七年级有理数测试卷
- 格式:doc
- 大小:108.00 KB
- 文档页数:6
人教版七年级数学上册《第一章有理数》测试卷-附有答案(考试时间:90分钟试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共8个小题每小题4分共32分。
在每小题给出的四个选项中只有一项是符合题目要求的。
a+表示且1.(2020·无锡市第一中学七年级期中)点A在数轴上点A所对应的数用21点A到原点的距离等于3 则a的值为()A.2-D.1 -或1 B.2-或2 C.2【答案】A【分析】根据绝对值的几何意义列绝对值方程解答即可.【详解】解:由题意得:|2a+1|=3当2a+1>0时有2a+1=3 解得a=1当2a+1<0时有2a+1=-3 解得a=-2所以a的值为1或-2.故答案为A.【点睛】本题考查了绝对值的几何意义根据绝对值的几何意义列出绝对值方程并求解是解答本题的关键.2.(2020·酒泉市第二中学)下列各组数中互为相反数的有()①-(-2)和-|-2|;②(-1)2和-12;③23和32;④(-2)3和-23A.④B.①②C.①②③D.①②④【答案】B【分析】先利用去括号法则、绝对值运算、有理数的乘方运算进行计算再根据相反数的定义即可得.【详解】解:①(2)2,22--=--=- 则这组数互为相反数 ②22(1)1,11-=-=- 则这组数互为相反数 ③3228,39== 则这组数不互为相反数 ④33(2)8,28-=--=- 则这组数不互为相反数综上 互为相反数的有①②故选:B .【点睛】本题考查了去括号法则、绝对值运算、有理数的乘方运算、相反数的定义 熟练掌握各运算法则和定义是解题关键.3.(2020·浙江)在3,1,1,3--这四个数中 比2-小的数是( )A .3-B .1-C .1D .3【答案】A【分析】根据有理数的大小关系求解即可.【详解】解:在这四个数中 32-<-故答案为:A .【点睛】本题考查了比较有理数大小的问题 掌握比较有理数大小的方法是解题的关键.4.(2020·多伦县第四中学七年级期中)当n 为正整数时 (﹣1)2n+1﹣(﹣1)2n 的值为( )A .0B .2C .﹣2D .2或﹣2 【答案】C【分析】1、 由n 为正整数 得2n 是偶数 2n+1是奇数;2、 根据 “指数是偶数时 负数的幂是正数” 以及 “指数是奇数时 负数的幂是负数"可得(-1)2n+1=-1 (-1)2n=1;3、 接下来根据有理数的加法法则进行计算即可.【详解】解:原式=(﹣1)2n+1﹣(﹣1)2n= -1-1= - 2 故选C.【点睛】本题主要考查负数的幂运算: 指数是偶数时 负数的幂是正数 指数是奇数时 负数的幂是负数.5.(2020·银川英才学校)如图 数轴的单位长度为1 若点A 和点C 所表示的两个数的绝对值相等 则点B 表示的数是( )A .-3B .-1C .1D .3【答案】B【分析】找到AC 的中点即为原点 进而看B 点在原点的哪边 距离原点几个单位即可.【详解】解:设AC 的中点为O 点 表示的数是0 所以点C 表示的数是-3 所以点B 表示的数是-1.故选:B【点睛】本题考查数轴上点的确定;找到原点的位置是解决本题的关键;用到的知识点为:两个数的绝对值相等 那么这两个数到原点的距离相等.6.(2020·靖江市靖城中学)如图 数轴上的,,A B C 三点所表示的数分别为a b c 、、 其中AB BC = 如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边【答案】C【分析】根据绝对值是数轴上表示数的点到原点的距离 分别判断出点A 、B 、C 到原点的距离的大小 从而得到原点的位置 即可得解.【详解】解:∵|a|>|c|>|b|∴点A 到原点的距离最大 点C 其次 点B 最小又∵AB=BC∴原点O 的位置是在点B 、C 之间且靠近点B 的地方.故选:C .【点睛】此题考查了实数与数轴 理解绝对值的定义是解题的关键.7.(2020·湖南天心·长郡中学七年级期中)如图点A所表示的数的绝对值是()A.3 B.﹣3 C.13D.13【答案】A【分析】根据负数的绝对值是其相反数解答即可.【详解】|-3|=3故选A.【点睛】此题考查绝对值问题关键是根据负数的绝对值是其相反数解答.8.(2020·重庆市荣昌区荣隆镇初级中学七年级期中)4月24日是中国航天日 1970年的这一天我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射标志着中国从此进入了太空时代它的运行轨道距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103【答案】C【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10 n为整数.确定n的值时要看把原数变成a时小数点移动了多少位 n的绝对值与小数点移动的位数相同.当原数绝对值>1时 n是正数;当原数的绝对值<1时 n是负数.【详解】解:将439000用科学记数法表示为4.39×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式其中1≤|a|<10 n为整数表示时关键要正确确定a的值以及n的值.二、填空题:本题共6个小题每题3分共18分。
人教版七年级数学上册《第一章有理数》测试卷-附含答案1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+)(2018m m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。
人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
第1章有理数测试卷〔1〕一、选择题〔本大题10小题,每题3分,共30分〕1.〔3分〕在1,0,2,﹣3这四个数中,最大的数是〔〕A.1 B.0 C.2 D.﹣32.〔3分〕2的相反数是〔〕A.B.C.﹣2 D.23.〔3分〕﹣5的绝对值是〔〕A.5 B.﹣5 C.D.﹣4.〔3分〕﹣2的倒数是〔〕A.2 B.﹣2 C.D.﹣5.〔3分〕以下说法正确的选项是〔〕A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零6.〔3分〕在有理数中,绝对值等于它本身的数有〔〕A.1个 B.2个 C.3个 D.无穷多个7.〔3分〕比﹣2大3的数是〔〕A.1 B.﹣1 C.﹣5 D.﹣68.〔3分〕以下算式正确的选项是〔〕A.3﹣〔﹣3〕=6 B.﹣〔﹣3〕=﹣|﹣3|C.〔﹣3〕2=﹣6 D.﹣32=99.〔3分〕据报道,2021年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为〔〕×1012×1012×1011×1011元×103是精确到〔〕A.十分位B.个位C.百位D.千位二、填空题〔本大题6小题,每题4分,共24分〕11.〔4分〕如果温度上升3℃记作+3℃,那么下降3℃记作.12.〔4分〕|a|=4,那么a=.13.〔4分〕在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.〔4分〕比拟大小:3223.15.〔4分〕假设〔a﹣1〕2+|b+2|=0,那么a+b=.16.〔4分〕观察以下依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,那么第10个数为.三、解答题〔一〕〔本大题3小题,每题6分,共18分〕17.〔6分〕把以下各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.〔6分〕﹣8﹣6+22﹣919.〔6分〕计算:﹣8÷〔﹣2〕+4×〔﹣5〕.四、解答题〔二〕〔本大题3小题,每题7分,共21分〕20.〔7分〕小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.〔7分〕计算:〔﹣+﹣〕×〔﹣12〕.22.〔7分〕计算:﹣22+3×〔﹣1〕4﹣〔﹣4〕×2.五、解答题〔三〕〔本大题3小题,每题9分,共27分〕23.〔9分〕假设|a|=5,|b|=3,求a+b的值.24.〔9分〕某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,缺乏的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10〔1〕这10名同学中最高分数是多少?最低分数是多少?〔2〕这10名同学的平均成绩是多少.25.