法中正确的是【】A.有最小的有理数B.有最大的负有理数C .有绝对值最小的有理数D .有最小的正数11.已知a 、b 是有理数,它们在数轴上的对应点的位置如图所示:下列选项中,把a 、-a 、b 、-b 按照从小到大的顺序排列正确的是【 】A.-b<-a<a<bB.-a<-b<a<bC.-b<a<-a<bD.-b<b<-a<a12.若一个有理数的偶次方是正数,则这个有理数的奇次方是【 】 A.正数B.负数C.正数或负数D.整数13.下列说法中,正确的是【 】A.近似数2.34和2.340的精确度相同B.近似数89.0精确到个位C.近似数8千和近似数8000的精确度相同D.近似数3.1416精确到万分位14.第六次人口普查的时间是2010年11月1日零时,普查登记的大陆31个省、自治区、直辖市和现役军人的人口共1 339 724 852人.下列用科学记数法表示这个数正确的为 【 】A.1.33×1010B.1.34×1010 C.1.33×109D.1.34×10915.如图,两个温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这一天的最高气温比最低气温高【 】A.5℃B.7℃C.12℃D.-12℃16.一根1m 长的小木棒,第一次截去它的13,第二次截去余下的13,如此截下去,截完第五次后剩下的小木棒的长度是【 】A.(13)5mB.5113⎡⎤⎛⎫⎢⎥- ⎪⎝⎭⎢⎥⎣⎦mC.(23)5mD.5213⎡⎤⎛⎫⎢⎥- ⎪⎝⎭⎢⎥⎣⎦m第Ⅱ卷非选择题 (共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上) 17.有理数-15的倒数是 . 18.一个点从数轴的原点开始,先向右移动5个单位长度,再向左移动8个单位长度,则到达的终点所对应的数是_____________.19.定义新运算“×”:对任意有理数a 、b ,都有a × b=a2-b ,例如:3×2-2=7,那么2 × 1=____________. 20.数轴上,如果点A 对应的数为-78,点B 对应的数为-76,那么离原点较近的点为____________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)计算:(1)(-5)×(-7)-5×(-6);(2)(-12)÷4×(-6)÷2;(3)(-58)×(-4)2-0.25×(-5)×(-4)3.22.(本小题满分10分)列式计算:(1)-4、-5、+7三个数的和比这三个数的绝对值的和小多少?(2)从-1中减去-512、78、-34的和,所得的差是多少?23.(本小题满分10分)把下列各数在数轴上表示出来,并且用“>”号把它们连接起来:-3,-(-4),0,|-2.5|,-11 224.(本小题满分11分)给出依次排列的下列数:-1,2,-4,8,-16,32,….(1)按照给出的这几个数的某种规律,继续写出接下来的3个数;(2)这一列数中第n个数是什么?25.(本小题满分12分)某医院的急诊病房收治了一位急诊病人,护士需要每隔两小时为病人量一次体温(正常人的体温是36.5℃).(1)试完成下表:(2)在8时到22时,该病人哪个时刻体温最低?比最高体温低多少?26.(本小题满分14分)有A、B、C、D四种装置,将一个数输入一种装置后会输出另一个数.装置A:将输入的数加上5;装置B:将输入的数除以2;装置C:将输入的数减去4;装置D:将输入的数乘以3.这些装置可以连接,如装置A后面连接装置B就写成A·B,输入1后,经过A·B,输出3.(1)输入9,经过A·B·C·D,输出几?(2)若经过B·D·A·C,输出的是100,则输入的是多少?第二章《整式的加减》达标检测第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在式子0,2a,3,,52a b xa y-+中,单项式共有【】A.2个B.3个C.4个D.5个2.单项式-3πxy2z3的系数和次数分别是【】A.-π,5B.-1,6C.-3π,6D.-3,73.多项式1+2xy-3xy2的次数及最高次项的系数分别是【】A.3,-3B.2,-3C.5,-3D.2,34.多项式12x|m|-(m-2)x+7是关于x的二次三项式,则m的值是【】A.2B.-2C.2或-2D.35.计算-2x2+3x2的结果为【】A.-5x2B.5x2C.-x2D.x26.下列叙述正确的是【】A.-273a b的系数是-7B.xy的系数为0C.a+b+c+d是四项式D.“a与b的平方差”列整式为(a-b)27.下列各组中的两个单项式能合并的是【】A.4和4xB.3x2y3和-y2x3C.2ab2和10ab2cD.y和2 3y8.减去-12x后,等于4x2-3x-5的整式是【】A.4x2-52x-5 B.-4x2+52x+5C.4x2-72x-5 D.-4x2+72x-59.下列去括号错误的是【】A.3x2-(x-2y+5z)=3x2-x+2y-5zB.5a2+(-3a-b)-(2c-d)=5a2-3a-b-2c+dC.3x2-3(x+6)=3x2-3x+6D.-(x-2y)-(-x2+y2)=x2-y2-x+2y10.下列各组式子:①a-b与-a-b;②a+b与-a-b;③a+1与1-a;④-a+b与a-b.其中互为相反数的是【】A.②④B.①②④C.①③④D.③④11.当x的值分别取2和-2时,多项式2x4的值【】A.互为相反数B.互为倒数C.相等D.异号且绝对值不相等12.下列各组单项式中,是同类项的为【】A.-2x2y与2yx2B.5x2y与-5xy2C.22与x2D.2πR与πR213.一块长方形园地的长是a,宽是b,园地中除一个直径为5的圆形水池外都是绿地,则绿地面积是【】A.ab-25πB.ab+6.25πB.C.ab+25π D.ab-6.25π14.多项式(xyz2+4xy-1)+(-3xy+z2yx-3)-(2xyz2+xy)的值【】A .与x ,y ,z 的大小都无关B .与x ,y 的大小有关,与z 的大小无关C .与x 的大小有关,而与y ,z 的大小无关D .与x ,y ,z 的大小都有关15.若M=4x 2-5x+11,N=3x 2-5x+10,则M 与N 的大小关系是 【 】A.M >NB.M=NC.M <ND.无法确定16.对于有理数a 、b ,定义a ※b=3a+2b ,则式子[]x y x y 2x +-()※()※化简后得 【 】A.15x-6yB.8x+3yC.8x-3yD.19x+3y第Ⅱ卷非选择题 (共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上) 17.单项式-3πxy 2的系数是 ,次数是 . 18.已知单项式3a mb 2与-ab n+3的和是单项式,那么m-n= . 19.