[K12学习]全国2017年中考数学真题分类汇编 15 频数与频率
- 格式:doc
- 大小:570.50 KB
- 文档页数:24
类型2:概率(1)求简单概率 1、(东城一模3)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是( )A .12B .13C .14D .162、(房山一模6)一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,从这个盒子中随机摸出一个球,摸到红球的概率为( )A .152B .31C .D .3、(石景山一模6)在一个不透明的盒子中装有2个红球,3个黄球和4个白球,这些球除了颜色外无其他差别,现从这个盒子中随机摸出一个球,摸到红球的概率是( )A .13B .29C .49D .3104、(顺义一模8)如图,在3×3的正方形网格图中,有3个小正方形涂成了黑色,现在从白色小正方形中任意选取一个并涂成黑色,使黑色部分的图形构成一个轴对称图形的概率是( )A .B .C .D .5、(西城二模4)在一个不透明的袋子里装有5个完全相同的乒乓球,把它们标号分别记为1,2,3,4,5,从中随机摸出一个小球,标号为奇数的概率为( )A .15B .25C .35D .456、(海淀二模6)在单词happy 中随机选择一个字母,选到字母为p 的概率是( )A .15B .25C .35D .457、(朝阳二模5)在一个不透明的袋子里装有2个红球、3个黄球和5个蓝球,这些球除颜色外,没有任何区别. 现从这个袋子中随机摸出一个球,摸到红球的概率是( )A .B .C .D .8、(东城二模3)有5张看上去无差别的卡片,上面分别写着0,π18,1.333.背面朝上放在不透明的桌子上,若随机抽取1张,则取出的卡片上的数是无理数的概率是( )15821231213161101531012A .15B .25C .35D .459、(怀柔二模4)有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是( )A .15B .25C .35D .4510、(顺义二模9)小宝的妈妈让他从袋子里挑选一颗糖果.小宝无法看到袋子里的糖果.下图是袋子里各种颜色糖果的数量,则小宝选到红色糖果的概率是( )A .12B .14 C .15 D .11011、(丰台一模13)一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是__________.(2)频率估计概率1、(平谷二模13)在某次数学竞赛中,某校表现突出,成绩均不低于60分.为了更好地了解某校的成绩分布情况,随机抽取利了其中50名学生的成绩(成绩x 取整数,总分100分)作为样本进行了整理,结果如表:按规定,成绩在80分以上(包括80分)的选手进入决赛.根据所给信息,请估计该校参赛选手入选决赛的概率为______.2、(西城一模13)下表记录了一名球员在罚球线上罚篮的结果:这名球员投篮一次,投中的概率约是 . 3、(通州一模13)某农场引进一批新麦种,在播种前做了五次发芽实验,每次任取800 粒麦种进行实验. 实验结果如下表所示 ( 发芽率精确到 0.001 ) :4、(朝阳一模12)某水果公司购进10 000kg 苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如下表:. 5、(丰台二模12)某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵数:依此估计这种幼树成活的概率约是 .6、(通州二模14)某班学生分组做抛掷同一型号的一枚图钉的实验,大量重复实验的结果统计如下表:(顶尖朝上频率精确到0.001).7、(平谷一模14)一个猜想是否正确,科学家们要经过反复的论证.下表是几位科学家“掷硬币”的实验数据:的概率为(精确到9、(海淀一模14)某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.10、(房山二模15)某学习小组的同学做摸球实验时,在一个暗箱里放了多个只有颜色不同的小球,将小球搅匀后任意摸出一个,记下颜色并放回暗箱,再次将球搅匀后任意摸出一个,不断重复.下表是实验过程中记录的数据:请11、(石景山二模16)某林业部门统计某种树苗在本地区一定条件下移植成活率,结果如下:根据表中的数据,估计这种树苗移植成活的概率为(精确到0.1);如果该地区计划成活4.5万棵幼树,那么需要移植这种幼树大约万棵.12、(北京中考10)下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”概率一定是0.620.其中合理的是()A.①B.② C. ①②D.①③。
数学精品复习资料频数与频率一、选择题1. (2014•山东淄博,第3题4分)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D. 52,52考点:频数(率)分布直方图;中位数;众数.专题:计算题.分析:找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.解答:解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D点评:此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.2.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。
(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误。
(C)神州飞船发射前需要对零部件进行抽样检查要全面检查。
(D)了解某种节能灯的使用寿命适合抽样调查,(D)正确。
故选B2.3.4.5.6.7.8.二、填空题1.2.3.4.5.6.7.8.三、解答题1. (2014•山东潍坊,第19题9分)今年我市把男生“引体向上”项目纳入学业水平体育考试内容.考试前某校为了解该项目的整体水平,从九年级220名男生中,随机抽取20名进行“引体向上”测试成绩(单位:个)如下:9 12 3 13 18 8 8 4 ■ ,1213 12 9 8 12 13 18 13 12 10其中有一数据被污损,统计员只记得11.3是这组样本数据的平均数.(1)求该组样本数据中被污损的数据和这组数据的极差;(2)请补充完整下面的频数、频率分布表和频数分布直方图;(3)估计在学业水平体育考试中该校九年级有多少名男生能完成11个以上(包含11个)“引体向上”?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:根据平均数即可求得被污损的数,求出极差,进一步可将频率分布表、频数分布直方图补充完整;再利用总人数乘以对应的比例即可求解第三问.解答:(1)设被污损的数据为x ,由题意知:3.1121841351210293843=+⨯+⨯+⨯++⨯+⨯++xx 解得:x =19 根据极差的定义,可得该组数据的极差是19-3=16.(2)由样本数据知,测试成绩在6~10个的有6名,该组频数为6,相应频率是206 =o .30; 测试成绩在11~15个的有9名,该组频数为9,相应频率是209=0.45. 补全的频数、频率分布表和频数分布直方图如下所示:(3)由频率分布表可知,能完成_11个以上的是后两组,(0.45 +0.15)×100%=60%,由此估计在学业水平体育考试中能完成11个以上“引体向上’的男生数是220×60% =132(名) 点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2.(2014•山东聊城,第19题,8分)为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如图所示.(1)试估计该小区5月份用水量不高于12t 的户数占小区总户数的百分比;(2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计改小区5月份的用水量.比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.占的百分比为××=3004. (2014•江苏盐城,第21题8分)某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类(1)表中的a= 0.3 ,b= 6 ;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?)问卷调查的总人数是:=100=0.35. (2014•山东淄博,第20题8分)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成此表.(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.寿命(小时)频数频率4000≤t≤500010 0.055000≤t<6000 20 a6000≤t<7000 80 0.407000≤t<8000 b 0.158000≤t<9000 60 c合计 200 1考点:频数(率)分布表;概率公式.菁优网分析:(1)由频率分布表中的数据,根据频率=频数÷数据总数及频数=数据总数×频率即可求出a、b、c的值;(2)根据频率分布表中的数据,用不是次品的节能灯个数除以节能灯的总个数即可求解.解答:解:(1)根据频率分布表中的数据,得a==0.1,b=200×0.15=30,c==0.3;(Ⅱ)设“此人购买的节能灯恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为P(A)==0.85.点评:本题考查了读频数(率)分布表的能力和利用统计图获取信息的能力及古典概型的概率,用到的知识点:频率=频数÷数据总数,概率=所有出现的情况数与总数之比.6.(2014•四川泸州,第20题,7分)某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.7.(2014•四川内江,第19题,9分)为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.×=8.(2014•四川宜宾,第19题,8分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500 人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是54 度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时,该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布a=12,b=0.2;(2)补全频数分布直方图;(3)请估计该校1400名初中学生中,约有多少学生在1.5小时以内完成了家庭作业.)抽查的总的人数是:=40=0.2)根据题意得:×项目测试,班上学生所报自选项目的情况统计表如下:(1)求,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.【考点】(1)频率(2)①频率与圆心角;②树状图,概率【分析】(1)各项人数之和等于总人数50 ; 各项频率之和为1(2)所占圆心角=频率*360 (3)画出列表图,至多有一名女生包括有一个女生和一个女生都没有两种情况.【答案】(1)(2)“一分钟跳绳”所占圆心角=(3)至多有一名女生包括两种情况有1个或者0个女生列表图:有1个女生的情况:12种有0个女生的情况:6种至多有一名女生包括两种情况18种至多有一名女生包括两种情况===0.90。
