鲁教版数学六年级下册《变量之间的关系》水平测试A
- 格式:doc
- 大小:128.00 KB
- 文档页数:5
六年级数学下册第九章变量之间的关系达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、圆周长公式2C r π=,下列说法正确的是( ).A .C r 、、π是变量,2是常量B .C 是变量, r π、 是常量 C .r 是变量, C π、 是常量D .C r 、是变量 , 2π、是常量 2、下列各情境,分别描述了两个变量之间的关系:(1)一杯越晾越凉的开水(水温与时间的关系);(2)一面冉冉升起的旗子(高度与时间的关系);(3)足球守门员大脚开出去的球(高度与时间的关系);(4)匀速行驶的汽车(速度与时间的关系).依次用图象近似刻画以上变量之间的关系,排序正确的是( )A .③④①②B .②①③④C .①④②③D .③①④②3、某销售商对某品牌豆浆机的销量与定价的关系进行了调查,结果如下表所示,则( )A .定价是常量B .销量是自变量C .定价是自变量D .定价是因变量 4、在圆的面积公式2S R π=中,常量与变量分别是( )A .π是常量,,S R 是变量B .2是常量,,,S R π是变量C .2是常量,R 是变量D .2是常量,,S R 是变量5、一个容器中装有一定质量的糖,向容器中加入水,随着水量的增加,糖水的浓度将降低,这个问题中自变量和因变量分别是( )A .糖,糖水的浓度B .水,糖水C .糖,糖水D .水,糖水的浓度6、在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则下列说法正确的是( )A .速度v 是变量B .时间t 是变量C .速度v 和时间t 都是变量D .速度v 、时间t 、路程s 都是常量7、用m 元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A .y =n (100m +0.6) B .y =n (100m )+0.6 C .y =n (100m +0.6) D .y =n (100m )+0.6 8、已知,A 、B 两地相距120千米,甲骑自行车以20千米/时的速度由起点A 前往终点B ,乙骑摩托车以40千米/时的速度由起点B 前往终点A .两人同时出发,各自到达终点后停止.设两人之间的距离为s (千米),甲行驶的时间为t (小时),则下图中正确反映s 与t 之间函数关系的是( )A .B .C .D .9、圆的面积计算公式为2S R π=(R 为圆的半径),变量是( ).A .πB .,R SC .,R πD .,,R S π10、佳佳花3000元买台空调,耗电0.7度/小时,电费1.5元/度.持续开x 小时后,产生电费y (元)与时间(小时)之间的函数关系式是( )A . 1.05y x =B .0.7y x =C . 1.5y x =D .3000 1.5y x =+第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、圆的半径为r ,圆的面积S 与半径r 之间有如下关系:2S r π=.在这关系中,常量是______.2、下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用_________枚棋子;(2)第n 个“上”字需用_________枚棋子.3、若球体体积为V ,半径为R ,则343V R π=.其中变量是_______、_______,常量是________. 4、一名老师带领x 名学生到青青世界参观,已知成人票每张60元,学生票每张40元设门票的总费用为y 元,则y 与x 的关系式为______.5、矩形的周长为50,宽是x ,长是y ,则y =____.6、函数y =中自变量x 的取值范围是__________.7、随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要的聚集.小华爸爸早上开车以60/km h 的平均速度行驶20min 到达单位,下班按原路返回,若返回时平均速度为v ,则路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为________.8、如图所示,在三角形ABC 中,已知16BC =,高10AD =,动点Q 由点C 沿CB 向点B 移动(不与点B 重合).设CQ 的长为x ,三角形ACQ 的面积为S ,则S 与x 之间的关系式为___________________.三、解答题(3小题,每小题10分,共计30分)1、一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么?(3)当t 每增加1秒,v 的变化情况相同吗?在哪个时间段内,v 增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.2、某公空车每天的支出费用为600元,每天的乘车人数x (人)与每天利润(利润=票款收入-支出费用)y (元)的变化关系,如下表所所示(每位委文的乘车票价固定不变):根据表格中的数据,回答下列问题:(1)观察表中数据可知,当乘客量达到________人以上时,该公交车才不会亏损;(2)当一天乘客人数为500人时,利润是多少?