当k= 时,式子x 3-kxy 2-4x 2+15xy 2+10中不含xy 2项. 20.如图是某花圃摆放的一组花盆图案(“○”代表红花花盆,“×”代表黄花花盆).观察图形并探索:在第n 个图案中,红花和黄花的盆数分别是 .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分) 化简:(1)(2xy-y )-(-y+yx ); (2)2223x7y 24x y 2x ⎡⎤----⎣⎦().22.(本小题满分10分)(1)当n 为何值时,多项式2x 3y 2n+4-3x 2y 5+14x 3y 3是八次多项式? (2)化简求值:x-3(x-14y 2)+(-x+14y 2),其中x=-2,y=-13.23.(本小题满分10分)化简后再求值:520+2(-3y 3z-2x )-4(-x-23y 3z ),其中x 、y 、z 满足下列方程●●●.圆点部分是被周亮不小心用墨水污染的条件,可是汤灿同学却认为不要那部分条件也能求出正确答案,你同意汤灿同学的说法吗?请你通过计算解释原因.(1)你的判断是(填“同意”或“不同意”). (2)原因:24.(本小题满分11分)若一个三位数的百位数字是a-b+c ,十位数字是b-c+a ,个位数字是c-a+b. (1)列出这个三位数的式子,并简化. (2)当a=2,b=5,c=4时,求出这个三位数. 25.(本小题满分12分)有一列单列式:-x ,2x 2,-3x 3,4x 4,…,-19x 19,20x 20,…. (1)你能说出它们的规律是什么吗? (2)写出第2014个单项式;(3)写出第n 个、第(n+1)个单项式. 26.(本小题满分14分)某农户2012年承包荒山若干亩,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg ,此水果在市场上每千克售a 元,在果园每千克售b 元(b<a ).该农户将水果拉到市场出售,平均每天出售1000kg ,需8位工人,每位工人每天付工资50元.(1)分别用含a ,b 的式子表示两种方式出售水果的纯收入(注:纯收入=收入-支出);(2)若a=1.5,b=1,且两种出售水果方式都在相同时间内售完全部水果,请你通过计算说明,选择哪种出售方式较好.期中复习达标检测 第Ⅰ卷选择题 (共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列说法中错误的是 【 】A.0的相反数是0B.正数和负数统称为有理数C.0既不是正数,也不是负数D.0的绝对值是02.南海资源丰富,其面积约为350万km 2,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为【 】A.0.35×108B.3.5×107C.3.5×106D.35×1053.下列说法:①x 和0都是单项式;②多项式-5a 2b+9a 2b 3c-7ab 2+1的次数是5;③单项式-234m n 的系数是-3;④-3x 3+8xy 2-2y 3可读作-3x 3,8xy 2,-2y 3的和.其中正确的说法有 【 】 A.1个B.2个C.3个D.4个4.下列各组中的两个多项式,不是同类项的是【 】A.3m 2n 与-14nm2 B.-1与20142C.abc 与-9abcD.-25x 3y 2与-25x 2y 35.一运动员某次跳水的最高点离跳台2m ,记作+2m ,则水面离跳台10m 可以记作 【 】 A.-10mB.-12mC.+10mD.+12m 6.下列运算正确的是【 】A.(-2)3=8B.-22=4C.(-12)3=-18D.(-2)3=-6 7.下列去括号正确的是【 】A.12x-(a+b-c )=12x-a+b-c B.13a-(12a-a )=13a-12a+a C.m-(n+3m-13n )=m-n+3m+113nD.-[]x y a -+-()=-x+y+a 8.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB=BC.如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在【 】A.点A 的左边B.点A 与点B 之间C.点B 与点C 之间D.点C 的右边9.如果单项式-x a+1y 3与12y b x 2是同类项,那么a ,b 的值分别为【 】A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=2 10.若m-n=-1,则(m-n )2-2m+2n 的值是【 】 A.3B.2C.1D.-111.已知a 是正数,b 是负数,且|b|>|a|,用数轴上的点来表示a ,b ,则下列正确的是【 】12.规定一种新运算“※”,若a ,b 是有理数,则a ※b=3a-2b ,则2※(-5)= 【 】A.-4B.4C.-16D.1613.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则m 2-cd+a bm+的值为【 】A.-3B.3C.-5D.3或-514.若|m-3|+(n+2)2=0,则m+2n 的值为【 】A.-4B.-1C.0D.415.若a=-2×32,b=(-2×3)2,c=-(2×3)2,则下列大小关系中正确的是 【 】A.a >b >cB.b >c >aC.b >a >cD.c >a >b 16.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算【 】A .甲B .乙C .丙D .一样第Ⅱ卷非选择题 (共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.比较大小:-(-5) |-5|,|-0.1| |0.01|.18.小亮按图中所示的程序输入一个数x 等于10,最后输出的结果为 .19.一组单项式为:2x,4x 2,8x 3,16x 4,…,观察其规律,推断第n 个单项式应为.20.如图是小明家的楼梯示意图,其水平距离(AB 的长度)为(2a+b )m , 一只蚂蚁从A 点沿着楼梯边缘爬到C 点,共爬了(3a-b )m ,问小明家楼 梯的竖直高度(BC 的长度)为 m.(提示:蚂蚁爬行的总长度为AB 与 BC 的长度和)三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分) 计算: (1)-14-16×223⎡⎤--⎣⎦();(2)24×(16-34-58)+(-13)2÷(-172);(3)-13(9a-3)+2(a+1). 22.(本小题满分10分)若关于x ,y 的整式(ax 2+2xy-3y 3+1)-(4x 2+y 3-bxy -8)的值与x 的取值无关,求整式9(a-b )-[]8ab 3a b --()-4[]a b 5ab --()的值. 23.