2017年全国中考数学真题分类动态型问题 解答题三、解答题1. (2017四川广安,26,10分)如图,已知抛物线y =-x ²+bx +c 与y 轴相交于点A (0,3),与x正半轴相交于点B ,对称轴是直线x =1.(1)求此抛物线的解析式以及点B 的坐标.(3分)(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向运动,同时动点N 从点O 出发,以每秒3个单位长度的速度沿y 轴正方向运动,当N 点到达A 点时,M 、N 同时停止运动.过支点M 作x 轴的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t 秒.①当t 为何值时,四边形OMPN 为矩形.(3分)②当t >0时,△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.(4分)思路分析:(1)把A 点的坐标代入y =c bx x ++-2,求出c 的值,由对称轴是直线x =1可求出b 的值,即可求出抛物线的解析式;令y =0,求出方程x 的两个值,然后根据题意舍去不合题意的解,即可求得点B 的坐标;(2)①当四边形OMPN 为矩形时,满足条件PM =ON ,据此列一元二次方程求解;②△BOQ 为等腰三角形时,可能存在OQ =BQ ,OQ =OB ,OB =BQ 三种情形,需要分类讨论,逐一进行判断计算.解:(1)∵知抛物线y =c bx x ++-2与y 轴交于点A (0,3), ∴c =3,∵对称轴是直线x =1, ∴1)1(2=-⨯-b,解得b =2,∴抛物线的解析式为:y =322++-x x ; 令y =0,得322++-x x =0,解得1x =3,2x =-1(不合题意,舍去), ∴点B 的坐标为(3,0).(2)①由题意得ON =3t ,OM =2t ,则点P (2t ,3442++-t t ), ∵四边形OMPN 为矩形,∴PM =ON ,即3442++-t t =3t , 解得1t =1,2t =43-(不合题意,舍去), ∴当t =1秒时,四边形OMPN 为矩形;②能,在Rt △AOB 中OA =3,OB =3,∴∠B =45°, 若△BOQ 为等腰三角形,有三种情况: (I)若OQ =BQ ,如答图1所示: 则M 为OB 中点,OM =21OB =23, ∴t =23÷2=43;(II)若OQ =OB 时, ∵OA =3,OB =3,∴点Q 与点A 重合,即t =0(不合题意,舍去); (III)若OB =BQ 时,如答图2所示: ∴BQ =3,∴BM =BQ ·cos 45°=3×22=223,∴OM =OB -BM =3-223=2236-, ∴t =2236-÷2=4236-. 综上所述,当t 为43秒或4236-秒时,△BOQ 为等腰三角形.2.(2017浙江丽水·23·10分)如图1,在Rt△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A-C-B运动,点Q从点A出发以a(cm/s)的速度沿AB运动.P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C,C2两段组成,如图2所示.1(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ 的面积,求x的取值范围.思路分析:过点P作PD⊥AB于点D.(1)先用含x的代数式表示PD,再根据三角形的面积公式确定y与x之间的函数表达式,由函数的图象得到x,y的一组对应值代入可求a的值;(2)在Rt△PBD中,由解直角三角形知识,用含x和sinB的式子表示PD,同样根据三角形面积公式建立y与x的关系,由函数图形得到x,y的一组对应值,求得sinB,进而确定图2中图象C段的函数2表达式;(3)先求出图象C1段与图象C2段函数值相等时对应的x的值,得到图象C1段函数的最大值,并求出图象C1段函数的最大值在图象C2段对应的x的值,结合函数图象可得到x的取值范围. 解:过点P作PD⊥AB于点D.(1)在图1中,∵∠A =300,PA =2x ,∴PD =PA ·sin 300=2x ·21=x ,∴y =2212121ax x ax PD AQ =⋅=⋅.由图象得,当x =1时,y =21,则211212=⋅a ,∴a =1.(2)当点P 在BC 上时(如图2),PB =5×2-2x =10-2x .∴PD =PB ·sinB =(10-2x )·sin B .∴·y=B x x PD AQ sin )210(2121⋅-⋅=⋅.由图象得,当x =4时,y =34,∴144(108)sin 23B ⨯⨯-=,∴sinB =31,∴y =x x x x 353131)210(212+-=⋅-⋅.(3)由C 1,C 2的函数表达式,得x x x 35312122+-=,解得x 1=0(舍去),x 2=2.由图象得,当x =2时,函数y =221x 的最大值为y =22⨯21=2.将y =2代入函数y =x x 35312+-,得2=x x 35312+-,解得x 1=2,x 2=3,∴由图象得,x 的取值范围是2<x <3.3. (2017浙江丽水·24·12分)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连结BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部.连结AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设AEAD=n . (1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示ABAD的值; (3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.思路分析:设AE =a ,则AD =n A .(1)由轴对称性质得到AE =FE ,结合“等边对等角”得到∠EAF =∠EF A .由垂直得到两个角的互余关系,根据“等角的余角相等”可得到结论;(2)由对称性质得BE ⊥AF ,先证∠ABE =∠DAC ,进而证得△ABE ∽△DAC ,根据相似三角形的对应边成比例建立关系式,通过适当变形求解;(3)由特例点F 落在线段BC 上,确定n =4,根据条件点F 落在矩形内部得到n >4,判断出∠FCG <90°.然后分∠CFG =90°和∠CGF =90°两种情况,由(2)的结论和相似三角形的性质分别建立关于n 的等式,求得n 的值.解:设AE =a ,则AD =n A .(1)由对称得AE =FE ,∴∠EAF =∠EF A .∵GF ⊥AF ,∴∠EAF +∠FGA =∠EFA +∠EFG =900.∴∠FGA =∠EFG ,∴FG =EF .∴AE =EG .(2)当点F 落在AC 上时(如图1),由对称得BE ⊥AF ,∴∠ABE +∠BAC =900,∵∠DAC +∠BAC =90°,∴∠ABE =∠DA C .又∵∠BAE =∠D =90°,∴△ABE ∽△DAC ,∴DCAEDA AB =.∵AB =D C .∴AB 2=AD ·AE =na ·a =na 2.∵AB >0,∴AB =n a ,∴n an naAB AD ==.(3)若AD =4AB ,则AB =a n 4.当点F 落在线段BC 上时(如图2),EF =AE =AB =A .此时an4=a ,∴n =4.∴当点F 落在矩形内部时,n >4.∵点F 落在矩形的内部,点G 在AD 上,∴∠FCG <∠BCD ,∴∠FCG <90°.①若∠CFG =900,则点F 落在AC 上,由(2)得n ABABn AB AD ==4,即,∴n =16. ②若∠CGF =900(如图3),则∠CGD +∠AGF =90°.∵∠FAG +∠AGF =90°,∴∠CGD =∠FAG =∠ABE ,∵∠BAE =∠D =90°,∴△ABE ∽△DG C .∴DCAEDG AB =.∴AB ·DC =DG ·AE ,即a a n a n⋅-=)2()4(2,解得n 1=8+42,n 2=8-42<4(不合题意,舍去).∴当n =16或n =8+42时,以点F ,C ,G 为顶点的三角形是直角三角形.4. (2017山东枣庄25,10分) 如图,抛物线212y x bx c =-++与x 轴交于点A 和点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD .(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA =∠BDE 时,求点F 的坐标(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在平面内,以线段MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.思路分析:(1)由点B 、C 的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;(2)设线段BF 与y 轴交点为点F ′,设点F ′的坐标为(0,m ),由相似三角形的判定及性质可得出点F ′的坐标,根据点B 、F ′的坐标利用待定系数法可求出直线BF 的解析式,联立直线BF 和抛物线的解析式成方程组,解方程组即可求出点F 的坐标;(3)设对角线MN 、PQ 交于点O ′,如图2所示.根据抛物线的对称性结合正方形的性质可得出点P 、Q 的位置,设出点Q 的坐标为(2,2n ),由正方形的性质可得出点M 的坐标为(2-n ,n ).由点M 在抛物线图象上,即可得出关于n 的一元二次方程,解方程可求出n 值,代入点Q 的坐标即可得出结论.解:(1)将点B (6,0)、C (0,6)代入212y x bx c =-++中,得:0=-18+66b c c +⎧⎨=⎩,解得:26b c =⎧⎨=⎩,∴抛物线的解析式为21262y x x =-++.∵221126=-2)822y x x x =-++-+(,∴点D的坐标为(2,8).(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),如图1所示.∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,∴△F′BO∽△BDE,∴'OF BEOB DE=.∵点B(6,0),点D(2,8),∴点E(2,0),BE=6-2=4,DE=8-0=8,OB=6,∴OF′3BEOBDE⨯=∴点F′(0,3)或(0,-3).设直线BF的解析式为y=k x±3,则有0=6k+3或0=6k-3,解得:k=-12或k=12,∴直线BF的解析式为y=-12x+3或y=12x-3.联立直线BF与抛物线的解析式得:21321262y xy x x⎧=-+⎪⎪⎨⎪=-++⎪⎩①或21321262y xy x x⎧=+⎪⎪⎨⎪=-++⎪⎩②,解方程组①得:172xy=-⎧⎪⎨=⎪⎩或6xy=⎧⎨=⎩(舍去),∴点F的坐标为(-1,72);解方程组②得:392xy=-⎧⎪⎨=⎪⎩或(舍去),∴点F的坐标为(-3,-92).综上可知:点F 的坐标为(-1,72)或(-3,-92). (3)设对角线MN 、PQ 交于点O ′,如图2所示.∵点M 、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形, ∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线对称轴上, 设点Q 的坐标为(2,2n ),则点M 的坐标为(2-n ,n ).∵点M 在抛物线21262y x x =-++的图象上,∴n =21-2-)2(2)62n n +-+(,即22160n n +==,解得:1171n =-,1-171n =-.∴点Q 的坐标为(2,217-2)或(2,-217-2).5. (2017四川泸州,25,12分)如图,已知二次函数y =ax ²+bx +c (a ≠0)的图象经过A (-1,0),B (4,0),C (0,2)三点. (1)求该二次函数的解析式;(2)点D 是该二次函数图象上的一点,且满足∠DBA =∠CAO (O 是坐标原点),求点D 的坐标; (3)点P 是该二次函数图象上位于一象限上的一动点,连接PA 分别交BC ,y 轴与点E ,F ,若△PEB ,△CEF 的面积分别为S 1,S 2,求S 1-S 2的最大值.思路分析:(1)根据待定系数法求解;(2) 设BD 直线与y 轴的交点为M (0,t ).根据tan ∠MBA =tan ∠CAO 列关于t 的方程求解t ,从而可确定直线BD 解析式,再求直线BD 与抛物线交点坐标即可,注意分类讨论;(3) 过点P 作PH //y 轴交直线BC 于点H ,设P (t ,at ²+bt +c ),表示出根据直线BC 表达式点H 的坐标,计算线段PH 长度;用t 表示直线AP 表达式,解出点E 、F 坐标从而可表示出线段CF ,将S 1-S 2用t 表示,根据二次函数性质求最值.解:(1)由题意得:设抛物线的解析式为:y =a (x +1)(x -4); 因为抛物线图像过点C (0,2), ∴-4a =2,解得a =-12.所以抛物线的解析式为:y =-12 (x +1)(x -4),即:y =-12 x 2+32x +2.(2)设BD 直线与y 轴的交点为M (0,t ). ∵∠DBA =∠CAO ,∴∠MBA =∠CAO ; ∴tan ∠MBA =tan ∠CAO =2; ∴||4t =2,即:t =±8. 当t =8时,直线BD 解析式为:y =-2x +8.联立,228,132.22y x y x x =-+⎧⎪⎨=-++⎪⎩ 解得:114,0;x y =⎧⎨=⎩ 223,2.x y =⎧⎨=⎩所以,点D (3,2).当t =-8时,直线BD 解析式为:y =2x -8.联立228,132.22y x y x x =-⎧⎪⎨=-++⎪⎩ 解得:114,0;x y =⎧⎨=⎩225,18.x y =-⎧⎨=-⎩ 所以,点D (-5,-18).综上:满足条件的点D有:D1(3,2),D2(-5,-18).(3)过点P作PH//y轴交直线BC于点H,设P(t,-12t2+32t+2),BC直线的解析式为y=-12x+2,故:H(t,-12t+2),∴PH=y P-y H=-12t2+2t;AP直线的解析式为:y=(-12t+2)(x+1),取x=0得:y=2-12t;故:F(0,2-12t),CF=2-(2-12t)=12t;联立(2)(1),212.2ty xy x⎧=-+⎪⎪⎨⎪=-+⎪⎩解之得:x E=5tt-;∴S1=12(y P-y H)(x B-x E)=12(-12t2+2t)(5-5tt-);S2=12•2t•5tt-.