(3)请写出公交车每天利润y (元)与每天乘车人数x (人)的关系式.3、指出下列问题中的变量和常量:(1)某市的自来水价为4元/t .现要抽取若干户居民调查水费支出情况,记某户月用水量为x 吨,月应交水费为y 元.(2)某地手机通话费为0.2元/min .李明在手机话费卡中存入30元,记此后他的手机通话时间为min t ,话费卡中的余额为w 元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r ,周长为C ,圆周率(圆周长与直径之比)为π.(4)把10本书随意放入两个抽昼(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y 本.-参考答案-一、单选题1、D【解析】【分析】根据事物发生变化的过程中发生变化的量是变量,事物变化的过程中不变的量是常量,可得答案【详解】由2C r π=,得C、r是变量,2π是常量,故D正确故选:D【点睛】此题考查常量与变量,难度不大2、A【解析】【分析】根据题干对应图像中变量的变化趋势即可求解.【详解】解:(1)一杯越来越凉的水,水温随着时间的增加而越来越低,故③图象符合要求;(2)一面冉冉上升的旗子,高度随着时间的增加而越来越高,故④图象符合要求;(3)足球守门员大脚开出去的球,高度与时间成二次函数关系,故①图象符合要求;(4)匀速行驶的汽车,速度始终不变,故②图象符合要求;正确的顺序是③④①②.故选:A.【点睛】本题考查用图像表示变量之间的关系,关键是将文字描述转化成函数图像的能力.3、C【解析】【分析】根据自变量、因变量、常量的定义即可得.【详解】由表格可知,定价与销量都是变量,其中,定价是自变量,销量是因变量,故选:C .【点睛】本题考查了常量与变量、自变量与因变量,掌握理解相关概念是解题关键.4、A【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【详解】解:∵在圆的面积公式2S R π=中,S 与R 是改变的,π是不变的;∴π是常量,,S R 是变量.故选A .【点睛】本题考查了常量与变量的知识,属于基础题,正确理解定义是解题关键.5、D【解析】【分析】根据对浓度的认识解答本题,糖的质量不变,加的水越多,糖水的浓度度越小,糖水的浓度随着加入水的变化而变化,据此解答即可.【详解】解:随着水的加入,糖水浓度变小,自变量是加入的水量,因变量是糖水的浓度.故选:D .【点睛】此题考查的是常量与变量的概念,掌握其概念是解决此题的关键.6、C【解析】【分析】根据变量和常量的定义即可判断.【详解】解: 在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则速度v 和时间t 都是变量,路程s 是常量故选:C .【点睛】本题考查变量和常量的定义,熟练掌握基本概念是解决问题的关键.7、A【解析】【分析】 由题意可得每本书的价格为100m 元,再根据每本书需另加邮寄费6角即可得出答案; 【详解】解:因为用m 元钱在网上书店恰好可购买100本书, 所以每本书的价格为100m 元, 又因为每本书需另加邮寄费6角,所以购买n 本书共需费用y =n (100m +0.6)元; 故选:A .本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.8、B【解析】【分析】根据题意求出2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,进而根据相遇前、相遇后两个阶段得出相应的分段函数,从而找出符合题意的图象.【详解】解:根据题意,两人同时相向出发,甲到达B地时间为:12020=6小时,乙到达A地:12040=3小时.根据题意,分成两个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地;相遇前,s=120﹣(20+40)t=120﹣60t(0≤t≤2),当两者相遇时,t=2,s=0,相遇后,当乙到达A地前,甲乙均在行驶,即s=(20+40)(t﹣2)=60t﹣120(2≤t≤3),当乙到达A地时,此时两者相距60千米;当乙到达A地后,剩下甲在行驶,即s=60+20(t﹣3)=20t(3≤t≤6),故:12060(02)60120(23)20(36)s t ts t ts t t=-⎧⎪=-⎨⎪=⎩故选B.点评:此题主要考查了函数图象,根据题意得出关键转折点是解题关键.9、B【解析】【分析】变量就是在一个变化过程中发生变化的量,数值不发生变化的量是常量,根据定义判断即可.解:圆的面积计算公式为2S R π=(R 为圆的半径),变量是:R ,S . 故选:B .【点睛】本题考查了常量与变量的定义,属于基础定义题型,正确理解概念是关键.10、A【解析】【分析】根据耗电0.7度/小时,电费1.5元/度,列出函数关系式即可.【详解】解:由题意得: 1.50.7 1.05y x x =⨯=,故选A .