(本小题满分10分)已知表示数a 的点距离原点3个单位长度,且在原点的左边,表示数b 的点距离原点32个单位长度,且在原点的右边,求2a 2b-[]2ab22a2b 2ab2-+()的值.24.(本小题满分11分)有理数a ,b ,c 在数轴上的对应点分别为A ,B ,C ,其位置如图所示. (1)请结合图,用“<”或“>”填空: c+b 0;a-c 0;b+a 0.(2)试去掉绝对值符号并合并同类项:|c|-|c+b|+|a-c|+|b+a|.25.(本小题满分12分)两摞规格相同的数学课本整齐地叠放在课桌面上,请根据图中所给的数据信息,解答下列问题: (1)若课本数为m (本),请写出整齐叠放在桌面上的数学课本距离地面的高度(用含m 的整式表示); (2)现课桌上有56本与题(1)中规格相同的数学课本,整齐叠放成一摞,若从中取出14本,求余下的数学课本距离地面的高度.26.(本小题满分14分) 阅读下列材料:1×2=13×(1×2×3-0×1×2); 2×3=13×(2×3×4-1×2×3);3×4=13×(3×4×5-2×3×4).由以上三个等式相加,可得1×2+2×3+3×4=13×3×4×5=20. 读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程); (2)1×2+2×3+3×4+…+n ×(n+1)= .第三章《一元二次方程》达标检测第Ⅰ卷选择题 (共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列方程是一元一次方程的是 【 】A.x 2-x-2=0 B.3x+2y+1=0 C.2+3=5D.2x-3=2x 2.下列说法中,错误的是【 】A.若a=b ,则b=aB.若a=b ,则7a=7bC.若a=b ,则a+10=b+10D.若a=b ,则a b m m3.马小虎解的下列四个方程,你认为正确的是【 】A.x-2x=3的解为x=3B.5y-3y=1的解为y=2C.x-12x=1的解为x=2 D.7y-2y=1-6的解为y=1 4.把方程12x=1变形为x=2,其依据是【 】A.等式的性质1B.等式的性质2C.分数的基本性质D.以上均不正确5.已知x=2是方程ax+3bx+6=0的解,则3a+9b-5的值是【】A.15B.12C.-13D.-146.解方程322323x x++-=1时,去分母后,正确的结果是【】A.9x+6-4x+3=1B.9x+6-4x-6=1C.9x+6-4x-6=6D.9x+2-4x+3=67.若代数式5x-7与代数式4x+9的值相等,则x的值等于【】A.2B.16C.29D.1698.已知x=y,则下列各式中:x-3=y-3,3x=3y,-2x=-2y,yx=1,正确的有【】A.1个B.2个C.3个D.4个9.在下列方程中,解是x=-1的是【】A.2x+1=1B.2-2x=2014C.x=1D.13 32x x+--=210.将方程3x-5=2x-4变形,得3x-2x=-4+5,那么变形的依据是【】A.合并同类项法则B.乘法分配律C.等式的性质1D.等式的性质211.当x=2时,整式ax-2x的值为4,当x=-2时,这个整式的值为【】A.-8B.-4C.-2D.812.如图,天平中的物体a,b,c使天平处于平衡状态,则物体a与物体c的重量关系是【】A.2a=3cB.4a=9cC.a=2cD.a=c13.如图是超市中某品牌洗发露的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发露的原价为【】A.22元B.23元C.24元D.26元14.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是【】A.7岁B.8岁C.9岁D.10岁15.已知关于x的方程(k-2)x|k|-1+5=3k是一元一次方程,则k的值是【】A.±2B.2C.-2D.±116.某地水费收费标准如下:用水每月不超过6m3,按0.8元/m3收费;如果超过6m3,超过部分按1.2元/m3收费.已知某用户某月的水费平均为0.88元/m3,那么该用户这个月应交水费为【】A.6.6元 B.6元 C.7.8元 D.7.2元第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.如果3x2a-1+5=6是关于x的一元一次方程,那么a= .18.有一个密码系统,其原理如下面的框图所示.当输出的值为10时,则输入的x= .19.在还没有出现字母以前,我们的祖先常用一些符号来表示方程中的未知数.现有一个方程:3× +5×=32,那么的值为 .20.有两桶水,甲桶有水180L,乙桶有水150L,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒 L水.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)解方程:(1)43-8x=3-112x;(2)12313 37x x-+=-(3)设y1=15x+1,y2=214x+,当x为何值时,y1与y2互为相反数呢?22.(本小题满分10分)数学迷小虎在解方程21134y y a-+=-去分母时,方程右边的-1漏乘了分母的最小公倍数12,因而求得方程的解为y=3,请你帮助小虎同学求出a的值,并正确求出原方程的解.23.(本小题满分10分)足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分.在2013年的中国足球超级联赛中,广州恒大战绩出色,在前29场比赛中,只输了一场,积74分排名榜首.请问这支球队胜了多少场?平了多少场?24.(本小题满分11分)七年级(2)班一个综合实践活动组去某停车场调查停车情况,下面是三位同学的谈话.你知道小型车停了几辆吗?中型车呢?25.(本小题满分12分)如图,用一根质地均匀长30cm的直尺和一些相同棋子做实验.已知支点到直尺左右两端的距离分别为a,b,通过实验可得如下结论:若左端棋子数×a=右端棋子数×b,则直尺就能平衡.现在已知a=10cm,并且左端放了4枚棋子,那么右端需放几枚棋子,直尺才能平衡?26.(本小题满分14分)一天,熊妈妈出门办事,临走吩咐小熊替它照看水果店.喜欢贪小便宜的小狐狸来买水果.它挑选了总共8kg 的鸭梨和葡萄,每千克鸭梨卖3元,每千克葡萄卖5元.在算账的时候,粗心的小熊把鸭梨和葡萄的价格搞错了,以鸭梨每千克5元、葡萄每千克3元的价格卖了28元.小狐狸付完钱后乐滋滋的走了.请聪明的你算一算,价格弄错后,小熊损失了多少钱?第四章《几何图形初步》达标检测第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.右图中的物体的形状类似于【】A.