∴S1-S2=12(-12t2+2t)(5-5tt-)-12•2t•5tt-,即:S1-S2=-32t2+5t=-32(t-53)2+256.所以,当t=53时,S1-S2有最大值,最大值为256.6.(2017四川成都,28.12分)如图1,在平面直角坐标系xOy中,抛物线2:C y ax bx c=++与x轴相交于,A B 两点,顶点为()0,4D ,42AB =,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '. (1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点为P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形,若能,求出m 的值;若不能,请说明理由.解:(1)∵抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,42AB =, ∴抛物线C 的对称轴是y 轴,A (22,0),(22,0),B -设抛物线C 的解析式为(22)(22)y a x x =+-,即,28y ax a =-,∴84a -=,∴12a =-,抛物线C 的解析式为2142y x =-+;(2)如图,∵点(),0F m 是x 轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C ',∴(2,4)D m '-,∴设抛物线C '的解析式为21(2)42y x m =--.令抛物线C '过点D (0,4),有214442m =⋅-,∴24m =,∴2m =(舍去负值); 由221(2)42142y x m y x ⎧=--⎪⎪⎨⎪=-+⎪⎩,有22114(2)422x x m -+=--,即222280x mx m -+-=,当抛物线C '与抛物线C 有唯一交点时,有2222444(28)4320b ac m m m ∆=-=--=-+=, ∴22m =(舍去负值). ∴m 的取值范围是2<m <22.(3)∵P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,∴点P 在y =x 上,由2142x x =-+,解得122,4x x ==-(不合题意,舍去),∴点P 的坐标为(2,2).∵抛物线C '的解析式为21(2)42y x m =--,F (m ,0),由对称性可知,四边形PMP ′N 能成为正方形,即△PMF 为以F 为顶点的等腰直角三角形.①若0<m ≤2时,如图2①,过点F 、P 、M 分别向坐标轴作垂线交点分别为K 、L ,易得△KPF ≌△LFM , ∴KF =LM =2,KP =FL =2-m ,∴M (m +2,m -2),代入2142y x =-+中,得2680m m +-=,解得,12317,317m m =-+=--(不合题意,舍去).②若m >2,如图2②过点F 、P 、M 分别向坐标轴作垂线交点分别为K 、L ,易得△KPF ≌△LFM ,∴KP =FL =2-m ,∴M (m -2,2-m ),代入2142y x =-+中,得260m m -=,解得,126,0m m ==(不合题意,舍去).综上,m 的值为317-+或6.7. (2017浙江金华,24,12分)如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为O (0,0),A (3,33),B (9,53),C (14,0),动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线OA —AB —BC 运动,在OA ,AB ,BC 上运动的速度分别为3,3,25(单位长度/秒).当P ,Q 中的一点到达C 点时,两点同时停止运动. (1)求AB 所在直线的函数表达式.(2)如图2,当点Q 在AB 上运动时,求△CPQ 的面积S 关于t 的函数表达式及S 的最大值. (3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.图1 图2思路分析:(1)用待定系数法可直接即可;(2)由题意知,OP =t ,PC =14-t ,PC 边上的高线为23x +23,可得S 与t 二次函数表达式,用配方法或公式法求得S 的最大值;(3)本小题应注意t 的取值范围,分4种情况分类讨论,得到有关t 的有关方程,求得相应的t 值.解:(1)设AB 所在直线的函数表达式为y =kx +b ,把A(3,33),B(9,53)代入y=kx+b,得⎪⎩⎪⎨⎧=+=+.359,333bkbk解得⎪⎩⎪⎨⎧==.32,33bk∴AB所在直线的函数表达式为y=33x+23.(2)由题意知,OP=t,PC=14-t,PC边上的高线为23t+23,∴S=21(14-t)(23t+23)=-43t2+235t+143(2≤t≤6) .当t=5时,S有最大值为4381.(3)①当0<t≤2时,线段PQ的中垂线经过点C(如图3),可得方程()222142314233ttt-=⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛.解得t1=47,t2=0(舍去),此时t=47.②当2<t≤6时,线段PQ的中垂线经过点A(如图4),可得方程()()[]222)23333-=-+tt(.解得t1=2573+,t2=2573-(舍去),此时t=2573+.③当6<t≤10时,10线段PQ的中垂线经过点C(如图5),可得方程14-t=25-25t,解得t=322.图3 图4 图5 20线段PQ的中垂线经过点B(如图6),可得方程()()222)625935⎥⎦⎤⎢⎣⎡-=-+tt(.解得t 1=722038+,t 2=722038-(舍去),此时t =722038+. 综合上述,t 的值为47,2573+,322,722038+.图68. (2017浙江衢州,24,12分)在直角坐标系中,过原点O 及点A (8,0)C (0,6)作矩形OABC .连结OB ,点D 为OB 的中点,点E 时线段AB 上的动点,连结DE ,作DF ⊥DE ,交OA 于点F ,连结EF .已知点E 从A 点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t 秒. (1)如图1,当t =3时,求DF 的长.(2)如图2,当点E 在线段AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan ∠DEF 的值.(3)连结AD ,当AD 将△DEF 分成的两部分面积之比为1∶2时,求相应t 的值.xy DFE CB A Oxy第24题 图2A BCEF DOxyDF E CB A Oxy ODF E CB A 图2M N xy OG 1N MA B CE F Dxy OG 2DFE CB A M N思路分析:(1)当t =3时,点E 为AB 中点.DE 为△ABO 的中位线.(2)过D 作DM ⊥OA ,DN ⊥AB ,垂足分别为M 、N .利用△DMF ∽△DNE 即可求解.(3)AD将△DEF分成的两部分面积之比为1∶2即可转化为AD与EF交点G为EF的三等分点,注意讨论G点所处的位置.解:(1)当t=3时,如图1,点E为AB中点.∵点D为中点,∴DE∥OA,DE=12OA=4.∵OA⊥AB,∴DE⊥AB.∴∠OAB=∠DEA=90°又∵DF⊥DE,∴∠EDF=90°.∴四边形DFAE是矩形,∴DF=AE=3.(2)∠DEF的大小不变.如图2:过D作DM⊥OA,DN⊥AB,垂足分别为M、N.∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BDDO =BNNA,ODDB=OMMA.∵点D为OB中点,∴M,N分别是OA,AB中点.∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN.又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴DFDE =DMDN=34.∵∠EDF=90°,∴tan∠DEF=34.(3)过D作DM⊥OA,DN⊥AB,垂足分别为M、N.若AD将△DEF的面积分成1∶2的两部分,设AD交EF于点G,则易得点G为EF的三等分点.①当E到达中点之前时,NE=3-t,由△DMF∽△DNE得MF=34(3-t).∴AF=4+MF=-34t+254.∵G1为EF的三等分点,∴G1(37112t+,23t)由点A(8,0),D(4,3)得直线AD的解析式为y=-34x+6.G 1(37112t+,23t)代入,得t=7541.②当E越过中点之后,NE=t-3,由△DMF∽△DNE得MF=34(t-3).∴AF=4-MF=-34t+254.∵G2为EF的三等分点,∴G2(3236t+,13t).代入直线AD解析式y=-34x+6,得t=7541.9.(2017山东德州)(本小题满分10分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ.过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动. ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求出点E 在边AD 上移动的最大距离.思路分析:(1)由折叠知PB =PE ,BF =EF ,结合平行线的性质,易得∠EPF =∠BPF =∠EFP ,故有EP =EF ,从而可得四边相等,则四边形BFEP 为菱形;(2)①在Rt △CDE 中,已知CD 长,CE =CB ,利用勾股定理计算DE 的长,进而可得AE 的长;又知AB 的长,且BP =PE ,故Rt △APE 中,利用勾股定理构建方程求解PE 的长.②点Q 与点C 重合时,点E 离A 点最近,①中已求此时AE 的长.当点P 与点A 重合时,则点E 离A 点最远,此时四边形ABQE 为正方形,AE =AB .两者之差就是点E 在边AD 上移动的最大距离.解:(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称.∴PB =PE ,BF =EF ,∠BPF =∠EPF . 又∵EF ∥AB ,∴∠BPF =∠EFP . ∴∠EPF =∠EFP .∴EP =EF . ∴BP =BF =FE =EP . ∴四边形BFEP 为菱形.(2)①如图2,∵四边形ABCD 为矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°. ∵点B 与点E 关于PQ 对称, ∴CE =BC =5cm .在Rt △CDE 中,DE 2=CE 2-CD 2,即DE 2=52-32,∴DE =4cm .A B C D PFQ E 图1 A BDC PF(Q )E图2A B C D PFQ E 图1 A BDC PF(Q )E图2∴AE =AD -DE =5cm -4cm =1cm .∴在Rt △APE 中,AE =1,AP =3-PB =3-PE ,∴EP 2=12+(3-EP )2,解得EP =35cm .∴菱形BFEP 边长为35cm .②当点Q 与点C 重合时,如图2,点E 离A 点最近,由①知,此时AE =1cm . 当点P 与点A 重合时,如图3,点E 离A 点最远,此时四边形ABQE 为正方形,AE =AB =3cm ,∴点E 在边AD 上移动的最大距离为2cm .10. (2017山东威海,23,10分)已知:AB 为⊙O 的直径,2=AB ,弦1=DE ,直线AD 与BE 相交于点C ,弦DE 在⊙O 上运动且保持长度不变,⊙O 的切线DF 交BC 于点F . (1)如图1,若AB DE //,求证:EF CF =;(2)如图2,当点E 运动至与点B 重合时,试判断CF 与BF 是否相等,并说明理由.思路分析:(1)连接OD ,OE 先根据三边相等说明△ODE 是等边三角形,再分别说明△AOD 、△OEB 、△ADE 是等边三角形,最后计算∠3、∠4度数利用三线合一说明结论;(2)先说明BC 是切线,由切线长定理知∠1=∠2,再根据∠3+∠2=∠1+∠C =90°说明∠3=∠C ,可证明DF =CF =BF .证明:连接OD ,OE ,图3EDBQA (P )∵AB=2,∴OA=OD=OE=1.∵DE=1,∴△ODE为等边三角形.∴∠1=60°.∵DE∥OB,∴∠1=∠2=60°.∴∠3=90°, ∠1=30°.∵OA=OD,∴△OAD为等边三角形.∴∠A=60°.∵DE∥AB,∴∠CDE=∠A=60°.同理,∠5=60°.∴△CDE为等边三角形∵DF切⊙O于点D,∴OD⊥DF.∴∠3=90°-∠1=30°.∴∠4=30°.∴∠3=∠4.∴CF=EF.(2)相等.当点E与点B重合时,直线BC与⊙O只有一个公共点,所以BC为⊙O的切线.∵DF切⊙O于点D,∴BF=DF.∴∠1=∠2.∴AB为直径,∴∠ADB=∠BDC=90°.∴∠3=∠C.∴DF=CF.∴CF=BF.11.