【点睛】本题主要考查了列函数关系式,解题的关键在于能够准确理解题意.二、填空题1、π【解析】【分析】利用常量定义可得答案.【详解】解:公式S =πR 2中常量是π,故答案为:π.【点睛】本题主要考查了常量,关键是掌握在一个变化的过程中,数值始终不变的量称为常量.2、 22 4n+2【解析】【分析】将每个图形中的“上”字所用的棋子找出来,再寻找数字规律即可.【详解】第一个“上”字需用6枚棋子;第二个“上”字需用10枚棋子;第三个“上”字需用14枚棋子;发现6、10、14之间相差4,所以规律与4有关⨯⨯⨯...6=14+2,10=24+2,14=34+2,∴第五个“上”字需用54222⨯+=枚棋子,第n个“上”字需用42n+枚棋子.故答案为:(1)22;(2)42n+【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.π3、R V43【解析】【分析】根据函数常量与变量的知识点作答.【详解】∵函数关系式为343V R π=, ∴R 是自变量,V 是因变量,43π是常量. 故答案为:R ,V ,43π. 【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.4、6040y x =+【解析】【分析】根据学生人数乘以学生票价,可得学生的总票价,根据师生的总票价,可得函数关系式.【详解】依等量关系式“总费用=老师费用+学生费用”可得:6040y x =+.故答案是:6040y x =+.【点睛】本题考查了函数关系式.解题的关键是明确学生的票价加老师的票价等于总票价.5、y=-x+25【解析】【分析】根据矩形的对边相等,周长表示为2x+2y ,由已知条件建立等量关系,再变形即可.【详解】解:∵矩形的周长为50,∴2x+2y =50,整理得:y=-x+25.【点睛】本题关键是根据长、宽与周长的关系,列出等式.6、x≥2【解析】【详解】根据二次根式的性质,被开方数大于等于0,可得x-2≥0,解得x≥2.7、20t v= 【解析】【分析】根据路程=速度×时间,可计算出家与单位之间的总路程,再根据速度v =路程÷时间t 即可得出答案.【详解】 解:∵20602060km ⨯= ∴小华爸爸下班时路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为:20t v=. 故答案为:20t v =. 【点睛】本题考查的知识点是用关系式表示变量之间的关系,读懂题意,比较容易解答.8、()5016S x x =<<【解析】【分析】 根据三角形的面积公式可知1=2AQC S AD CQ ⋅△,由此求解即可.【详解】∵AD 是△ABC 中BC 边上的高,CQ 的长为x , ∴1==52AQC S AD CQ x ⋅△,∴()5016S x x =<<.故答案为:()5016S x x =<<.【点睛】本题主要考查了列关系式,解题的关键在于能够熟练掌握三角形面积公式.三、解答题1、(1)时间与速度;时间;速度;(2)0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)不相同;第9秒时;(4)1秒.【解析】【分析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出v 的变化趋势;(3)根据表中的数据可得出V 的变化情况以及在哪1秒钟,V 的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.【详解】解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加最大;(4)由题意得:120千米/小时=12010003600⨯(米/秒), 由33.328.9 4.4-=,且28.924.2 4.7 4.4-=>,所以估计大约还需1秒.【点睛】本题主要考查函数的表示方法,常量与变量;关键是理解题意判断常量与变量,然后结合图表得到问题的答案即可.2、(1)300;(2)400;(3)y =2x -600【解析】【分析】(1)根据表格中的数据,当y 大于0时,相应的x 的取值即可;(2)根据表格中的变量之间的变化关系,可得“每增加50人,利润将增加100元”,可求出答案;(3)“每增加50人,利润将增加100元”也就是“每增加1人,利润将增加2元”,根据乘坐人数可得利润即可.【详解】解:(1)当y =0时,x =300,当x >300时,y >0,故答案为:300;(2)200+100×(50040050-)=400(元), 答:一天乘客人数为500人时,利润是400元;(3)由表格中的数据变化可知,当乘坐人数为300人时,利润为0元,每增加50人,利润就增加100元,每减少50人,利润就减少100元,所以利润y =0+30050x -×100=2x -600, 即:y =2x -600,答:公交车每天利润y (元)与每天乘车人数x (人)的关系式为y =2x -600.【点睛】本题考查函数关系式,理解表格中“每天的利润y 元”与“乘坐的人数x ”之间的变化关系是正确解答的关键.3、(1)变量x ,y ;常量4.(2)变量t ,w ;常量0.2,30.(3)变量r ,C ;常量π.(4)变量x ,y ;常量10.【解析】【分析】根据常量与变量的定义求解即可.【详解】解:(1)由题意可知,变量为x ,y ,常量为4;(2)由题意可知,变量为t ,w ,常量为0.2,30;(3)由题意可知,变量为r ,C ,常量为π;(4)由题意可知,变量为x ,y ,常量为10.【点睛】本题考查常量与变量的定义,常量是指在变化过程中不随时间变化的量;变量是指在变化过程中随着时间变化的量.。