棱柱B.圆柱C.圆锥D.球2.按下列语句画图:点M在直线a上,也在直线b上,但不在直线c上,直线a、b、c两两相交,则下列图中,符合题意的是【】3.55°角的余角的度数是【】A.55°B.45°C.35°D.125°4.若某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转14周角后,此时指针的指向是【】A.东南方向 B.北偏西40°C.南偏东50°D.南偏东40°5.如图,将平面图形绕轴旋转一周,得到的几何体是【】6.下列说法中,错误的是【】A.棱柱侧面的形状不可能是三角形B.夹角就是一条直线C.圆是平面图形D.角的两边不能用刻度尺度量7.下列单位换算中,错误的是【】A.(32)°=90' B.0.025°=90"----------------------------------------------C.125.45°=125°45'D.1000"=(518)°8.若∠A的补角是∠C,∠C又是∠B的余角,则∠A一定是【】A.锐角B.钝角C.直角D.无法确定9.如图,桌上放着一摞书和一个茶杯,则从正面看书和茶杯得到的平面图形是【】10.如图,是一个正方体的展开图,则图中“加”字所在面的对面所标的字是【】A.我B.的C.同D.学11.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制车票【】A.6种B.12种C.15种D.30种12.如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是【】A.2cmB.3cmC.4cmD.6cm13.永州境内的潇水河畔有朝阳岩、柳子庙和迥龙塔等三个名胜古迹(如图).其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短.那么旅游车等候这三位游客的最佳地点应在【】A.朝阳岩B.柳子庙C.迥龙塔D.朝阳岩和迥龙塔这段路程的中间位置14.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于【】A.35°B.70°C.110°D.145°15.如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件【】A.AB=12B.BC=4C.AM=5=216.如图,直线AB,CD相交于点O,OE平分∠AOD,若∠BOC=80°,则∠AOE的度数是【】A.40°B.50°C.80°D.100°第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.已知平面内的四个点A、B、C、D,过其中两点画直线,如果最多可以画m条,最少可以画n条,那么m+n 的值为_____________.18.如图,延长线段AB到点C,使BC=4,若AB=8,则线段AC的长是BC长的________倍.19.把一副三角尺按照如图所示的位置旋转,则图①中∠α与∠β的关系是__________,图②中∠α与∠β的关系是_________.20.将一副直角三角尺的直角顶点重合成如图所示的形状,如果∠AOD=120°,那么∠BOC的度数为___________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)如图,是由几个相同的小正方体搭成的几何体,请你画出它从正面、左面、上面三个不同方向看到的平面图形.22.(本小题满分10分)计算:(1)48°39´+67°31´;(2)21°17´×4+176°52´÷3.23.(本小题满分10分)(1)一个角的补角加上10°后,等于这个角的余角的3倍,求这个角的度数;(2)把一条长为20cm的线段分成三段,中间的一段长为8cm,问第一段线段的中点到第三段线段的中点的距离等于多少?24.(本小题满分11分)下面是马小虎同学解的一道题.题目:在同一平面内,若∠BOA=70°,∠BOC=15°.求∠AOC的度数.解:根据题意可画出图形如图.因为∠BOA=70°,∠BOC=15°,所以∠AOC=∠BOA-∠BOC=70°-15°=55°.你若是马小虎的数学老师,会给马小虎同学满分吗?若会,请说明理由;若不会,请将马小虎的错误指出,并给出你认为正确的解法.25.(本小题满分12分)读题、画图、计算并作答.画线段AB=3cm,在线段AB上取一点K,使AK=BK,在线段AB的延长线上取一点C,使AC=3BC,在线段BA的延长线上取一点D,使AD=12AB.(1)求线段BC、DC的长;(2)点K是哪些线段的中点?26.(本小题满分14分)如图①,已知点O在直线BF上,∠BOD-∠BOC=90°,∠AOC=∠BOD,射线OM平分∠AOF.(1)∠DOM的度数是多少?(2)将图①中的射线OB沿射线OC折叠得到射线OE,如图②,请你在折叠后的图中找出等于2∠DOM的角.(3)将图①中的射线OF绕点O顺时针旋转得到射线ON,如图③,且∠AON=90°,则在旋转后的图中互补的角共有多少对?期末复习达标检测(一)第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2的相反数是【】A.12B.-1C.2D.-22.天气预报说:“某地明天的气温是26~34℃”,其具体含义理解错误的是【】A.该地明天最低气温是零上26℃B.该地明天的温差是8℃C.该地明天最高气温是零上34℃D.该地明天的平均气温是零上30℃3.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000kg,这个数据用科学记数法表示为【】A.0.5×1011kgB.50×109kgC.5×109kgD.5×1010kg4.下列运算正确的是【】A.-57+27=-(57+27)=-1B.-7-2×(-5)=-9×(-5)=45C.3÷54×45=3÷1=3D.-5÷12+7=-10+7=-35.下列各对单项式中,是同类项的是【】A.-12x3y2与3x3y2 B.-x与yC.3与3aD.3ab2与a2b6.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是【】A.大B.伟C.国D.的7.小魏同学利用手中一副三角尺想摆放成∠α与∠β互余,下面四种摆放方式中符合要求的是【】8.“天上的星星有几颗,7后跟上22个0”,这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星的颗数为【】A.700×1020 B.7×1023 C.0.7×1025 D.7×10229.已知2x6y2和-13x3m y n是同类项,则3m2-2(m2-n)的值是【】A.8B.4C.-8D.-410.下列各题正确的是【】A.由7x=4x-3移项,得7x-4x=3B.