(2017山东菏泽,23,10分)(本题10分)正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC 于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AF=MN;(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以2cm/s的速度沿BD向点D运动,设运动时间为t s.①设BF=y cm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.图1 图2思路分析:(1)由正方形性质和垂直的性质就可以得出∠ADN=∠BAF ,利用“AAS ”可以得出△ADN ≌△ABF 就可以得到结论AF =MN ;(2)①由AD ∥BF 可得△ADE ∽△FBE ,利用AD DEBF BE=可以构造y 关于t 的函数表达式;②由(1)可知△MAN ∽△ABF ,所以MA ABAN BF=,又BN =2AN ,所以662t BF-=,用含t 的代数式表示BF ,结合①中的关系式,可以构造关于t 的方程求出t 的值,从而求出BN 、BF ,最后利用勾股定理求FN 的长. 解:(1)证明:如图1,∵四边形ABCD 是正方形, ∴AD=DC=AB=BC ,∠DAB=∠ABC=∠BCD=∠ADC=90°. ∵MN ⊥AF ,∴∠DHA=∠NHA=90°∴∠ADH+∠HAD=90°,∠NHA+∠HAD=90°, ∴∠ADH=∠NAH . 在△ADN 与△ABF 中,,,,ADN BAF AD AB DAN ABF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADN ≌△ABF , ∴AF =MN .(2)①∵正方形的边长为6cm , ∴,∵设运动时间为t s ,根据题意得BE=cm , ∴DE= BD -BE=(6) cm , ∵AD ∥BF , ∴△ADE ∽△FBE , ∴AD DEBF BE=, ∵BF =y cm ,∴6y=,即66ty t=-,∴y 关于t 的函数表达式为66ty t=-. ②∵BN =2AN ,AB=6cm , ∴AN=2cm ,BN=4cm,由(1)得△MAN ∽△ABF ,又DM=t cm ,AM=(6-t) cm , ∴MA AB AN BF =,即662t BF-=, ∴36BF t =-,又66ty t=-, ∴36t -=66t t- 解得t=2s , 当t=2时,BF=66ty t=-=3cm,在Rt △NBF 中,5=, ∴当BN =2AN 时, FN 的长为5.12. (2017年四川绵阳,25,14分)(本题满分14分)如图,已知△ABC 中,∠C =90°,点M 从点C 出发沿CB 方向以1cm /s 的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持∠NMC =45°,再过点N 作AC 的垂线交AB 于点F ,连接MF ,将△MNF 关于直线NF 对称后得到△ENF ,已知AC =8cm ,BC =4cm ,设点M 运动时间为t (s ),△ENF 与△ANF 重叠部分的面积为y (cm 2).(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围; (3)求y 取最大值时,求sin ∠NEF 的值.25.(1)能,……………………………………………………………………1分如图,四边形MNEF为正方形时,过F作FD⊥BC于点D,则∠FMD=∠NMC=45°,所以CN=ND=DF=t,易证△FDB∽△ACB,所以AC FD=BC BD,………………2分即8t=44-2t,解得t=58.……………………………………4分(2)当点E恰好落在AB上时,连接ME,同(1),易证△EMB∽△ACB,所以AC EM=BC BM,即82t=44-t,解得t=2.……………………………………5分当0<t<2时,连接EM,易证△ANF∽△ACB,所以BC NF=AC AN,即4NF=88-t,解得NF=4-2t.…………………………6分所以,…………………………………7分当时,如图,设NE与AB交于点K,过K作KL⊥NF,垂足为L,连接EM,交直线NF于点H.易证△KLF∽△ANF,所以NF LF=AN KL,因为NF=4-2t,所以,解得NL=38-3t,即KL=38-3t,………………………………………9分所以,综上所述,.……………………………………10分(3)由题意知,当t=2,y取得最大值,此时,点E恰好落在AB上,…………………………11分由(2)知,NM==2,NF=4-2t=3,由勾股定理,得MF=,又因为,所以,△NMF为锐角三角形,…………………12分所以,即,所以sin∠NMF=1010,即sin∠NEF=1010.………………………………14分思路分析:(1)若四边形MNEF为正方形时,过F作FD⊥BC于点D,则∠FMD=∠NMC=45°,所以CN=ND=DF=t,易证△FDB∽△ACB,所以AC FD=BC BD,代入求解;(2)当点E恰好落在AB上时,连接ME,同(1),易证△EMB∽△ACB,所以AC EM=BC BM,即82t=44-t,解得t=2.当0<t<2时,连接EM,易证△ANF ∽△ACB,所以BC NF=AC AN,即4NF=88-t,解得NF=4-2t.所以,当时,如图,设NE与AB交于点K,过K作KL⊥NF,垂足为L,连接EM,交直线NF于点H.易证△KLF∽△ANF,所以NF LF=AN KL,因为NF=4-2t,所以,解得NL=38-3t,即KL=38-3t,所以,(3)由题意知,当t=2,y取得最大值,此时,点E恰好落在AB上,由(2)知,NM==2,NF=4-2t=3,由勾股定理,得MF=,又因为,所以,△NMF为锐角三角形,所以,即,所以sin∠NMF=1010,即sin∠NEF=1010.13. (2017四川南充,25,12分)如图(1),已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象过点O (0,0)和点A (4,0),函数图象最低点M 的纵坐标为-83,直线l 的解析式为y =x .(1)求二次函数的解析式;(2)直线l 沿x 轴向右平移,得直线l ′,l ′与线段OA 相交于点B ,与x 轴下方的抛物线相交于点C ,过点C 作CE ⊥x 轴于点E ,把△BCE 沿直线l ′折叠,当点E 恰好落在抛物线上点E ′时,如图(2),求直线l ′的解析式;(3)在(2)的条件下,l ′与y 轴交于点N ,把△BON 绕点O 逆时针旋转135°得到△B ′ON ′.P 为l ′上的动点,当△PB ′N ′为等腰三角形时,求符合条件的点P 的坐标.【思路分析】(1)根据点O ,A 的坐标以及顶点M 的纵坐标,建立三元一次方程组求解.(2)直线l 是一、三象限的角平分线,因此可知四边形BECE ′是正方形.设点E 的横坐标为m ,根据对称性用m 表示点B 的横坐标,根据点C 在抛物线上,用m 表示点C 的纵坐标.根据EC =EB 建立关于m 的方程并求解,由此可知直线l 平移的距离.再利用平移的规律(或待定系数法)求出l ′的解析式.(3)易知△OB ′N ′是等腰直角三角形.分以下三种情形①PN ′=PB ′;②N ′P =N ′B ′;③B ′P =N ′B ′讨论点P 的存在性.其中情形①直接用对称性求解;第②种情形通过比较N ′B ′与点N ′到直线l ′的大小,推断出此种情形不存在,第③种情形根据两腰相等建立方程求解. 解:(1)∵抛物线过点(0,0),(4,0),顶点纵坐标为-83,得20,0164,84.34c a b c ac b a ⎧=⎪⎪=++⎨⎪-⎪-=⎩解得2,38,30.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴所求二次函数表达式为y =23x 2-83x .(2)∵直线l 的解析式为y =x ,∴直线l 与x 轴成45°的角. ∵l ∥l ′,∴∠CBE =45°.又CE ⊥x 轴,∴△BCE 是等腰直角三角形.图#备用题′图(1)图(2)∵△BCE′是由△BCE沿直线l′折叠得到,∴四边形BECE′是正方形.∵点C在y=23x2-83x的图象上,∴设C(m,23m2-83m).则E(m,0).∵点E与点B关于对称轴x=2对称,∴点B的坐标为(4-m,0).∵EC=EB,∴-(23m2-83m)=4-m-m,即m2-7m+6=0.解得m1=1,m2=6.∵点C在x轴下方的抛物线上,∴m=1(舍去m=6),因此点B的坐标为(3,0).∴将直线y=x向右平移3个单位得直线l′.∴l′的解析式为y=x-3.(3)∵△BON是等腰直角三角形,∴旋转后△B′ON′顶点的坐标为O(0,0),B′(,N′.①当PB′=PN′时,由对称性可知,当P(0,-3)时,△PB′N′是等腰三角形.②当B′P=B′N′时,延长B′O交BN于点F,得B′F⊥BN,B′F=3又B′N′=BN=B′F>B′N′.∵B′P≥B′F,∴这种情况不存在.③当PN′=B′N′时,因点P在l′上,所以设P(m,m-3),则(m2+(m-32=18.解得m1=,m2.图#∴当P或)时,△PB ′N ′为等腰三角形.综上所述,符合条件的点P 的坐标为P 1(0,-3),P 2,P 3).14. (2017四川攀枝花,23,12分)如图13,在平面直角坐标系中,直线MN 分别与x 轴,y 轴交于点M (6,0),N (0,2 3 ),等边△ABC 的顶点B 与原点O 重合,BC 边落在x 轴正半轴上,点A 恰好落在线段MN 上,将等边△ABC 从图13的位置沿x 正方向以每秒1个单位长度的速度平移,边AB ,AC 分别与线段MN 交于点E ,F (如图14所示),设△ABC 平移的时间为t (s ), (1)等边△ABC 的边长 ;(2)在运动过程中,当t = 时,MN 垂直平分AB ;(3)若在△ABC 开始平移的同时,点P 从△ABC 的顶点B 出发,以每秒2个单位长度的速度沿折线BA →AC 运动,当点P 运动到C 时即停止运动,△ABC 也随之停止平移. ①当点P 在线段BA 上运动时,若△PEF 与△MNO 相似,求t 的值;②当点P 在线段AC 上运动时,设PEF S S ∆=,求S 与t 的函数关系式,并求出S 最大值及此时点P的坐标.图13 图14思路分析:(1)由题易知OM =6,ON =2 3 ,∴MN =4 3 ,∴∠NMO =30°,∵∠ABC =60°,∴∠BAM =90°,即AB ⊥MN ,∴AB =12OM =3,即等边三角形边长为3;(2)由等边三角形的性质易知当MN 垂直平分AB 时,C 点与M 点重合,∴OB =OM -MC =3,即t =3.(3)①当P 点在线段AB 上运动时,则OB =t ,PB =2t 则BM =6-t ,PA =3-2t ,△PEF 与△MNO 相似分为△PEF ∽△MON 或△PEF ∽△NOM 两种对应情况思考;②当点P在线段AC上运动时,11332222PEFt S EF PH t∆-==288=-+23823232t⎫=-+≤⎪⎝⎭(332t≤≤)∴当t=32时,maxS=解析:(1)3;(2)3(3)①当P点在线段AB上运动时,则OB=t,BP=2t则BM=6-t,32PA t=-,△PEF与△MNO相似分为△PEF∽△MNO或△PEF∽△NOM两种对应情况,当△PEF∽△MON时,则∠EPF=∠EFA=∠EMB=30°,∴AE=12AF=14AP=324t-,BE=12BM=62t-.又BE=AB-AE=3-324t-,∴3-32642t t--=,解得t=34;当△PEF∽△NOM时,若点P在线段BE上,则∠PFE=∠NMO=30°,即PF∥OM,∴△PAF是等边三角形,∴EF垂直平分PA,∴BE=BP+12PA=32+t,又BE=12MB=62t-,∴3622tt-+=,解得1t=;当△PEF∽△NOM时,若点P在线段AE上,则P点与A点重合,即32t=;综上所述:t=34或1或32;②当点P在线段AC上运动时,则BM=6-t,PC=6-2t,3 2≤t≤3.∴BE=12BM=3-2t,即AE=2t,∴EF= 3 AE=32t,AF=2AE=t,∴CF=AC-AF=3-t,∴PF=PC-CF=3-t.作PH⊥EF于H点,由∠AFE=30°,可知PH=12PF=32t-.xyFEANMO CBPH11332222PEFtS EF PH t∆-==233388t t=-+23393932t⎛⎫=--+≤⎪⎝⎭(332t≤≤)∴当t=32时,max9332S=.15.(2017四川达州1,7分)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E,F.(1)若86CE CF==,,求OC的长;(2)连接AE AF、.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.思路分析:(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,所以有OC=OE=OF,再求出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(2)这个四边形已经有一个角是90°,只要证明出它是平行四边形即可,如果它是平行四边形,则它的对角线互相平分,由此可得点O的位置.