〔9分〕一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向〔如:+7表示汽车向北行驶7千米〕,当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.〔单位:千米〕问:〔1〕B地在A地的何方,相距多少千米?〔2〕假设汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案与试题解析一、选择题〔本大题10小题,每题3分,共30分〕1.〔3分〕在1,0,2,﹣3这四个数中,最大的数是〔〕A.1 B.0 C.2 D.﹣3【考点】有理数大小比拟.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,应选:C.【点评】此题考查了有理数比拟大小,正数大于0,0大于负数是解题关键.2.〔3分〕2的相反数是〔〕A.B.C.﹣2 D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,应选:C.【点评】此题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣〞号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.〔3分〕﹣5的绝对值是〔〕A.5 B.﹣5 C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.应选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.〔3分〕﹣2的倒数是〔〕A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,假设两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×〔〕=1,∴﹣2的倒数是﹣.应选D.【点评】主要考查倒数的概念及性质.倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数,属于根底题.5.〔3分〕以下说法正确的选项是〔〕A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+〔﹣2〕;带负号的数不一定为负数,例如﹣〔﹣2〕,故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数〔0除外〕等于零,故错误;应选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解此题的关键.6.〔3分〕在有理数中,绝对值等于它本身的数有〔〕A.1个 B.2个 C.3个 D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.应选D.【点评】此题考查了绝对值:假设a>0,那么|a|=a;假设a=0,那么|a|=0;假设a<0,那么|a|=﹣a.7.〔3分〕比﹣2大3的数是〔〕A.1 B.﹣1 C.﹣5 D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法那么计算即可.【解答】解:﹣2+3=1.应选:A.【点评】此题主要考查的是有理数的加法法那么,掌握有理数的加法法那么是解题的关键.8.〔3分〕以下算式正确的选项是〔〕A.3﹣〔﹣3〕=6 B.﹣〔﹣3〕=﹣|﹣3|C.〔﹣3〕2=﹣6 D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣〔﹣3〕=6,正确;B、﹣〔﹣3〕=3,﹣|﹣3|=﹣3,故本选项错误;C、〔﹣3〕2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;应选:A.【点评】此题考查了有理数的减法和有理数的乘方,解决此题的关键是熟记有理数的乘方和有理数的减法.9.〔3分〕据报道,2021年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为〔〕×1012×1012×1011×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】×1012元,应选:B.【点评】此题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n 是整数数位减1.×103是精确到〔〕A.十分位B.个位C.百位D.千位【考点】近似数和有效数字.【分析】×103×103精确到百位.【解答】解:∵×103=2700,∴×103精确到百位.应选C.【点评】此题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题〔本大题6小题,每题4分,共24分〕11.〔4分〕如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,那么下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,那么和它意义相反的就为负.12.〔4分〕|a|=4,那么a=±4.【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.此题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.〔4分〕在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,那么距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,那么距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】此题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.〔4分〕比拟大小:32>23.【考点】有理数的乘方;有理数大小比拟.【专题】计算题.【分析】分别计算32和23,再比拟大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】此题考查了有理数的乘方以及有理数的大小比拟,是根底知识要熟练掌握.15.〔4分〕假设〔a﹣1〕2+|b+2|=0,那么a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+〔﹣2〕=﹣1.故答案为:﹣1.【点评】此题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.〔4分〕观察以下依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,那么第10个数为20.【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】此题是对数字变化规律的考查,比拟简单,难点在于从绝对值和符号两个局部考虑求解.三、解答题〔一〕〔本大题3小题,每题6分,共18分〕17.〔6分〕把以下各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比拟;数轴.【分析】先在数轴上表示各个数,再比拟即可.【解答】解:4>>﹣1>>﹣3.【点评】此题考查了有理数的大小比拟,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.〔6分〕﹣8﹣6+22﹣9【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】此题考查有理数的运算,属于根底题,注意运算的顺序是关键.19.〔6分〕计算:﹣8÷〔﹣2〕+4×〔﹣5〕.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法那么是解此题的关键.四、解答题〔二〕〔本大题3小题,每题7分,共21分〕20.〔7分〕小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为〔﹣3〕×〔﹣8〕=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.〔7分〕计算:〔﹣+﹣〕×〔﹣12〕.【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:〔﹣+﹣〕×〔﹣12〕=〔﹣〕×〔﹣12〕+×〔﹣12〕﹣×〔﹣12〕=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.