由2(2x-1)-3(x+3)=1去括号,得4x-2-3x-9=1C.由2(2x+1)=x+7去括号、移项、合并同类项,得x=5D.由23132x x x--=+去分母,得2(2x-1)=1+3(x-3)11.如图,若∠AOB=90°,∠BOC=40°,OD平分∠AOC,则∠BOD的度数是【】A.40°B.60°C.30°D.25°12.多项式2mx2-x2+3x+1与x2-4y2+3x+5的差不含有x的二次项,则(m-2)2014的值为【】A.0B.1C.2D.201413.如图,数轴上A、B两点分别对应有理数a、b,则下列结论中,正确的是【】A.a+b>0B.ab>0C.a-b>0D.|a|-|b|>014.线段AB被分为2∶3∶4三部分,已知第一部分和第三部分的中间点的距离是5.4cm,则线段AB的长应为【】A.8.1cmB.9.1cmC.10.8cmD.7.4cm15.中央电视台《墙来了》是大众非常喜爱的一个娱乐节目.红队的“终极墙”有一道这样的题:“已知式子x+2y的值是3,则式子2x+4y+1的值是 .”假如你是红队其中的一员,你认为应选择下列哪个答案就不会掉下水里. 【】A.1B.4C.7D.不能确定16.在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若设AE=xc m,依题意可得方程【】A.6+2x=14-3xB.6+2x=x+(14-3x)C.14-3x=6D.6+2x=14-x第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.-1.5的倒数是,绝对值是 .18.比较大小:-57-79(填“>”“<”或“=”).19.若关于x的方程13x=5-k的解是x=-3,则k= .20.在有理数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b时,a*b=a2;当a<b时,a*b=a.则当x=-2时,(-12*x)·x2-[]3*x-()=.(“·”和“-”仍为有理数运算中的乘号和减号)三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)计算:(1)(-4)2×(-34)+30÷(-6);(2)(-1)3×(-5)÷2325⎡⎤-+⨯-⎣⎦()().22.(本小题满分10分)解方程:(1)4(x-1)=1-x;(2)1231 23x x+--=23.(本小题满分10分)已知|x+3|+(y-13)2=0,试求式子2(3xy+4x2)-3(xy+4x2)的值.24.(本小题满分11分)一个体服装店老板以每件60元的价格购进50件童装,针对不同的顾客,50件童装的售价不完全相同.若以80元为标准,将超过的钱数记为正,不足的钱数记为负,则记录的结果如下表:请你求出该服装店在售完这50件童装后,赚了多少钱?25.(本小题满分12分)如图,OC、OE分别是∠AOD、∠BOD的平分线,且∠BOD=72°,求∠COD、∠DOE、∠COE的度数并比较大小.26.(本小题满分14分)某公园门票价格规定如下表所示:某中学七(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,那么一共应付1240元,问:(1)如果两班联合起来,作为一个团体购票,那么省多少钱?(2)两班各有多少学生?(3)如果七(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱(只说方案,不必说明理由)?期末复习达标检测(二)第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据搜狐视频官方数据显示,第五集《中国好声音》节目在播出后48h内,在搜狐视频平台创造了2.01亿次播放量记录.2.01亿用科学记数法表示为【】A.2.01×104 B.20.1×107C.2.01×108D.0.201×1092.鲜艳欲滴的水果是人们的最爱,观察图中的三幅图片,则与所示食物相类似的立体图形按从左到右的顺序依次是【】A.球、圆锥、圆柱B.球、棱柱、棱锥C.圆柱、圆锥、球D.球、圆柱、圆锥3.下列说法中,正确的是【】A.8πx4的系数是8B.-ab2的系数是-1,次数是3C.-225x y的系数是-2D.3不是单项式4.如图,下列说法中,错误的是【】A.直线OB与直线AB是同一条直线B.点O在射线BA的延长线上C.射线OB和射线OA是同一条射线D.点O在直线AB上5.某书中有这样一道方程:23x+⊗+1=x,其中⊗处印刷时被墨迹盖住了,查看后面答案,知这道题的解为x=-2.5,那么⊗处的数为【】A.-2.5B.2C.3.5D.56.已知∠A=65°,则∠A的补角等于【】A.125°B.105°C.115°D.95°7.下列说法中,正确的是【】A.x的指数是0B.-2ab的系数是-2C.单项式-235x y的系数是35,次数是2D.-3x2y+4x2y2-y-1是三次四项式8.以下各图均由彼此连接的6个小正方形纸片组成,其中不能折叠成一个正方体的是【】9.如图,将三个相同的正方形的一个顶点重合放置,那么∠1的度数为【】A.30°B.40°C.20°D.45°10.若n-m=-1,则(m-n)3-3n+3m的值是【】A.4B.3C.2D.-411.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的n个点最多可确定15条直线,则n的值为【】A.4B.5C.6D.712.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有十颗珠子”.小刚却说:“只要把你的13给我,我也有10颗珠子”,那么小刚的弹珠颗数是【】A.3B.4C.6D.813.若|x|=3,|y|=2,且xy<0,则x+y的值是【】A.5或-5B.1或-1C.5或-1D.-5或114.如图,已知∠BOC=55°,∠AOC=∠BOD=90°.则∠AOD的度数为【】A.35°B.45°C.55°D.65°15.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y的值为【】A.2B.3C.6D.x+316.元旦当天,6位朋友均匀地围坐在圆桌旁共度佳节.如图,圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两位客人,每人向后挪动了相同的距离,再左右。