解:(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=8,CF=6,∴EF=228+6=10,∴OC=12EF=5;(2)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.16.(2017江苏无锡,28,8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E.设点P 的运动时间为t(s).(1)若m=6,求当P、E、B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个过程中,有且只有一个时刻t,使点E到直线BC的距离等于3.求所有这样的m的取值范围.D思路分析:(1))如图,P、E、B三点在同一直线上,连接EC.①在Rt△BEC中,计算BE的值;②在Rt△ABP中,利用勾股定理列出关于的方程,解之t值可求;(2)如图,P、E、B三点在同一直线上,连接EC,过点E作EF⊥BC于F.①在Rt△EFC中,利用勾股定理求出CF;②利用相似三角形的判定与性质求得BF;③根据m=BC=BF+CF计算m的值解:(1)如图,P、E、B三点在同一直线上,连接EC.D∵四边形ABCD是矩形,∴AB=CD,AD=BC.∵PD=t,m=6,∴PA=6-t.∵点D,点E关于直线PC的对称.∴PE=t,EC=DC=AB=4,∠CEP=∠CDP=90°.在Rt△BCE中,∵BC=6,CE=4,∴BE在Rt△ABP中,∵AB2+AP2=BP2,即42+(6-t)2=(t)2,∴t=6-2(2)如图,连接EC,过点E作EF⊥BC于F.D 当P、E、B三点在同一直线上时, m有最大值.∵点D,点E关于直线PC的对称.∴EC=DC=AB=4,∠CEP=∠CEB=90°.在Rt△EFC中,∵EF2+CF2=EC2,即32+CF2=42,∴CF=7.在Rt△EFC中,EF⊥BC,∴△BFE∽△EFC.∴BFEF=EFCF,∴ EF2=BF·CF,即32=BF·7,∴BF=97.∴m=BC=BF+CF=977+7=1677.当点E在AB时,m有最小值,此时. m=7.综上,所以满足条件的m的取值范围是7≤m≤1677.17.(2017山东潍坊)(本小题满分12分)边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=23.(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC绕点C旋转α(0°<α<360°),得到△D′E′C,连接AD′、BE′,边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由.②连接AP,当AP最大时,求AD′的值.(结果保留根号)思路分析:(1)由平移性质及特殊角度,易知四边形MCND ′的两组对边分别平行,即为平行四边形.显然,△MCE ′和△NCC ′均为等边三角形,故要使□MCND ′再为菱形,只需E ′C =CC ′,此时CC ′=3;(2)①分两种情况讨论:当α≠180°时,根据旋转性质易证△ACD ′≌△BCE ′,故有AD ′=BE ′;当α=180°时,显然两线段长均为两等边三角形的边长之和,故也有结论AD ′=BE ′;②根据三角形的三边关系先确定AP 最长时情况,即A 、C 、P 三点共线,然后画出示意图,根据等边三角形的性质得AP ⊥D ′E ′,最后在Rt △APD ′中利用勾股定理计算AD ′的长. 解:(1)当CC ′=3时,四边形MCND ′为菱形. 理由:由平移的性质得CD ∥C ′D ′,DE ∥D ′E ′.∵△ABC 为等边三角形,∴∠B =∠ACB =60°. ∴∠ACC ′=180°-60°=120°.∵CN 为∠ACC ′的角平分线,∴∠NCC ′=60°. ∵AB ∥DE ,DE ∥D ′E ′,∴AB ∥D ′E ′. ∴∠D ′E ′C ′=∠B =60°.∴∠D ′E ′C ′=∠NCC ′,∴D ′E ′∥CN . ∴四边形MCND ′为平行四边形.∵∠ME ′C ′=∠MCE ′=60°,∠NCC ′=∠NC ′C =60°, ∴△MCE ′和△NCC ′为等边三角形,故MC = CE ′,NC =CC ′. 又E ′C ′=23,CC ′=3,∴CC ′=CE ′. ∴MC =CN ,∴四边形MCND ′为菱形.(2)AD ′=BE ′.理由:当α≠180°时,由旋转的性质得∠ACD ′=∠BCE ′. 由(1)知AC =BC ,CD ′=CE ′,。
统计考点一、统计学中的几个基本概念(4分)1、总体所有考察对象的全体叫做总体。
2、个体总体中每一个考察对象叫做个体。
3、样本从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量样本中个体的数目叫做样本容量。
5、样本平均数样本中所有个体的平均数叫做样本平均数。
6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
考点二、众数、中位数(3~5分)1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
考点三、方差(3分)1、方差的概念在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
通常用“2s ”表示,即])()()[(1222212x x x x x x ns n -++-+-=2、方差的计算 (1)基本公式:])()()[(1222212x x x x x x ns n -++-+-=(2)简化计算公式(Ⅰ):])[(12222212x n x x x ns n -+++=也可写成2222212)][(1x x x x ns n -+++=此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
(3)简化计算公式(Ⅱ):]')'''[(12222212x n x x x ns n-+++= 当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,2222212')]'''[(1x x x x ns n-+++= 此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
频数与频率典型题解析频数、频率是初中数学中的两个重要概念,它们都能反映每个对象出现的频繁程度,但也存在区别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是实验的总次数;频率反映的是对象出现频繁程度的相对数据,所有频率之和是1.1.有关频数与频率概念的辨析题.例 1 判断以下说法是否正确,并说明理由:小明和小芳分别在各自班级里竞选班长.小明得了25票,小芳得了23票.可以断言,小明在班内受欢迎的程度比小芳高.解 不正确.虽然小明比小芳的得票多,但受欢迎程度不依赖于得票出现的频数,而是依赖于得票出现的频率,由于各班总人数没有给出,因此,无法计算出频率.说明 频数表示的是某一对象出现的次数,而频率则是某一对象的频数与总次数的比值.从本例可知,频率能更好地反映出某一对象出现的频繁程度.2.有关频数与频率的简单计算题.例2 在英语单词frequency (频数)和英语词组relative frequency (频率)中,频数最大的各是哪个字母?它们的频数和频率各是多少?解析 数出各字母在单词或词组中出现的次数即为频数,而字母出现的频率=所有字母的总个数字母出现的频数.在单词frequency 和词组relative frequency 中,频数最大的字母都是e .在单词frequency 中,e 的频数是2,频率是92.在词组relative frequency 中,e 的频数是4,频率是174. 说明 (1)频率是个比值,它可以用小数、百分数、真分数来表示,但当结果不能除尽时,只能选择用真分数来表示.(2)在两组数据中,某两个对象的频数相等,但频率不一定相等,频数大,不一定频率大.在同一组数据中,某两个对象的频数相等,频率也相等;频数大,频率也大.你能举两个具体的例子吗?3.频数与频率在实际问题中的应用.例3 学期结束前,班主任想知道同学们对班长一个学期以来的工作表现的满意程度,特向全班40名学生(除班长外)作问卷调查,其结果如下:(1)请计算每一种反馈意见的频率;(2)你认为本次调查对班长下学期的连任有影响吗?为什么?解析(1)非常满意、较满意、基本满意、不满意、非常不满意的频率分别为0.075,0.5,0.3,0.1,0.025; (2)本次调查对班长下学期的连任没有影响.因为对班长一个学期以来工作表现满意的同学占绝大多数,频率是0.85.说明在下结论时,要根据调查的数据来说话,不能抛弃数据,只顾发表自己的见解,这样只能以偏盖全,最终达不到发现问题、解决问题的目的.本题的解答让我们体会到收集数据的重要性,体会到频数与频率在对数据进行整理、描述和分析中的重要性,让我们体会到“数据也能说话”:班长的工作是负责的,他可以连任.。
中考数学全国各地试题分类汇编 频数与频率1. (2011浙江金华,6,3分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( )A .0.1B .0.15C .0.25D .0.3【答案】D2. (2011四川南充市,4,3分)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( )(A )0.1 (B )0.17 (C )0.33 (D )0.4 次数(次)人数(人)35512103O【答案】D3. (2011浙江温州,7,4分)为了支援地震灾区同学,某校开展捐书活动,九 (1)班40名同学积极 参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在 5. 5~6.5组别的频率是( )A .0.1B .0.2C .0.3D .0.4组别人数01412108 12 11 9【答案】B4. (2011浙江丽水,6,3分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( )A .0.1B .0.15C .0.25D .0.3【答案】D5. (2011四川内江,13,5分)“Welcome to Senior High School .”(欢迎进入高中),在这段句子的所有英文字母中,字母o 出现的频率是 . 【答案】156. (2011广东东莞,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每 组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?组别人数01412108 12 11 9(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体.(2)补全图形,如图所示:(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50,5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.7. (2011广东广州市,22,12分)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图(图6),根据图中信息回答下列问题:(1)求a 的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少1人的上网时间在8~10小时.图6【答案】频数(学生人数)6 a25 3 2(1)a=50―6―25―3―2=14(2)设上网时间为6~8小时的三个学生为A1,A2,A3,上网时间为8~10个小时的2名学生为B1,B2,则共有A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2A3B1,A3B2B1B210种可能,其中至少1人上网时间在8~10小时的共有7种可能,故P(至少1人的上网时间在8~10小时)=0.78. (2011广东汕头,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体.(2)补全图形,如图所示:(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50,5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.9. (2011 浙江湖州,21,8) 班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1) .(1) 请根据图1,回答下列问题:①这个班共有名学生,发言次数是5次的男生有人、女生有人;②男、女生发言次数的中位数分别是次和次.(2) 通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2所示.求第二天发言次数增加3次的学生人数和全班增加的发言总次数.【答案】解:(1)①40;2;5 ②4;5.(2)发言次数增加3次的学生人数为:40(120%30%40%)4()⨯---=人.