〔7分〕计算:﹣22+3×〔﹣1〕4﹣〔﹣4〕×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法那么是解此题的关键.五、解答题〔三〕〔本大题3小题,每题9分,共27分〕23.〔9分〕假设|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,那么a=±5,同理b=±3,那么求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是此题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.〔9分〕某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,缺乏的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10〔1〕这10名同学中最高分数是多少?最低分数是多少?〔2〕这10名同学的平均成绩是多少.【考点】正数和负数.【分析】〔1〕根据正负数的意义解答即可;〔2〕求出所有记录的和的平均数,再加上基准分即可.【解答】解:〔1〕最高分为:80+12=92分,最低分为:80﹣10=70分;〔2〕8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正〞和“负〞的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.25.〔9分〕一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向〔如:+7表示汽车向北行驶7千米〕,当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.〔单位:千米〕问:〔1〕B地在A地的何方,相距多少千米?〔2〕假设汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】〔1〕把当天记录相加,然后根据正数和负数的规定解答即可;〔2〕先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:〔1〕18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;〔2〕18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正〞和“负〞的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.第二十四章二次函数周周测1一、选择题〔共16小题〕1.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB 的值为〔〕A.3 B.2C.3D.22.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,假设∠ADB=28°,那么∠AOC 的度数为〔〕A.14°B.28°C.56°D.84°3.如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,那么∠EOD等于〔〕A.10°B.20°C.40°D.80°4.如图,点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.那么以下结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是〔〕A.1 B.2 C.3 D.45.如图,圆心角∠BOC=78°,那么圆周角∠BAC的度数是〔〕A.156°B.78°C.39°D.12°6.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,那么∠BOC等于〔〕A.60°B.70°C.120°D.140°7.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,那么∠AEB的度数为〔〕A.36°B.46°C.27°D.63°8.如图,A、B、C是⊙O上的三点,且∠ABC=70°,那么∠AOC的度数是〔〕A.35°B.140°C.70°D.70°或140°9.以下四个图中,∠x是圆周角的是〔〕A.B.C.D.10.〔2021•龙岩〕如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,那么弦AB 的长为〔〕A.B.2 C.2D.411.如图,在⊙O中,∠OAB=22.5°,那么∠C的度数为〔〕A.135°B.122.5°C.115.5°D.112.5°12.如图,⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,那么∠BCD等于〔〕A.116°B.32°C.58°D.64°13.如图,在⊙O中,直径CD⊥弦AB,那么以下结论中正确的选项是〔〕A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B14.如图,在⊙O中,∠CBO=45°,∠CAO=15°,那么∠AOB的度数是〔〕A.75°B.60°C.45°D.30°15.如图,⊙O是△ABC的外接圆,∠OCB=40°,那么∠A的度数是〔〕A.40°B.50°C.60°D.100°16.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,那么∠ABD=〔〕A.20°B.46°C.55°D.70°二、填空题〔共13小题〕17.如图,点A、B、C、D在⊙O上,OB⊥AC,假设∠BOC=56°,那么∠ADB=______度.18.如图,点A、B、C在⊙O上,假设∠C=30°,那么∠AOB的度数为______°.19.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,那么∠BOD=______.20.〔2021•盘锦〕如图,⊙O直径AB=8,∠CBD=30°,那么CD=______.21.在圆中,30°的圆周角所对的弦的长度为2,那么这个圆的半径是______.22.如图,⊙O是△ABC的外接圆,假设∠BOC=100°,那么∠BAC=______.23.如图,AB是⊙O的直径,点C在⊙O上,点P在线段OA上运动.设∠BCP=α,那么α的最大值是______.24.如图,P是⊙O外一点,A、B、C是⊙O上的三点,∠AOB=60°,PA、PB分别交于M、N两点,那么∠APB的范围是______.25.如下图⊙O中,∠BAC=∠CDA=20°,那么∠ABO的度数为______.26.点O是△ABC外接圆的圆心,假设∠BOC=110°,那么∠A的度数是______.27.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,那么⊙O的直径的长是______.28.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,那么∠BOC=______度.29.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,那么∠AED的余弦值是______.三、解答题〔共1小题〕30.〔1〕甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:人均耕地面积/公郊县人数/万顷A 20B 5C 10求甲市郊县所有人口的人均耕地面积〔精确到0.01公顷〕;〔2〕先化简下式,再求值:,其中,;〔3〕如图,A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,假设BC=BE.求证:△ADE是等腰三角形.答案一、选择题〔共16小题〕1.A;2.C;3.C;4.D;5.C;6.D;7.A;8.B;9.C;10.C;11.D;12.B;13.B;14.B;15.B;16.C;二、填空题〔共13小题〕17.28;18.60;19.80°;20.4;21.2;22.50°;23.90°;24.0°<∠APB<30°;25.50°;26.55°或125°;27.;28.52;29.;三、解答题〔共1小题〕30.。