七年级上册《有理数》单元测试卷(1)一、选择题(共10小题,每小题3分,共30分)1.(3分)﹣7的倒数是()A.7B.C.﹣7D.﹣2.(3分)一种零件的内径尺寸在图纸上是(7±0.05)mm,表示这种零件的标准尺寸是7mm,加工要求最大的合格尺寸是()A.7.03B.7.04C.7.05D.7.063.(3分)小程和大梁利用温度计测量山峰的高度,小程在山顶测的温度是﹣1℃.大梁此时在山脚测得温度是3℃.若该地区高度每增加100米气温大约降低0.8℃,则山峰高度大约是()A.500米B.450米C.400米D.300米4.(3分)下列说法正确的是()A.平方是本身的数是正数B.立方是本身的数是±1C.绝对值是它本身的数是正数D.倒数是它本身的数是±15.(3分)下列各数:①﹣12;②﹣(﹣1)2;③﹣13;④﹣(﹣1)4其中结果等于﹣1的是()A.①②③B.①②④C.②③④D.①②③④6.(3分)如图,A、B两点在数轴上表示的数分别为a、b,下列结论:①a﹣b>0;②a+b<0;③(b﹣1)(a+1)>0;④.其中结论正确的是()A.①②B.③④C.①③D.①②④7.(3分)下列运算正确的是()A.﹣22÷(﹣2)2=1B.C.D.8.(3分)要使算式﹣34□(23﹣(﹣2)3)的计算结果最大,在“□”里填入的运算符号应是()A.+B.﹣C.×D.÷9.(3分)设y=|x+7|+|x﹣5|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有有限个x使y取最小值D.有无限多个x使y取得最小值10.(3分)如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2013次输出的结果为()A.3B.6C.4D.1二、填空题(每小题3分,共18分)11.(3分)中国的陆地面积约为9600000km2,把9600000用科学记数法表示为,近似数2.30×104精确到位.12.(3分)用“>”“<”“=”号填空:(1)﹣﹣;(2)﹣(﹣0.3)|﹣|;(3)﹣|﹣|﹣0.625.13.(3分)若(a﹣2)2+|b+3|=0,则b a=.14.(3分)已知a、b、c是非零有理数,且a+b+c=0,abc<0,求=.15.(3分)古希腊数学家把1,3,6,10,15,21,…,叫做三角形数,根据它的规律,则第100个三角形数是.16.(3分)如图,在数轴上点A表示1,现将点A沿x轴做如下移动:第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,则线段A13A14的长度是.三、解答题(共8题,共72分)17.(8分)计算题(1)10﹣(﹣16)+(﹣5)﹣17;(2);(3);(4).18.(8分)计算题(1);(2)﹣12×3×(﹣1)2016﹣(﹣1)×4;(3);(4).19.(8分)出租车司机小明某天下午运营都是在东西走向的人民大道上进行的,如果规定:出车点为原点,向东为正,向西为负,他这天下午的行车里程如下:(单位:km)+15、﹣2、+5、﹣1、+10、﹣3、﹣2、﹣12、+4、﹣5、+6(1)行驶过程中,距离出车点最远km,它的位置在出车点的边.(2)求将最后一名乘客送到目的地时,小明距下午出发点的距离.(3)若每千米耗油0.1升,这天下午出租车司机小明一共耗油多少升?20.(8分)规定a※b=.求:(1)2※()的值;(2)(2※3)※().21.(8分)给出下列两组算式 (4×5)2与42×52;与×93.(1)计算各组算式,每组的结果相等吗?(2)想一想,当n 是正整数时,(ab )n = . (3)用你发现的规律计算:(﹣0.125)2018×82019. 22.(10分)先观察表格,再解决问题.项数 第一项 前两项 前三项 前四项 前五项 式子① 1 1+2 1+2+3 1+2+3+4 1+2+3+4+5 式子② 12 12+2212+22+3212+22+32+4212+22+32+42+52两个式子的比1(1)1+2+3+4+5+…+40= (直接写出结果); (2)计算12+22+32+42+…+402的值; (3)计算22+42+62+82+…+402的值. 23.(10分)观察下面三行数:﹣2,4,﹣8,16,﹣32,64,…;① ﹣4,2,﹣10,14,﹣34,62,…;② 3,﹣3,9,﹣15,33,﹣63,…③ (1)第①行数的第7个数是 ;(2)第②行数的第n 个数是 ,第③行数的第n 个数是 ;(3)取每行的第k 个数,若三个数的和等于255,求k 的值.24.(12分)如图,已知数轴上点A 表示的数为6,B 是数轴上原点左边一点,且AB =10,动点P 从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 所表示的数 .当t =3时,OP = . (2)①若点C 到点A 的距离为8个单位,则点C 表示的数是 .②若数轴上有两点M ,N 表示的数分别为m ,n ,它们之间的距离为d ,则d =(用m,n的式子表示);③在点B与点A之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的积是.(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?【嘉奖题】(共5分)(计入总分但总分不超过120分)25.(5分)某粮食加工厂给吉利卖站送来10箱袋装米粉,每箱10袋,每袋重800克,其中有一箱米粉每袋少50克,但不知道是哪一箱,送货员想出一个好办法,他用笔将10个箱子分别编上1,2,3,…,10的号码,然后从1号箱中取出1袋米粉,2号箱中取出2袋米粉,…10号箱中取出10袋米粉,在将这些米粉称了一下,称得重量为43800克,你知道重量不足的是哪一箱吗?。
人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
人教版数学七年级上册-有理数单元测试卷考试范围:第1章有理数;考试时间:100分钟;满分:120分学校:___________姓名:___________班级:___________考号:___________ 题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题)1.如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣52.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×1043.按括号内的要求用四舍五人法取近似数,下列正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.0(精确到0.1)D.0.0136≈0.014(精确到0.0001)4.2018的相反数是()A.﹣2018 B.2018 C.﹣ D.5.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.6.如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0 B.ab<0 C.b﹣a<0 D.7.