全班增加的发言总次数为40%40130%4024316241252⨯⨯+⨯⨯+⨯=++=(次).10. (2011浙江义乌,20,8分)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :50分;B :49-45分;C :44-40分;D :39-30分;E :29-0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 ▲ ,b 的值为 ▲ ,并将统计图补充完整(温馨提示:作图时分数段 人数(人) 频率 A 48 0.2 B a 0.25 C 84 0.35 D 36 b E 12 0.05 学业考试体育成绩(分数段)统计图12243648607284人数分数段学业考试体育成绩(分数段)统计表别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内? ▲ (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?【答案】解:(1) 60 , 0.15 (图略)(2) C(3)0.8×10440=8352(名)答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.11. (2011山东聊城,19,8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线图和频数、频率分布表如下:注:x 表示50户居民月总用水量(m3)(1)表中的a =________;d =___________. (2)这50户居民每月总用水量超过550m3的月份占全年月份的百分率是多少(精确到1%)?(3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少? 【答案】(1)3,61;(2)这50户居民月总用水量超过550m3的月份有5个,占全年月份的百分率为(5÷12)×100%=42%(3)(378+641+456+543+550+667+693+600+574+526+423)÷50÷12=109m312. (2011广东省,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每 组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少? 组 别 频 数 频 率350<x≤400 1112 400<x≤450 1 112 450<x≤500 2 16 500<x≤550 a b550<x≤600 c d 600<x≤650 1 112 650<x≤700 2 16【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体.(2)补全图形,如图所示:(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50,5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.13. (2011山东临沂,20,6分)某中学为了解学生的课外阅读情况.就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:类别频数(人数)频率文学m 0.42艺术22 0.11科普 66 n其他28合计 1下面是自首届以来各届动漫产品成交金额统计图表(部分未完成):(1)表中m=_________,n=__________;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多? 最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人? 【解】(1)84,0.33;…………………………………………………………………(2分)(2)喜爱阅读文学类的学生最多(84人),喜爱阅读艺术类的学生最少(22人);…………………………………………………………………(4分)(3)1200×0.33=396(人).………………………………………………………(6分)14. (2011浙江省,20,8分)据媒体报道:某市四月份空气质量优良,高举全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们高举国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1-4月份中30天空气综合污染指数,统计数据如下:表I:空气质量级别表空气污染指数0~50 51~100 101~150 151~200 201~250 251~300 大于300空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)空气综合污染指数30,32,40,42,45,45,77,83,85,87,90,113,127,153,16738,45,48,53,57,64,66,77,92,98,130,184,201,235,243请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1) 填写频率分布表中未完成的空格;分组频数统计频数频率0~50 0.3051~100 12 0.40101~150151~200 3 0.10201~250 3 0.10合计30 30 1.00(2) 写出统计数据中的中位数、众数;(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.【答案】(1)分组频数统计频数频率0~50 9 0.3051~100 12 0.40101~150 3 0.10151~200 3 0.10201~250 3 0.10合计30 30 1.00(2) 中位数是 80 、众数是 45 。
2017年中考数学专项复习《频数与频率(1)》练习(无答案)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专项复习《频数与频率(1)》练习(无答案)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专项复习《频数与频率(1)》练习(无答案)浙教版的全部内容。
频数与频率(01)一、选择题1.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人B.14人C.4人D.6人2.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则通话时间不超过15min的频率为()A.0.1 B.0。
4 C.0.5 D.0.93.下列是某校教学活动小组学生的年龄情况:13,15,15,16,13,15,14,15(单位:岁).这组数据的中位数和极差分别是()A.15,3 B.14,15 C.16,16 D.14,34.近十天每天平均气温(℃)统计如下:24,23,22,24,24,27,30,31,30,29.关于这10个数据下列说法不正确的是()A.众数是24 B.中位数是26 C.平均数是26.4 D.极差是95.老师想知道学生每天上学路上要花多少时间,于是让大家将每天来校的单程时间写在纸上用于统计.下面是全班30名学生单程所花时间(单位:分)与对应人数(单位:人)的统计表,则关于这30名学生单程所花时间的数据,下列结论正确的是()510152025303545单程所花时间人数336122211A.众数是12 B.平均数是18 C.极差是45 D.中位数是206.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<818≤x<16216≤x<24824≤x<32632≤x<403A.0。
[2017中考真题数学]2017中考真题以及答案-一、选择题1. (2017湖北宜昌,第2题3分)在﹣2,0,3,A.﹣2 0B. 3C. 这四个数中,最大的数是( )D.2. (__?湖北宜昌,第14题3分)如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是( )A.m+n0B. ﹣m﹣nC. |m|﹣|n|0D. 2+m2+n3. (2017?湖南永州,第5题3分)若用湘教版初中数学教材上使用的某种计算器进行计算,则按键的结果为( )4. (2017河北,第5题2分)a,b是两个连续整数,若a5.(2014?陕西,第1题3分)4的算术平方根是( )A.﹣2B. 2C. ±2D. 166.(2017重庆A,第1题4分)实数﹣17的相反数是( )A.17B.C. ﹣17D. ﹣7.(2017湖北黄冈,第1题3分)﹣8的立方根是( )8. (2014?湖北荆门,第2题3分)下列运算正确的是( )A.31=﹣3 ﹣B. =±3C. (ab2)3=a3b6D. a6÷a2=a39.(2017莱芜,第1题3分)下列四个实数中,是无理数的为()10. (2017青岛,第1题3分)﹣7的绝对值是()11. (2017乐山,第1题3分)﹣2的绝对值是()12. (2017攀枝花,第1题3分)2的绝对值是( )内容需要下载文档才能查看13.(2017广西来宾,第2题3分)去年我市参加中考人数约__人,这个数用科学记数法表示是( )14.(2017黔南州,第1题4分)在﹣2,﹣3,0.1四个数中,最小的实数是( )A.﹣3B. ﹣2 0C. 1D.15.(2014年广西钦州,第3题3分)我市2014年参加中考的考生人数约为__人,将__用科学记数法表示为( )A.434×102B. 43.4×103C. 4.34×104D. 0.434×10516.(2017年广西南宁,第3题3分)南宁东高铁火车站位于南宁青秀区凤岭北路,火车站总建筑面积约为__平方米,其中数据__用科学记数法表示为( )A.26.7×104B.2.67×104 C. 2.67×105 D. 0.267×10617.(2017年贵州安顺,第2题3分)地球上的陆地而积约为__0km2.将__0用科学记数法表示为( )A.1.49×106二、填空题1. (2014?随州,第11题3分)计算:|﹣3|++(﹣1)0= B.1.49×107 C. 1.49×108 D. 1.49×1092.(2017江西,第7题3_______3.(2017陕西,第14题3分)用科学计算器计算:4.(2014?四川成都,第11题4分)计算:|﹣5.(2017黑龙江牡丹江, 第11题3分)计算|1﹣6. (2017湖北黄石,第17题7分)计算:|+3tan56°≈(结果精确到0.01) |=. |+(﹣1)0﹣()1= ﹣﹣﹣5|+2cos30°()1+(9﹣﹣)0+. 7. (2017年湖北荆门) (2014?湖北荆门,第13题3分)若﹣2xmny2与3x4y2m+n是同类项,则m﹣3n的立方根是 .8.(2017莱芜,第14题4分)计算:三、解答题1. (2017黑龙江绥化,第19题5分)计算:2. (2017湖北宜昌,第16题6分)计算:+|﹣2|+(﹣6)×(﹣). . =.3. (2017湖南永州,第17题6分)计算:﹣4cos30°+(π﹣3.14)0+4. (2017无锡,第19题8分)(1)(2)(x+1)(x﹣1)﹣(x﹣2)2.5.(2017宁夏,第17题6分)计算:(﹣)2+﹣. ﹣|﹣2|+(﹣2)0; ﹣2sin45°﹣|1﹣﹣5)0﹣﹣4sin45°﹣|. cos30°. +.﹣2|. . 6.(2017四川广安,第17题5分)+(﹣)1+(﹣7.(2014?浙江绍兴,第17题4分)(1)计算:8.(2017重庆A,第19题7分)计算:+(﹣3)2﹣__×|﹣4|+﹣9.(2017贵州黔西南州, 第21题6分)(1)计算:()2+(π﹣2014)0+sin60°+|10.(2017山西,第17题(1)5分)计算:(﹣2)2?sin60°﹣()1×﹣;11. (2017乐山,第17题9分)计算:+(﹣2014)0﹣2cos30°﹣()﹣1.)0+. 12. (2017攀枝花,第17题6分)计算:(﹣1)2014+()﹣1+(13. (2017丽水,第17题6分)计算:(﹣)2+|﹣4|×21﹣(﹣﹣1)0.|+﹣(﹣π)0; 14.(2017广西来宾,第19题12分)(1)计算:(﹣1)2014﹣|﹣(2)先化简,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.15.(2017年广西南宁,第19题6分)计算:(﹣1)2﹣4sin45°+|﹣3|+16.(2017年广西钦州,第19题5分)计算:(﹣2)2+(﹣3)×2﹣17.(2017年贵州安顺,第19题8分)计算:(18.1. (2017海南,第19题10分)计算:(1)12×(﹣)+8×22﹣(﹣1)2 ﹣﹣. . ﹣| ﹣2)0+()1+4cos30°﹣|。