七年级有理数运算测试卷一、选择题(每题3分,共30分)1. 下列各数中,是有理数的是()A. πB. √(2)C. -3D. 0.1010010001·s2. 计算:(-2)+3的结果是()A. -1B. 1C. -5D. 5.3. 计算3 - (-2)等于()A. 1B. -1C. 5D. -5.4. 计算(-2)×(-3)的结果是()A. -6B. 6C. -5D. 5.5. 计算:4÷(-2)等于()A. 2B. -2C. (1)/(2)D. -(1)/(2)6. 一个数的相反数是3,则这个数是()A. -3B. 3C. (1)/(3)D. -(1)/(3)7. 绝对值等于3的数是()A. 3B. -3C. 3和 - 3D. 以上都不对。
8. 计算:(-1)^2等于()A. -1B. 1C. -2D. 2.9. 计算:-2^2的值是()A. 4B. -4C. 2D. -2.10. 若a = - 3,b = 2,则a + b的值为()A. -1B. 1C. -5D. 5.二、填空题(每题3分,共15分)1. 比较大小:-5___-4(填“>”或“<”)。
2. 计算:(-3)+(-4)=___。
3. 一个数与它的相反数的积是___。
4. 绝对值最小的有理数是___。
5. 若x = 5,则x =___。
三、计算题(每题5分,共35分)1. (-3)+5 - (-2)2. (-2)×(-3)÷(-4)3. -3^2×(-(1)/(3))4. 12÷(-3)+(-2)×(-3)5. (-1)^2023+(-2)^2×36. <=ft((1)/(2)-(1)/(3))×67. - 3+(-2)^3 - (-4)四、解答题(每题10分,共20分)1. 某冷库的温度是零下10^∘C,下降-3^∘C后又上升了5^∘C,求现在冷库的温度。
七年级上有理数测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. -3/4C. πD. √-12. 两个有理数相乘,结果仍为有理数的是:A. 2/3 4/5B. 2/3 √2C. √3 √2D. -√2 √23. 下列哪个数是整数?A. 1.5B. -2/3C. 3/3D. √94. 下列哪个数是正有理数?A. -5/6B. 0C. 3/4D. -√45. 下列哪个数是负有理数?A. -√9B. 2/3C. -2/-3D. √16二、判断题(每题1分,共5分)1. 所有整数都是有理数。
()2. 所有有理数都可以表示为分数形式。
()3. 两个有理数相加,结果一定是有理数。
()4. 两个有理数相减,结果一定是有理数。
()5. 两个有理数相乘,结果可能是无理数。
()三、填空题(每题1分,共5分)1. 有理数包括整数和______。
2. 两个有理数相加,结果一定仍为______。
3. 两个有理数相乘,结果可能是______。
4. 所有有理数都可以表示为______形式。
5. 两个有理数相减,结果可能是______。
四、简答题(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述整数和分数的关系。
3. 请简述有理数和无理数的区别。
4. 请简述两个有理数相乘的性质。
5. 请简述两个有理数相减的性质。
五、应用题(每题2分,共10分)1. 请计算:-3/4 + 2/32. 请计算:5/6 1/33. 请计算:2/3 3/44. 请计算:-2/5 / 4/55. 请计算:√16 + 3/4六、分析题(每题5分,共10分)1. 请分析两个有理数相加的性质。
2. 请分析两个有理数相乘的性质。
七、实践操作题(每题5分,共10分)1. 请用图形表示-3/4和2/3的和。
2. 请用图形表示5/6和1/3的差。
八、专业设计题(每题2分,共10分)1. 设计一个实验,验证两个有理数相加的结果仍为有理数。
2022-2023学年七年级数学上《有理数》一.选择题(共8小题)1.(2022•官渡区二模)我国古代的《九章算术》在世界数学史上首次正式引入负数.如果零上5℃记作+5℃,那么零下10℃记作()A.﹣10℃B.+10℃C.﹣5℃D.+5℃2.(2021秋•天津期末)如果一个物体向右移动1m记作移动+1m,那么这个物体又移动了﹣1m,对这个物体位置描述正确的是()A.这个物体向右移动了2mB.这个物体向左移动了2mC.这个物体回到了原来的位置D.这个物体向左移动了1m3.(2021秋•密山市期末)如果水位下降4m,记作﹣4m,那么水位上升5m,记作()A.1m B.9m C.5m D.﹣5 4.(2021秋•道县期末)下列说法正确的是()A.0没有相反数B.用普查的方法调查全国2021级七年级学生的视力情况C.0既不是正数也不是负数D.有理数分为正有理数和负有理数5.(2022春•沙坪坝区校级月考)在,﹣4,0,这四个数中,属于负整数的是()A.B.C.0D.﹣4 6.(2021秋•原阳县期末)在﹣3.5,,0.161161116…,中,有理数有()个.A.1B.2C.3D.4 7.(2022•威宁县模拟)如果盈利2元记为“+2“,那么亏损2元可记为()A.1B.C.﹣2D.2 8.(2022•阳谷县一模)以下各数是有理数的是()A.B.C.D.π二.多选题(共2小题)(多选)9.(2021秋•潍坊期中)某公交车从始发站经过A、B、C、D站到达终点站,各站上、下乘客人数如表所示(用正数表示上车的人数,负数表示下车的人数).站点始发站A B C D终点站上车人数x1512750下车人数0﹣3﹣4﹣10﹣11﹣25则下列说法正确的是()A.该公交车在始发站时,上车人数为14人B.从B站开出时,车内人数最多C.从始发站到D站,车内人数一直在增多D.从C站开出时,车内人数最多(多选)10.(2021秋•潍坊期中)下列说法错误的是()A.所有的整数都是正数B.非负数就是正数C.正数和负数统称为有理数D.0既不是正数,也不是负数三.填空题(共6小题)11.(2022春•杨浦区校级期中)如果把收入1200元记作+1200元,那么﹣1000元表示.12.(2021秋•泰州期末)某超市出售的一种品牌大米袋上,标有质量为(15±0.15)kg的字样,则从该超市里任意拿出这种品牌的大米两袋,它们的质量最多相差kg.13.(2021秋•花都区期末)如果向东走35米记作+35米,那么向西走50米记作米.14.(2022春•宝山区校级月考)在下列数﹣3,0,1,﹣|4|,﹣(﹣4)中,非负数是.15.(2021秋•道里区期末)化成百分数是.16.(2021秋•普陀区期末)循环小数5.245245…的循环节为.四.解答题(共4小题)17.(2021秋•丰泽区期末)国庆期间,观看电影《长津湖》成为了人们的假期活动首选节目.某区9月30日售票量为1.2万张,该区10月1日到10月7日售票量的变化如表(正号表示售票量比前一天多,负号表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化(单位:万张)+0.6+0.1﹣0.3﹣0.2+0.4﹣0.2+0.1(1)10月2日的售票量为多少万张?(2)若平均每张票价为50元,则10月1日到10月7日该区销售《长津湖》共多少万元?18.(2021秋•临汾期末)山西稷山板枣栽培历史有上千年,种类繁多,有板枣、长枣、圆枣等,以板枣最为有名.小明所在的小区购买了8筐稷山板枣,若以每筐10kg 为基准,把超过10kg 的千克数记为正数,不足10kg 的千克数记为负数,记录如下:①+3;②﹣1.4;③+2;④﹣4;⑤+5;⑥﹣3.5;⑦+1;⑧﹣0.5.(1)这8筐稷山板枣中,重量最重的是kg ,比重量最轻的重了kg .(2)这8筐稷山板枣的总重量是多少kg?19.(2021秋•济南期末)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如图,回答下列问题:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?20.(2021秋•朝阳区校级期末)把下列各数填在相应的集合中:8,﹣1,﹣0.4,,0,,﹣1,﹣(﹣5),﹣|﹣|.正数集合{…};负数集合{…};整数集合{…};分数集合{…};非负有理数集合{…}.2022-2023学年七年级数学上《有理数》参考答案与试题解析一.选择题(共8小题)1.(2022•官渡区二模)我国古代的《九章算术》在世界数学史上首次正式引入负数.如果零上5℃记作+5℃,那么零下10℃记作()A.﹣10℃B.+10℃C.﹣5℃D.+5℃【考点】正数和负数.【专题】实数;符号意识.【分析】根据正数和负数是表示一对意义相反的量进行求解.【解答】解:∵正数和负数是表示一对意义相反的量,∴如果零上5℃记作+5℃,那么零下10℃记作﹣10℃.故选:A.【点评】此题考查了运用正负数概念解决问题的能力,关键是能准确理解正数和负数是表示一对意义相反的量.2.(2021秋•天津期末)如果一个物体向右移动1m记作移动+1m,那么这个物体又移动了﹣1m,对这个物体位置描述正确的是()A.