在下列执行异号两数相加的步骤中,错误的是()①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④8.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A.B.D.5+29.时代超市出售的三种品牌月饼袋上,分别标有质量为:(500±5)g、(500±10)g、(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差()A.10g B.20g C.30g D.40g10.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)评卷人得分二.填空题(共5小题)11.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过mm.12.将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为.13.某市2018年元旦的最低气温为﹣1℃,最高气温为7℃,这一天的最高气温比最低气温高℃.14.若a、b互为倒数,则4ab=.15.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是,最小的积是.评卷人得分三.解答题(共7小题)16.请你把下列各数填入表示它所在的数集的圈里:﹣2,﹣20%,﹣0.13,﹣7,10,,21,6.2,4.7,﹣8这四个集合合并在一起(填“是”或“不是”)全体有理数集合,若不是,缺少的是.17.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)18.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.19.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a+b|﹣|c﹣a|的值.20.阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段AB=1=0﹣(﹣1);线段BC=2=2﹣0;线段AC=3=2﹣(﹣1)问题(1)数轴上点M、N代表的数分别为﹣9和1,则线段MN=;(2)数轴上点E、F代表的数分别为﹣6和﹣3,则线段EF=;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m,求m.21.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)=8,求a的值.22.某公司股票上周五在股市收盘价(收市时的价格)为每股25.8元股,在接下来的一周交易日内,老何记下该股票每日收盘价比前一天的涨跌情况(记上涨为正,单位:元)﹒星期一二三四五每股涨跌(元)+2 ﹣0.5 +1.5 ﹣1.8 +0.8根据上表回答下列问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价和最低价分别是多少元?(3)已知老何在周一收盘时买进该公司股票1000股,在周四以收盘价格将全部股票卖出.已知买入与卖出股票均需支付成交金额的3‰(千分之三)的交易费,问老何的收益情况如何?参考答案与试题解析一.选择题(共10小题)1.解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.2.解:65000=6.5×104,故选:B.3.解:403.53≈404(精确到个位),故选项A错误,2.604≈2.6(精确到十分位),故选项B错误,0.0234≈0.0(精确到0.1),故选项C正确,0.0136≈0.0136(精确到0.0001),故选项D错误,故选:C.4.解:2018的相反数是:﹣2018.故选:A.5.解:|﹣3|=3,故选:A.6.解:∵a在原点的左侧,b再原点的右侧,∴a<0,b>0,∴ab<0,∴B正确;∵a到原点的距离小于b到原点的距离,∴|a|<|b|,∴a+b>0,b﹣a>0,∴A、C错误;∵a、b异号,∴<0,∴D错误.故选:B.7.解:执行异号两数相加的步骤:①求两个有理数的绝对值,正确;②比较两个有理数绝对值的大小,正确;③将绝对值较大数的符号作为结果的符号,正确;④将两个有理数绝对值的和作为结果的绝对值,错误.故选:D.8.解:由图1知:白色表示正数,黑色表示负数,所以图2表示的过程应是在计算5+(﹣2),故选:C.9.解:由题意知:任意拿出两袋,最重的是520g,最轻的是480g,所以质量相差520﹣480=40(g).故选:D.10.解:①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则=﹣1,正确;③若a2=b2,则a=b或a=﹣b,错误;④若a<0,b<0,所以ab﹣a>0,则|ab﹣a|=ab﹣a,正确;故选:B.二.填空题(共5小题)11.解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故答案为:30.0312.解:﹣1+5=4.答:此时点A所对应的数为4.故答案为:4.13.解:由题意可得:这一天的最高气温比最低气温高7﹣(﹣1)=8(℃).故答案为:8.14.解:∵a、b两实数互为倒数,ab=1,∴4ab=4,故答案为:4.15.解:在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积必须为正数,即(﹣5)×(﹣3)×5=75,最小的积为负数,即(﹣5)×(﹣3)×(﹣2)=﹣30.故答案为:75;﹣30.三.解答题(共7小题)16.这四个集合合并在一起不是全体有理数集合,缺少的是0.故答案为:不是;0.17.解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.18.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5.故答案为:1,﹣2.5;(2)∵A点表示1,∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合,∴其中点==﹣1,∵点B表示﹣2.5,∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.19.解:由数轴可得,a<0<b<c,|b|<|a|<|c|,∴b﹣c<0,a+b<0,c﹣a>0,∴|b﹣c|+|a+b|﹣|c﹣a|=c﹣b﹣a﹣b﹣c+a=﹣2b.20.解:(1)∵点M、N代表的数分别为﹣9和1,∴线段MN=1﹣(﹣9)=10;故答案为:10;(2)∵点E、F代表的数分别为﹣6和﹣3,∴线段EF=﹣3﹣(﹣6)=3;故答案为:3;(3)由题可得,|m﹣2|=5,解得m=﹣3或7,∴m值为﹣3或7.21.解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣32;(2)☆3=×32+2××3+=8a+8=8,解得:a=0.22.解:(1)25.8+2﹣0.5=27.3(元);(2)周一25.8+2=27.8(元),周二27.3元,周三27.3+1.5=28.8(元),周四28.8﹣1.8=27(元),周五27+0.8=27.8(元)∴本周最高价为28.8元,最低价为27元;(3)(27﹣27.8)×1000﹣(27.8+27)×1000×3‰=﹣964.4(元),答:老何亏损了964.4元.。