2017年全国中考数学真题分类数据的分析选择题一、选择题1. (2017四川广安,4,3分)关于2、6、1、10、6的这组数据,下列说法正确的是( )A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是10答案:A,解析:∵在这组数据中,数据6出现了两次,次数最多,∴这组数据的众数是6,故A 项正确;∵数据按照从小到大的顺序排列为:1、2、6、6、10,∴这组数据的中位数为6,故B项错误;∵x=15(1+2+6+6+10)=5,∴这组数据的平均数是5,故C项错误;∵S2=15[(1-5)2+(2-5)2+(6-5)2+(6-5)2+(10-5)2]=10.4,∴这组数据的方差是10.4,故D项错误.故选A.2.(2017浙江丽水·4·3分)根据PM2.5空气质量标准:24小时PM2.5均值在0~35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表.这组PM2.5数据的中位数是()A.21微克/立方米 B.20微克/立方米C.19微克/立方米D.18微克/立方米答案:B.解析:把这几个数按大小排列:18,18,18,20,21,29,30,根据中位数的概念,7个数中最中间的数(第4个数)是20,所以这组数据的中位数是20微克/立方米,选B.3.(2017山东枣庄5,3分)下表记录了甲、乙、丙、丁四名跳高运动圆最近几次选拔赛的平均数与方差,甲乙丙丁平均数(c m)185 180 185 180方差 3.6 3.6 7.4 8.1根据表中的数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择A.甲B.乙 C.丙D.丁答案:A,解析:∵>,∴从甲和丙中选择一人参加比赛,∵<<,∴选择甲参赛.故选A.4.(2017四川成都,3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60 70 80 90 100人数(人)7 12 10 8 3则得分的众数和中位数分别是A.70分,70分B.80分,80分C.70分,80分D.80分,70分答案:C,解析:全班有40人,取得70分的人数最多,故众数是70分;把这40人的得分按大小排列后知,中间的数为第20个与第21个,这两个得分都是80分,故中位数是80分.5.(2017浙江衢州,4,3分)据调查,某班20位女同学所穿鞋子的尺码如下表所示,则鞋子的尺码的众数和中位数分别是()尺码(码)34 35 36 37 38人数 2 5 10 2 1A.35码,35码B.35码,36码C.36码,35码D.36码,36码答案:D,解析:这组数据36出现的次数最多,出现了10次,则这组数据的众数是36码;把这组数据从小到大排列,最中间两个数的平均数是(36+36)÷2=36,则中位数是36码.6.(2017山东德州,6,3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:尺码39 40 41 42 4310 12 20 12 12平均每天销售数量/件该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数答案:C ,解析:由于41尺码的衬衫销售的数量最多,因此该店主本周进货时,增加一些41码的衬衫,一组数据中出现次数最多的数即为这组数据的众数,所以影响该店主决策的统计量是众数. 7. (2017山东威海,2,3分)某校排球队10名队员的身高(厘米)如下: 195,186,182,188,188,182,186,188,186,,188. 这组数据的众数和中位数分别是( )A .186.188B .188.187C .187.188D . 188.186答案:B ,解析:188出现4次,次数最多,故众数是188;将这组数字按从小到大顺序排列,中间两个数字是186、188,故中位数是186和188的平均数是187.8. (2017山东菏泽,4,3分)某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):-7,4,-2,1,2,-2,2,关于这组数据,下列结论不正确的是( )A .平均数是-2B .中位数-2C .众数是-2D .方差是7答案:D ,解析:根据平均数、中位数、众数及方差的定义依次计算,平均数是-2,结论正确;中位数是-2,结论正确;众数是-2,结论正确;方差是9,结论错误;9.(2017四川自贡,7,3分)对于一组统计数据3,3,6,5,3.下列说法错误的是( ) A .众数是3B .平均数是4C .方差是1.6D .中位数是6答案:D ,解析:将所给数据按从小到大的顺序排列为:3,3,3,5,6,∴这组数据中3出现的次数最多,故众数是3;最中间的数据是3,故中位数是3;平均数x -=15(3×3+5+6)=4;方差S 2=15 [3(3-4)2+(5-4)2+(6-4)2]=15×8=1.6. 10. .(2017年四川南充,6,3分)某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年实践学业水平考试的体育成绩,得到结果如下表所示.下列说法正确的是( )A .这10名同学体育成绩的中位数为38B .这10名同学体育成绩的平均数为38C .这10名同学体育成绩的众数为39D .这10名同学体育成绩的方差为2答案:C 解析:(1)这里样本容量是10,因此排序后第5,6个数据的平均数是中位数.由表可知第5,6个数据都是39,所以中位数是39.可见选项A 错误.(2)平均数=110×(36×1+37×2+38×1+39×4+40×2)=38.4.可见选项B 错误.(3)数据39出现的次数最多,所以众数是39.可见选项C 正确.(4)方差s 2=110[(36-38.4)2×1+(37-38.4)2×2+(38-38.4)2×1+(39-38.4)2×4+(40-38.4)2×2]=1.64.可见选项D 错误. 综上所述,选项C .11. (2017浙江舟山,3,3分)已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a -2,b -2,c -2的平均数和方差分别是( ) A . 3 ,2B .3 ,4C . 5 ,2D .5 ,4答案:B ,解析:由平均数的定义可得,a +b +c = 15 ,那么数据a -2,b -2,c -2的平均数为3363222=-++=-+-+-c b a c b a ,数据a -2,b -2,c -2的方差不变.12. (2017四川攀枝花,4,3分)某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是( )A . 19,19B .19,19.5C .20,19D .20,19.5答案:A解析:18岁出现了5次,次数最多,因而众数是18;10个数,处于中间位置的都是19,因而中位数是19.故选A .13. (2017江苏盐城,4,3分)数据6,5,7,5,8,6,7,6的众数是A .5B .6C .7D .8答案:B ,解析:数6有3个,出现次数最多,所以这组数据的众数是6.14. (2017年四川内江,7,3分)某中学对该校九年级45名女学生进行了一次立定跳远测试,成绩如下表:这些立定跳远成绩的中位数和众数分别是A.9,9 B.15,9 C.190,200 D.185,200答案:C,解析:45名女学生的立定跳远测试成绩从小到大排序,中位数是最中间第23个数据190,∵200出现的次数最多,∴众数为200.15.(2017山东临沂,9,3分)某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,5答案:D解析:根据表格中的数据可以将这组数据按照从小到大的顺序排列起来,从而可以找到这组数据的中位数和众数.由题意可得,这15名员工的每人创年利润从小到大排列为:3,3,3,3,5,5,5,5,5,5,5,8,8,8,10.∴这组数据的众数是5,中位数是5.16.(2017山东泰安,16,3分)某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:则他们捐款金额的中位数和平均数分别是A.10,20.6 B.20,20.6 C.10,30.6 D.20,30.6答案:D ,解析:把这50 个数据从小到大进行排列,位于第25 位和第25 位的数都为20,所以中位数是20,根据加权平均数的计算方法,可知平均数为()6.306100950161045501=⨯+⨯+⨯+⨯17. (2017江苏连云港,3,3分)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是A .方差B .平均数C .众数D .中位数答案:A ,解析:一组数据的波动大小(稳定性)用方差来表示.4.18. (2017四川德阳,4,3分)截至2010年“菲尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31则由年龄组成的这组数据的中位数是A . 28B . 29C . 30D .31答案:C ,本题考查中位数的定义,应首先将这组数据从小到大排列奇数个数据,则取中间数为这组数的中位数,如果是偶数个数据,取中间两个数的平均数为这组数的中位数,由此可得这组数据排列后的中间数为29和31,所以中位数为30,选C .19. 7.(2017四川德阳,7,3分)下列说法中,正确的有①一组数据的方差越大,这组数据的波动反而越小;②一组数据的中位数只有一个; ③在一组数据中,出现次数最多的数据称为这组数据的众数. A .①②B .①③C .②③D .①②③答案:C ,解析: ①方差用来衡量数据波动情况,方差越大,波动越大.②每组数据仅有一个中位数③众数的概念,每组数据中出现的最多的一个或者多个数,是众数,一组数据也可以没有众数。
一、选择题(每题3分,共30分)1. 下列数据中,频数为4的是:A. 1, 2, 2, 3, 3, 3, 4B. 1, 2, 3, 3, 4, 4, 4C. 1, 1, 2, 2, 3, 3, 3D. 1, 1, 1, 2, 2, 3, 3答案:D解析:频数是指一组数据中某个数值出现的次数。
在选项D中,数值1出现了3次,频数为4。
2. 下列关于频数的说法正确的是:A. 频数一定大于等于0B. 频数可以大于数据组中的最大值C. 频数是表示数据集中数据分布情况的一个指标D. 频数与数据组中的最小值有关答案:A解析:频数是指一组数据中某个数值出现的次数,它一定大于等于0。
选项B、C、D的说法都不准确。
3. 下列数据中,众数是3的是:A. 1, 2, 3, 3, 3, 4, 4B. 1, 2, 3, 4, 4, 5, 5C. 1, 2, 3, 3, 4, 4, 5D. 1, 2, 3, 4, 5, 5, 6答案:A解析:众数是指一组数据中出现次数最多的数值。
在选项A中,数值3出现了3次,是出现次数最多的数值,因此众数是3。
4. 下列数据中,中位数是3的是:A. 1, 2, 3, 3, 4, 5, 6B. 1, 2, 3, 4, 5, 6, 7C. 1, 2, 3, 4, 5, 6, 7, 8D. 1, 2, 3, 4, 5, 6, 7, 8, 9答案:C解析:中位数是指一组数据从小到大排列后,位于中间位置的数值。
在选项C中,数据从小到大排列后,中间位置的数值是6,因此中位数是3。
5. 下列数据中,极差是6的是:A. 1, 2, 3, 4, 5, 6B. 1, 2, 3, 4, 5, 7C. 1, 2, 3, 4, 5, 8D. 1, 2, 3, 4, 5, 9答案:B解析:极差是指一组数据中最大值与最小值之差。
在选项B中,最大值是7,最小值是1,极差为7-1=6。
二、填空题(每题4分,共16分)6. 数据组:2, 4, 4, 6, 6, 6,众数是______。
频数与频率考点一、频率分布(6分)1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。
2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:①计算极差(最大值与最小值的差)②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图(2)频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。