这个物体向右移动了2mB.这个物体向左移动了2mC.这个物体回到了原来的位置D.这个物体向左移动了1m【考点】正数和负数.【专题】实数;符号意识.【分析】已知把一个物体向右移动1m记作移动+1m,那么把一个物体又移动了﹣1m记作向左移动1m,据此判断即可.【解答】解:这个物体又移动了﹣1m记作向左移动1m,1+(﹣1)=0(m),故这个物体回到了原来的位置.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.(2021秋•密山市期末)如果水位下降4m,记作﹣4m,那么水位上升5m,记作()A.1m B.9m C.5m D.﹣5【考点】正数和负数.【专题】应用题.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∵“正”和“负”相对,水位下降4m,记作﹣4m,∴水位上升5m,记作+5m.故选:C.【点评】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.4.(2021秋•道县期末)下列说法正确的是()A.0没有相反数B.用普查的方法调查全国2021级七年级学生的视力情况C.0既不是正数也不是负数D.有理数分为正有理数和负有理数【考点】有理数;相反数;正数和负数.【专题】实数;数据的收集与整理;数感;数据分析观念.【分析】依据有理数的分类、相反数和抽样调查,即可得到正确结论.【解答】解:A、0有相反数,是0,原来的说法错误,不符合题意;B、用抽样调查的方法调查全国2021级七年级学生的视力情况,原来的说法错误,不符合题意;C、0既不是正数也不是负数是正确的,符合题意;D、有理数分为正有理数,0和负有理数,原来的说法错误,不符合题意.故选:C.【点评】本题主要考查了有理数的分类、相反数和抽样调查,关键是根据有理数的分类、相反数和抽样调查的有关概念解答.5.(2022春•沙坪坝区校级月考)在,﹣4,0,这四个数中,属于负整数的是()A.B.C.0D.﹣4【考点】有理数.【专题】实数;数感.【分析】根据实数分类的相关概念,可辨别此题结果.【解答】解:∵﹣,都是分数,∴选项A,B不符合题意;∵0既不是正数,也不是负数,∴选项C不符合题意;∵﹣4是负整数,∴选项D符合题意,故选:D.【点评】此题考查了利用实数概念解决问题的能力,关键是能准确理解相关知识并进行正确辨别.6.(2021秋•原阳县期末)在﹣3.5,,0.161161116…,中,有理数有()个.A.1B.2C.3D.4【考点】有理数.【专题】实数;数感.【分析】有理数包括整数和分数,无理数包括三类:一是无限不循环小数,二是含有π的数,三是开方开不尽的数,可知答案.【解答】解:A,﹣3.5是负分数,故是有理数;B,是正分数,故为有理数;C,0.161161116…是无限不循环小数,是无理数,故不是有理数;D,是含有π的数,是无理数,故不是有理数,所以有理数有两个,故选:B.【点评】本题考查了有理数的分类,关键是掌握分类方法判断.7.(2022•威宁县模拟)如果盈利2元记为“+2“,那么亏损2元可记为()A.1B.C.﹣2D.2【考点】正数和负数.【专题】实数;数感.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利2元记为“+2元”,∴“亏损2元”表示﹣2元.故选:C.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.8.(2022•阳谷县一模)以下各数是有理数的是()A.B.C.D.π【考点】有理数.【专题】实数;数感.【分析】根据有理数的定义解决此题.有理数的概念:整数和分数统称为有理数.【解答】解:A.根据无理数的定义,是无理数,那么A不符合题意.B.根据有理数的定义,是有理数,那么B符合题意.C.根据无理数的定义,是无理数,那么C不符合题意.D.根据无理数的定义,π是无理数,那么D不符合题意.故选:B.【点评】本题主要考查有理数的定义,熟练掌握有理数的定义是解决本题的关键.二.多选题(共2小题)(多选)9.(2021秋•潍坊期中)某公交车从始发站经过A、B、C、D站到达终点站,各站上、下乘客人数如表所示(用正数表示上车的人数,负数表示下车的人数).站点始发站A B C D终点站上车人数x1512750下车人数0﹣3﹣4﹣10﹣11﹣25则下列说法正确的是()A.该公交车在始发站时,上车人数为14人B.从B站开出时,车内人数最多C.从始发站到D站,车内人数一直在增多D.从C站开出时,车内人数最多【考点】正数和负数.【专题】实数;运算能力.【分析】根据正负数的意义,上车为正数,下车为负数,分别求出每个站和始发站的人数即可判断.【解答】解:由题意,得:x+15﹣3+12﹣4+7﹣10+5﹣11=25,解得x=14,即该公交车在始发站时,上车人数为14人,故选项A符合题意;从始发站到C站,车内人数一直在增多,到D站开始减少,故选项C不合题意,从A站开出时,车内人数为:14+15﹣3=26(人),从B站开出时,车内人数为:14+15﹣3+12﹣4=34(人),所以从B站开出时,车内人数最多,故选项B符合题意,选项D不符合题意.故选:AB.【点评】考查了正数和负数.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.(多选)10.(2021秋•潍坊期中)下列说法错误的是()A.所有的整数都是正数B.非负数就是正数C.正数和负数统称为有理数D.0既不是正数,也不是负数【考点】有理数;正数和负数.【专题】实数;数感.【分析】根据正数,负数和有理数的知识,逐一判断即可.【解答】解:①因为整数包括正整数,0和负整数,故A错误,②因为非负数是正数和0,故B错误,③因为正有理数,0和负有理数统称为有理数,故C错误,④0既不是正数,也不是负数,故D正确,故选:ABC.【点评】本题考查了有理数,正数和负数,学生必须熟练掌握后才能正确判断.三.填空题(共6小题)11.(2022春•杨浦区校级期中)如果把收入1200元记作+1200元,那么﹣1000元表示支出1000元.【考点】正数和负数.【专题】实数;数感.【分析】根据正数和负数的概念即可得出结论.【解答】解:∵收入1200元记作+1200元,∴﹣1000元表示支出1000元,故答案为:支出1000元.【点评】本题主要考查正数和负数的知识,熟练掌握正数和负数的意义是解题的关键.12.(2021秋•泰州期末)某超市出售的一种品牌大米袋上,标有质量为(15±0.15)kg的字样,则从该超市里任意拿出这种品牌的大米两袋,它们的质量最多相差0.3kg.【考点】正数和负数.【专题】实数;符号意识.【分析】根据超市出售的某种品牌的大米袋上,标有质量为(15±0.15)kg的字样,可以求得从超市中任意拿出两袋大米,它们的质量最多相差多少.【解答】解:∵某超市出售的一种品牌大米袋上,标有质量为(15±0.15)kg的字样,∴它们的质量最多相差:0.15﹣(﹣0.15)=0.15+0.15=0.3(kg),故答案为:0.3.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.13.(2021秋•花都区期末)如果向东走35米记作+35米,那么向西走50米记作﹣50米.【考点】正数和负数.【专题】实数;符号意识.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:如果向东走35米记作+35米,那么向西走50米记作﹣50米.故答案为:﹣50.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.14.(2022春•宝山区校级月考)在下列数﹣3,0,1,﹣|4|,﹣(﹣4)中,非负数是0,1,﹣(﹣4).【考点】有理数;相反数;绝对值.【专题】实数;数感.【分析】根据有理数的分类,非负数就是指0和正数,【解答】解:在下列数﹣3,0,1,﹣|4|,﹣(﹣4)中,非负数是:0,1,﹣(﹣4).故答案为:0,1,﹣(﹣4).【点评】本题考查的是非负数的定义,解题的关键就是要分清分类标准.15.(2021秋•道里区期末)化成百分数是50%.【考点】有理数.【专题】实数;数感.【分析】根据分数的意义可得结果.【解答】解:.故答案为:50%.【点评】本题考查了有理数,掌握分数的定义是解答本题的关键.16.(2021秋•普陀区期末)循环小数5.245245…的循环节为245.【考点】有理数.【专题】实数;数感.【分析】根据循环小数的定义判断即可.【解答】解:循环小数5.245245…的循环节为245.故答案为:245.【点评】本题考查有理数的意义,掌握循环小数的定义是解答本题的关键.四.解答题(共4小题)17.