七年级数学第一章有理数测试题(一)一、 选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯ 2、大于–3.5,小于2.5的整数共有( )个。
(A )6 (B )5 (C )4 (D )33、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )(A )2 (B )–2 (C )1 (D )–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、46、如果一个数的相反数比它本身大,那么这个数为( ) A 、正数 B 、负数 C 、整数 D 、不等于零的有理数7、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个 9、下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=1 10、如果a <0,那么a 和它的相反数的差的绝对值等于( ) A.a B.0 C.-a D.-2a 二、填空题:(每题2分,共42分) 1、()642=。
七年级上册数学第一章测试题
(时间:100分钟 满分:100分)
姓名: 班级: 分数:
一、选择题(每题3分,共36分。
)
1、-3的相反数是( ) A 、-3 B 、3
1 C 、-31 D 、3 2、在-2,0,1,3这四个数中,比0小的数是( ) A 、-
2 B 、0 C 、1
D 、3 3、下列计算正确的是( )
A 、-1+1=0
B 、-1-1=0
C 、3÷⎪⎭⎫ ⎝⎛-31=-1
D 、-22=4
4、在(-2)2,(-2),+⎪⎭
⎫ ⎝⎛-21,-|-2|这四个数中,负数的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个
5、实数a,b 在数轴上的位置如图所示,下列结论正确的是( )
A 、b >0,
B 、a <0
C 、b >a
D 、a >b 6、某天股票A 开盘价为12元,上午12:00跌1.0元,下午收盘时又涨了0.2元,则股票A 的收盘价是( )
A 、0.2元
B 、9.8元
C 、11.2元
D 、12元
7、在数轴上,到表示-1的点的距离等于6的点表示的数是( )
A 、5
B 、-7
C 、5或-7
D 、8
8、如果|x|=|-5|,那么x 等于( )
A 、5
B 、-5
C 、+5或-5
D 、以上都不对
9、已知m 、n 均为非零有理数,下列结论正确的是( )
A 、若m ≠n ,则|m|≠|n|
B 、若|m|=|n|,则m =n
C 、若m >n >0,则m 1>n
1, D 、若m >n >0,则m 2>n 2 10、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)
(C)a -b>0 (D)b -11、若两个有理数的和是正数,那么一定有结论( )
(A )两个加数都是正数; (B )两个加数有一个是正数;
(C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数
12、654321-+-+-+……+2005-2006的结果不可能是: ( )
A 、奇数
B 、偶数
C 、负数
D 、整数
二、填空题(每题3分,共24分)
13、如果向东走3米记为+3米,那么向西走6米记作 。
14、计算31-2
1= . 15如果数轴上的点A 对应的数为-1.5,那么与A 点相距3个单位长度的点所对应的
有理数为___________。
16、倒数是它本身的数是 ;相反数是它本身的数是 ;绝对值是它本身的数是 。
17、m -的相反数是 ,1m -+的相反数是 ,1m +的相反数是 .
18、已知a 、b 互为相反数,c 、d 互为倒数,则a -cd +b= 。
19、若|m -2|+|n +3|=0,则2n-3m= 。
20、观察式子
311⨯=⎪⎭⎫ ⎝⎛-31121,531⨯=⎪⎭⎫ ⎝⎛-513121, ⎪⎭⎫ ⎝⎛-=⨯715121751,……由此可知+⨯+⨯+⨯751531311……+=⨯2011
20091 。
三、解答题
21(4分)在数轴上表示下列各数,并用“>”把它们连接起来。
―3 2.5 0 -4.5 0.5 -2
1
22、计算(每题4分,共16分)
(1)|-2|-(-2.5)―|1-4| (2) (-2
1+61-83+125)×(-24)÷ 21
(3) (-12)÷4×(-6)÷2 (4)64÷(-351)×8
5
23、(6分)若|a|=2, b=-3,c 是最大的负整数,求a +b-c 的值。
24、(6分)已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2, 求2||4321
a b m cd m ++-+的值.
25、(8分)为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走
向的公路上免费接送老师。
如果规定向东为正,向西为负,出租车的行程如下。
(单位:千米)
+15 -4 +13 -10 -12 +3 -13 -17
(1) 当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点
的距离是多少?
(2)若出租车的耗油量为0.4升/千米,这天上午出租车共耗油多少升?
附加题(20分)
1、(5分)已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ).
A .A 、
B 两点的距离 B .A 、
C 两点的距离
C .A 、B 两点到原点的距离之和
D . A 、C 两点到原点的距离之和
2、(5分)已知m m -=,化简21---m m 所得的结果是____ __ __.
3.(10分)计算: 1+2+3+……+2002+2003+2002+……+3+2+1。