一.选择题1.(2017·福建龙岩·4分)在一个密闭不透明的袋子里有若干个白球.为估计白球个数,小何向其中投入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球400次,其中88次摸到黑球,则估计袋中大约有白球()A.18个 B.28个 C.36个 D.42个2.(2017·山东省德州市·3分)某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时 B.6﹣8小时 C.8﹣10小时D.不能确定二、解答题1.(2017·福建龙岩·11分)某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为人,扇形统计图中短跑项目所对应圆心角的度数为°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.2.(2017·广西百色·8分)某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m 进行分组统计,结果如表所示:(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).3.(2017·广西桂林·8分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B 类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?4.(2017·贵州安顺·12分)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).5.(2017·黑龙江哈尔滨·8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?6.(2017贵州毕节)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.7.(2017海南)在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:“宇番2号”番茄挂果数量统计表请结合图表中的信息解答下列问题:(1)统计表中,a= ,b= ;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为°;(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有株.8.(2017·黑龙江齐齐哈尔·12分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.9.(2017·湖北荆门·12分)秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:请根据上述统计图表,解答下列问题:(1)在表中,a= ,b= ,c= ;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?10.(2017·湖北荆州·8分)为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:请根据以图表信息,解答下列问题:(1)表中m= ,n= ;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.11.(2017·山东潍坊)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.答案频数与频率一.选择题1.(2017·福建龙岩·4分)在一个密闭不透明的袋子里有若干个白球.为估计白球个数,小何向其中投入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球400次,其中88次摸到黑球,则估计袋中大约有白球()A.18个 B.28个 C.36个 D.42个【考点】用样本估计总体.【分析】根据摸到黑球的概率和黑球的个数,可以求出袋中放入黑球后总的个数,然后再减去黑球个数,即可得到白球的个数.【解答】解:由题意可得,白球的个数大约为:8÷﹣8≈28,故选B.2.(2017·山东省德州市·3分)某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时 B.6﹣8小时 C.8﹣10小时D.不能确定【考点】中位数;频数(率)分布直方图.【专题】数形结合.【分析】100个数据的中间的两个数为第50个数和第51个数,利用统计图得到第50个数和第51个数都落在第三组,于是根据中位数的定义可对各选项进行判断.【解答】解:100个数据,中间的两个数为第50个数和第51个数,而第50个数和第51个数都落在第三组,所以参加社团活动时间的中位数所在的范围为6﹣8(小时).故选B.【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.二、解答题1.(2017·福建龙岩·11分)某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为25 人,扇形统计图中短跑项目所对应圆心角的度数为72 °;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.【考点】概率公式;扇形统计图;条形统计图.【分析】(1)利用条形统计图以及扇形统计图得出跳远项目的人数和所占比例,即可得出参加复选的学生总人数;用短跑项目的人数除以总人数得到短跑项目所占百分比,再乘以360°即可求出短跑项目所对应圆心角的度数;(2)先求出长跑项目的人数,减去女生人数,得出长跑项目的男生人数,根据总人数为25求出跳高项目的女生人数,进而补全条形统计图;(3)用跳高项目中的男生人数除以跳高总人数即可.【解答】解:(1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷32%=25(人);扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.故答案为:25,72;(2)长跑项目的男生人数为:25×12%﹣2=1,跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,∴跳高项目中男生被选中的概率=.2.(2017·广西百色·8分)某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m 进行分组统计,结果如表所示:(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)根基被调查人数为20和表格中的数据可以求得a的值;(2)根据表格中的数据可以得到分数在8≤m<9内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率.【解答】解:(1)由题意可得,a=20﹣2﹣7﹣2=9,即a的值是9;(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360°×=36°;(3)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是: =,即第一组至少有1名选手被选中的概率是.3.(2017·广西桂林·8分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B 类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为50 ,扇形统计图中A类所对的圆心角是72 度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据统计图可以得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)根据统计图可以估计该校九年级男生“引体向上”项目成绩为C类的有多少名.【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.4.(2017·贵州安顺·12分)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【解答】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是.【点评】此题考查了列表法与树状图法,扇形统计图,以及条形统计图,熟练掌握运算法则是解本题的关键.5.(2017·黑龙江哈尔滨·8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.6.(2017贵州毕节)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有50 名学生参加;(2)直接写出表中a= 16 ,b= 0.28 ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48% .【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.7.(2017海南)在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:“宇番2号”番茄挂果数量统计表请结合图表中的信息解答下列问题:(1)统计表中,a= 15 ,b= 0.3 ;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为72 °;(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有300 株.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【专题】统计与概率.【分析】(1)根据题意可以求得a的值、b的值;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)根据挂果数量在“35≤x<45”所对应的频率,可以求得挂果数量在“35≤x<45”所对应扇形的圆心角度数;(4)根据频数分布直方图可以估计挂果数量在“55≤x<65”范围的番茄的株数.【解答】解:(1)a=60×0.25=15,b==0.3.故答案是:15,0.3;(2)补全的频数分布直方图如右图所示,(3)由题意可得,挂果数量在“35≤x<45”所对应扇形的圆心角度数为:360°×0.2=72°,故答案为:72;(4)由题意可得,挂果数量在“55≤x<65”范围的番茄有:1000×0.3=300(株),故答案为:300.【点评】本题考查频数分布直方图、用样本估计总体、扇形圆心角的度数,解题的关键是明确题意,找出所求问题需要的条件.8.(2017·黑龙江齐齐哈尔·12分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50 ;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【考点】频数(率)分布直方图;总体、个体、样本、样本容量;用样本估计总体;加权平均数.【分析】(1)根据题目中的信息可知本次调查为抽样调查,也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%,可以求得每周课外体育活动时间在6≤x<8小时的学生人数,从而可以求得2≤x<4的学生数,从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,(3)由题意可得,=5,即这50名学生每周课外体育活动时间的平均数是5;(4)由题意可得,全校学生每周课外体育活动时间不少于6小时的学生有:1000×(人),即全校学生每周课外体育活动时间不少于6小时的学生有300人.9.(2017·湖北荆门·12分)秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:请根据上述统计图表,解答下列问题:(1)在表中,a= 0.1 ,b= 0.3 ,c= 18 ;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;加权平均数.【分析】(1)根据表格中的数据可以求得抽查的学生数,从而可以求得a、b、c的值;(2)根据(1)中c的值,可以将频数分布直方图补充完整;(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩;(4)根据表格中的数据可以求得“优秀”等次的学生数.【解答】解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400,即“优秀”等次的学生约有400人.10.(2017·湖北荆州·8分)为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:请根据以图表信息,解答下列问题:(1)表中m= 120 ,n= 0.2 ;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.【分析】(1)根据表格可以求得全体参赛选手的人数,从而可以求得m的值,n的值;(2)根据(1)中的m的值,可以将补全频数分布直方图;(3)根据表格可以求得全体参赛选手成绩的中位数落在第几组;(4)根据表格中的数据可以求得这名选手恰好是获奖者的概率.【解答】解:(1)由表格可得,全体参赛的选手人数有:30÷0.1=300,则m=300×0.4=120,n=60÷300=0.2,故答案为:120,0.2;(2)补全的频数分布直方图如右图所示,(3)∵35+45=75,75+60=135,135+120=255,∴全体参赛选手成绩的中位数落在80≤x<90这一组;(4)由题意可得,,即这名选手恰好是获奖者的概率是0.55.【点评】本题考查频数分布直方图、频数分布表、中位数、概率公式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.11.(2017·山东潍坊)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由C等级频数为15,占60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为: =.。