(2021秋•丰泽区期末)国庆期间,观看电影《长津湖》成为了人们的假期活动首选节目.某区9月30日售票量为1.2万张,该区10月1日到10月7日售票量的变化如表(正号表示售票量比前一天多,负号表示售票量比前一天少):日期1日2日3日4日5日6日7日+0.6+0.1﹣0.3﹣0.2+0.4﹣0.2+0.1售票量的变化(单位:万张)(1)10月2日的售票量为多少万张?(2)若平均每张票价为50元,则10月1日到10月7日该区销售《长津湖》共多少万元?【考点】正数和负数.【专题】实数;运算能力.【分析】(1)根据题意列得算式,计算即可得到结果;(2)根据表格得出1日到7日每天的人数,相加后再乘以50即可得到结果.【解答】解:(1)10月2日的售票量为:1.2+0.6+0.1=1.9(万张);答:10月2日的售票量为1.9万张;(2)10月1日的售票量为:1.2+0.6=1.8(万张);10月2日的售票量为:1.8+0.1=1.9(万张);10月3日的售票量为:1.9﹣0.3=1.6(万张);10月4日的售票量为:1.6﹣0.2=1.4(万张);10月5日的售票量为:1.4+0.4=1.8(万张);10月6日的售票量为:1.8﹣0.2=1.6(万张);10月7日的售票量为:1.6+0.1=1.7(万张);10月1日到7日的售票量为:1.8+1.9+1.6+1.4+1.8+1.6+1.7=11.8(万张),50×11.8=590(万元),故该区销售《长津湖》共590万元.【点评】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键.18.(2021秋•临汾期末)山西稷山板枣栽培历史有上千年,种类繁多,有板枣、长枣、圆枣等,以板枣最为有名.小明所在的小区购买了8筐稷山板枣,若以每筐10kg为基准,把超过10kg的千克数记为正数,不足10kg的千克数记为负数,记录如下:①+3;②﹣1.4;③+2;④﹣4;⑤+5;⑥﹣3.5;⑦+1;⑧﹣0.5.(1)这8筐稷山板枣中,重量最重的是15kg,比重量最轻的重了9kg.(2)这8筐稷山板枣的总重量是多少kg?【考点】正数和负数.【专题】实数;运算能力.【分析】(1)10加上8个数中最大的数即为重量最重的,10减上8个数中最小的数即为重量最轻的,用重量最重的减去重量最轻即可.(2)先根据有理数的加法运算法则求出称重记录的和,然后再加上8筐的标准质量计算即可得解.【解答】解:(1)10+5=15,10+(﹣4)=6,15﹣6=9.故答案为:15;9.(2)3+(﹣1.4)+2+(﹣4)+5+(﹣3.5)+1+(﹣0.5)=1.6(kg),10×8+1.6=81.6(kg).答:这8筐稷山板枣的总重量是81.6kg.【点评】本题考查了有理数运算的应用,主要考查学生运用所学的数学知识解决实际问题的能力.19.(2021秋•济南期末)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如图,回答下列问题:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【专题】实数;运算能力.【分析】(1)根据有理数的加法,可得答案;(2)根据单价乘以数量,可得答案.【解答】解:(1)1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克)答:不足5.5千克;(2)[1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)+25×8]×2=389(元),答:出售这8筐白菜可卖389元.【点评】本题考查了正数和负数以及有理数的混合运算,解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.20.(2021秋•朝阳区校级期末)把下列各数填在相应的集合中:8,﹣1,﹣0.4,,0,,﹣1,﹣(﹣5),﹣|﹣|.正数集合{8,,,﹣(﹣5)…};负数集合{﹣1,﹣0.4,﹣1,﹣|﹣|…};整数集合{8,﹣1,0,﹣(﹣5)…};分数集合{﹣0.4,,,﹣1,﹣|﹣|…};非负有理数集合{8,,0,,﹣(﹣5)…}.【考点】有理数;相反数;绝对值.【专题】实数;数感.【分析】按照正负数,整数,分数,非负有理数的分类方法分类即可.【解答】解:正数集合{8,,,﹣(﹣5)…};负数集合{﹣1,﹣0.4,﹣1,﹣|﹣|…};整数集合{8,﹣1,0,﹣(﹣5)…};分数集合{﹣0.4,,,﹣1,﹣|﹣|…};非负有理数集合{8,,0,,﹣(﹣5)…}.故答案为:8,,,﹣(﹣5);﹣1,﹣0.4,﹣1,﹣|﹣|;8,﹣1,0,﹣(﹣5);﹣0.4,,,﹣1,﹣|﹣|;8,,0,,﹣(﹣5).【点评】本题考查了实数的分类,相反数,绝对值,掌握实数分类的方法是解决问题的关键.。
《有理数》单元测试卷一、选择题1. 下列有关“0”的叙述中,错误的是( )A. 不是正数,也不是负数B. 不是有理数,是整数C. 是整数,也是有理数D. 不是负数,是有理数 2. 如果把收入100元记作+100元,那么支出80元记作( )A. +20元B. +100元C.+80元D. -80元3. -2的相反数是() A. 2B. -2C. 1/2D. -1/2 4. -2018的绝对值是( )A. 1/2018B. -2018C. 2018D. -1/2018 5. 计算|-5+2|的结果是( )A. 3B. 2C.D.6、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数7.抚顺一天早晨的气温是-21℃,中午的气温比早晨上升了14℃,中午的气温是( )A. 14℃B. 4℃C. -7℃D. -14℃8.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( )(A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c 9.下列说法错误的是( )A. -2的相反数是2B. 3的倒数1/3C. (-2)-(-1)=1D. -11、0、4这三个数中最小的数是010.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为()A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米二、填空题11.跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“-8”表示______.12.数轴上表示点A的数是-4,点B在点A的左边,则点B表示的数可以是______.(写一个即可)13.请写出一对互为相反数的数:______和______.14.计算:|-7+3|=______.15.-1/5的倒数是。
《第1章有理数》单元测试卷一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣12.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣3.2015的相反数是()A.B.﹣C.2015D.﹣20154.﹣的相反数是()A.2B.﹣2C.D.﹣5.6的绝对值是()A.6B.﹣6C.D.﹣6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是17.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是() A.﹣10℃B.10℃C.14℃D.﹣14℃8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是09.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为__________.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是__________,第n个数是__________(n为正整数).13.﹣3的倒数是__________,﹣3的绝对值是__________.14.数轴上到原点的距离等于4的数是__________.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是__________.16.在数轴上点P到原点的距离为5,点P表示的数是__________.17.绝对值不大于2的所有整数为__________.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:__________.负数集:__________.有理数集:__________.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m的值.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.新人教版七年级上册《第1章有理数》单元测试卷解析版一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣1【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数大小比较的法则,可得﹣1<﹣,所以在﹣,0,,﹣1这四个数中,最小的数是﹣1.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.3.2015的相反数是()A.B.﹣C.2015D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2015的相反数是:﹣2015,故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.4.﹣的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.5.6的绝对值是()A.6B.﹣6C.D.﹣【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:6是正数,绝对值是它本身6.故选:A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是1【考点】绝对值;有理数;相反数.【分析】分别利用绝对值以及有理数和相反数的定义分析得出即可.【解答】解:A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D、最小的正整数是1,正确.故选:D.【点评】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键.7.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃B.10℃C.14℃D.﹣14℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12℃﹣2℃=10℃.故选:B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是0【考点】相反数;倒数;有理数大小比较;有理数的减法.【分析】根据相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选:D.【点评】本题考查的是相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较,掌握有关的概念和法则是解题的关键.9.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D【考点】实数与数轴;估算无理数的大小.【分析】先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.【解答】解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1【考点】绝对值.【分析】根据|a|=a时,a≥0,因此|a﹣1|=a﹣1,则a﹣1≥0,即可求得a的取值范围.【解答】解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,故选A【点评】此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为5.3×10﹣7.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为5.3,10的指数为﹣7.【解答】解:0.00000053=5.3×10﹣7.故答案为:5.3×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是8,第n 个数是(n为正整数).【考点】规律型:数字的变化类.【专题】规律型.【分析】观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是(n+1).【解答】解:第7个数是(7+1)=8;第n 个数是(n+1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.13.﹣3的倒数是﹣,﹣3的绝对值是3.【考点】倒数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣3的倒数是﹣,﹣3的绝对值是3,故答案为:,3.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.14.数轴上到原点的距离等于4的数是±4.【考点】数轴.【分析】根据从原点向左数4个单位长度得﹣4,向右数4个单位长度得4,得到答案.【解答】解:与原点距离为4的点为:|4|,∴这个数为±4.故答案为:±4.【点评】本题考查的是数轴的知识,灵活运用数形结合思想是解题的关键,解答时,要正确理解绝对值的概念.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是0或4或﹣4.【考点】有理数的混合运算;绝对值.【分析】根据绝对值的性质求出a的值,根据平方根求出b的值,再根据|a+b|=a+b可知,a+b≥0,然后确定出a、b的值,再代入进行计算即可.【解答】解:∵|a|=4,∴a=2或﹣2,∵b2=4,∴b=2或﹣2,∵|a+b|=a+b,∴a+b≥0,∴a=2时,b=2,或a=2时,b=﹣2,或a=﹣2时,b=2,∴a﹣b=2﹣2=0,或a﹣b=2﹣(﹣2)=4,或a﹣b=(﹣2)﹣2=﹣4,综上所述,a﹣b的值是0或4或﹣4.故答案为:0或4或﹣4.【点评】本题考查了有理数的混合运算,绝对值的性质,平方根的概念,根据题意求出a、b的值是解题的关键.16.在数轴上点P到原点的距离为5,点P表示的数是±5.【考点】数轴.【专题】推理填空题.【分析】根据数轴上各点到原点距离的定义进行解答.【解答】解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.【点评】本题考查的是数轴上各数到原点距离的定义,即数轴上各点到原点的距离等于各点所表示的数绝对值.17.绝对值不大于2的所有整数为0,±1,±2.【考点】绝对值.【专题】计算题.【分析】找出绝对值不大于2的所有整数即可.【解答】解:绝对值不大于2的所有整数为0,±1,±2.故答案为:0,±1,±2.【点评】此题考查了绝对值,熟练掌握绝对值的意义是解本题的关键.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:5%、﹣2.3、、3.1415926、﹣、.负数集:﹣11、﹣2.3、﹣、﹣9.有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:分数集:5%、﹣2.3、、3.1415926、﹣、;负数集:﹣11、﹣2.3、﹣、﹣9;有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9;故答案为:5%、﹣2.3、、3.1415926、﹣、;﹣11、﹣2.3、﹣、﹣9;﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n 变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。
七年级有理数测试卷一、 知识点回顾1、 掌握有理数的概念和分类。
2、 知道有理数与数轴上的点的关系。
掌握数轴的定义,会用数轴上的点表示有理数,理解有理数的有序性,会比较两个有理数的大小。
3、 利用数轴理解数的绝对值和一对相反数的意义。
4、 掌握有理数的运算法则。
5、 有理数的乘方。
了解底数、指数、幂等概念。
6、 掌握有理数的运算律。
7、 熟练进行有理数的混合运算。
运算时可合理运用运算律,使运算简便。
8、 掌握科学计数法。
二、 典型例题分析1、计算(1)、)2(492)3()1(32005-÷--⨯-+- (2)、(– 243)+ 143 + 131 + (– 531) (3)、–150×(–81)–25×0.125+50×(–41) (4)、(+371)×(371–731)×227 ×2221 (5)、321×(–75)–(–75)×221–75×(–21) (6)–601÷(31+41–51) (7)、{1+[ 121 –(–151)]×(–2)}÷(–121–151–0.05) (8)、⎥⎦⎤⎢⎣⎡⨯-+-24)436183(24115÷ (9)、20022003(2)(2)-+-(10)、536175211?÷4?×2211735(-)(-)(-)(-) (11)、已知|x|=324,|y|=536,且xy<0,求代数式5x+7y-9的值。
(12)、222232323(1)(2)(12)(12)343434⎡⎤-+-÷-⎢⎥⎣⎦(13)、325()(1.4)(7.6)2837-⨯-⨯-⨯⨯ (14)、已知22002200042(8)|7|0,))......))a b a b a b a b a b -++=++++++++求((((的值。
2、实数c b a ,,在数轴上的位置如图,化简:c b a c b a c b a ----+---3、已知a 、b 互为相反数,c 、d 互为倒数,求362133+-+cd b a 的值; 4、已知有理数a 、b 、c 满足 a a +b b +c c = –1 求abc abc 的值。
5、用计算器计算下列各式,并将结果填写在横线上。
① 1×7×15873=② 2×7×15873=③ 3×7×15873=④ 4×7×15873=⑴你发现了什么规律?把你发现的规律用简练的语言写出来;⑵不用计算器,请你直接写出9×7×15873的结果。
6、任意写出一个数3的倍数,把它的各个数位上数字分别立方,再把这些立方数相加,得到一个新的数;接着,把这个新得到的数的各个数位上的数字分别立方,再把这些立方数相加,又得到一个新的数;……,如此重复做下去,你发现了什么规律?请借助计算器进行探索。
7、欢欢在一家玩具厂里测量了20个底座是圆形玩具的底座直径,测得直径如下(单位 mm ):25、 25、24、 24、 23、 24、 24、 25、 26、 25、 23、 23、 24、 25、 25、 24、 24、 26、 26、 25。
试计算这20个玩具的直径总和以及平均直径。
你能找出比较简单的计算方法吗?如果请叙述你的方法。
9、 一口水井,水面比井口低3m ,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.42m ,却下滑了0.15m ;第二次往上爬了0.5m 后又往下滑了0.1m ;第三次往上爬了0.7m 又下滑了0.15m ;第四次往上爬了0.75m 又下滑0.1m ,第五次往上爬了0.55m ,没有下滑;第六次蜗牛又往上爬了0.48m 没有下滑,问蜗牛有没有爬上井口?有理数及其运算 测试与练习部分一、 选择题1.下列说法中正确的是( )(A )一个数的倒数必小于这个数 (B )一个数的相反数必小于这个数(C )一个数的立方必大于这个数的平方(D )一个数的绝对值必不小于这个数2. 6.07×1710是( )(A )17位数 (B )18位数 (C )19位数 (D )20位数3.下列各式中正确的是( )(A )2332= (B )-44)3(3-= (C )23)31()21(< (D )-33)2(2-= 4.两个不为零的数互为相反数,则它们的商为( )(A )-1 (B )1 (C )0 (D )不能确定5.10n (n 是正整数)表示的数是( )(A )10个n 相乘的积 (B )n 个10相乘的积 (C )1后面有n-1个零(D )1后面有n+1个零6.下列判断错误的( )(A )负数的偶次方是正数 (B )有理数的偶次方是正数(C )-1的任何次方的绝对值都是1 (D )有理数的偶次方不是负数7.有加法交换律可得,a-b+c=( )(A)a-c-b (B)c+a-b (C)a-c+b (D)c-a-b8.如果两个有理数的差是正数,那么这两个数( )(A )都是正数 (B )都不是正数 (C )不都是正数 (D )以上都可能9.计算(-2)100+(-2)101所得结果是( )(A )2100 (B )-1 (C )-2 (D )-210010、绝对值 小于7而大于3的所有整数的和是 ( )A 、15B 、–15C 、0D 、3011、若│a │=7 ,b 的相反数是2,则a+b 的值是 ( )A 、–9B 、–9或+9C 、+5或–5D 、+5或–912、在(–5)–( )= –7中的括号里应填( )A 、–2B 、2C 、–12D 、1213、下列说法中错误的有( )①若两数的差是正数,则这两个数都是正数②若两个数是互为相反数,则它们的差为零③零减去任何一个有理数,其差是该数的相反数A 、0个B 、1个C 、2个D 、3个 14、减去一个正数,差一定 ( ) 被减数。
A 、大于 B 、等于 C 、小于 D 、不能确定谁大15、若M+|–20|=|M|+|20|,则M 一定是( ) A 、任意一个有理数B 、任意一个非负数C 、任意一个非正数D 、任意一个负数16、两个负数的和为a,它们的差为b ,则a 与b 的大小关系是( ) A 、a >b B 、a=b C 、a <bD 、a ≤b 17 、数m 和n ,满足m 为正数,n 为负数,则m,m –n,m+n 的大小关系是( ) A 、m >m –n >m+nB 、m+n >m >m –nC 、m –n >m+n >mD 、m –n >m >m+n18 =a+b –c –d, 则 的值是( )A 、4B 、–4C 、10D 、–1019、计算:–1.99×17的结果是( )A 、33.83B 、–33.83C 、–32.83D 、–31.83 20、如果两个有理数的积小于零,和大于零,则这两个有理数( ) A 、符号相反B 、符号相反且负数的绝对值大C 、符号相反且绝对值相等D 、符号相反且正数的绝对值大21、在计算(125–97+32)×(– 36)时,可以避免通分的运算律是( ) A 、加法交换律 B 、分配律 C 、乘法交换律 D 、加法结合律22、定义运算:对于任意两个有理数a 、b ,有a*b=(a –1)(b+1) 则计算–3*4的值是( ) A 、12 B 、–12C 、20D 、–20 23、已知0>a >b,则a 1与 b1 的大小是( ) A 、a 1 >b 1 B 、a 1 = b 1 C 、a 1 <b1 D 、无法判定 24、若aa = –1,则a 是( ) A 、正数 B 、负数 C 、非正数 D 、非负数25、已知a 与b 互为倒数,m 与n 互为相反数,则21ab –3m –3n 的值是( ) A 、–1 B 、1 C 、–21 D 、21 二、填空题1.减去一个数,等于加上 ,除以一个数,等于乘以_______________.2.用科学记数法表示138000000得_____________3.绝对值小于4的整数的积是__________4.比较大小:-0.1 ___________ (-0.1)35.一个数的平方等于它的绝对值,则这个数是____________________6.列式计算:3的二次幂与-31的积的相反数______________________________7.已知a =4,b =3,当ab<0时,a-b=______________8、小丽沿着东西方向的道路行走,她先向正东方向走77米,再向正西方向走108 米,最后小丽停在出发点 方向 米处。
9、当x 、y 满足 时,│x │+│y │=│x+y │成立。
10、(– 431)+( )= –2 ( )–(–641)=2121 11、已知有理数a.b 在数轴上的对应点位置如图所示: ׀ ׀ ׀ b o a 化简:①│a │–a= ③│a │+│b │=②│a+b │= ④│b –a │=12、3.14×183+0.314×425–31.4×0.2= 。
13、两个有理数相乘,若把其中一个因数换成它的相反数,则所得的积是原来的积的 。
14、已知3a 是一个负数,则a 是 数15、数b 与它的倒数 b1相等,则b= 。
16、(1)绝对值不大于2005的所有整数的和是 ,积是 。
17、 的0.12倍等于–14.4三、解答题1、-7334171243++-2、3125.0)431(218)522(52÷--⨯--÷3.-1.5353.1542153.175.0⨯+⨯+⨯ 4、 -222)32()21(-÷-+5、⎥⎦⎤⎢⎣⎡⨯-+-24)436183(24115÷6、(-21)5150)2(-⨯7、(74–91+212)×(– 63) 8、–150×(–81)–25×0.125+50×(–41)9、321×(–75)–(–75)×221–75×(–21)10、{1+[121 –(–151)]×(–2)}÷(–121–151–0.05)11、(1)已知a 、b 互为相反数,c 、d 互为倒数,求362133+-+cd b a 的值;。