六年级用表达式表示变量之间的关系(0.58)一、单选题(共20题;共40分)1.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y 与x之间的解析式为().A. y=32x B. y=23x C. y=12x D. y=18x【答案】A【考点】函数解析式2.已知腰围的长度“cm”与裤子的尺码“英寸”之间存在一种换算关系如下:小聪量了一下自己所穿裤子的腰围长是70cm,那么他的裤子尺码是()A. 30英寸B. 28英寸C. 27英寸D. 26英寸【答案】 D【考点】函数解析式3.用100元钱在网上书店恰好可购买m本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式()A. y=n(100m +0.6) B. y=n(100m)+0.6 C. y=n(100m+0.6) D. y=100mn+0.6【答案】A【考点】函数解析式4.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中,常量是().A. aB. SC. pD. p,a【答案】C【考点】函数解析式5.某校组织学生到距学校6km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为( )A. y=8xB. y=1.8xC. y=8+1.8xD. y=2.6+1.8x【答案】 D【考点】函数解析式6.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y 元,则y与x的函数关系为()A. y=10x+30B. y=40xC. y=10+30xD. y=20x【答案】A【考点】函数解析式7.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. y=- xB. y= xC. y=-2xD. y=2x【答案】D【考点】函数解析式8.某地的地面温度为21℃,如果高度每升高1千米,气温下降3℃,则气温T(℃)与高度h(千米)之间的表达式为()A. T=21-3hB. T=3h-21C. T=21+3hD. T=(21-3)h【答案】A【考点】函数解析式9.某种型号的计算器单价为40元,商家为了扩大销售量,现按八折销售,如果卖出x台这种计算器,共卖得y元,则用x表示y的关系式为()A. y=40xB. y=32xC. y=8xD. y=48x【答案】B【考点】函数解析式10.汽车离开甲站10千米后,以60千米/时的速度匀速前进了t小时,则汽车离开甲站所走的路程s(千米)与时间t(小时)之间的关系式是()A. s=10+60tB. s=60tC. s=60t-10D. s=10-60t【答案】A【考点】函数解析式11.已知一个长方形的周长为24cm,其中一条边长为xcm(x>0),面积为ycm2,则y与x的关系为()A. y=x2B. y=(12-x)2C. y=(12-x)xD. y=2(12-x)【答案】C【考点】函数解析式12.一段导线,在0℃时的电阻为2欧,温度每增加1℃,电阻增加0.008欧,那么电阻R(欧)表示为温度t(℃)的函数关系式为()A. R=0.008tB. R=0.008t+2C. R=2.008tD. R=2t+0.008 2【答案】B【考点】函数解析式13.如图,矩形的长和宽分别为8cm和4cm,截去一个宽为x的小矩形(阴影部分)后余下另一个矩形的面积S与x之间的关系可表示为().A. S=4xB. S=4(8-x)C. S=8(4-x)D. S=8x【答案】B【考点】函数解析式14.东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为15.5元,那么x的最大值是()A. 11B. 8C. 7D. 5【答案】B【考点】函数解析式15.一个长方体木箱的长为4㎝,宽为xcm,高为宽的2倍,则这个长方体的表面积S与x的关系及长方体的体积V与x的关系分别是()A. S=2x2+12x,V=8x2B. S=8x2,V=6x+8C. S=4x+8,V=8xD. S=4x2+24x ,V=8x2【答案】 D【考点】函数解析式16.以等腰三角形底角的度数x(单位:度)为自变量,顶角的度数y为因变量的函数关系式为()A. y=180﹣2x(0<x<90)B. y=180﹣2x(0<x≤90)C. y=180﹣2x(0≤x<90)D. y=180﹣2x(0≤x≤90)【答案】A【考点】函数解析式17.新农村社区改造中,有一部分楼盘要对外销售. 某楼共30层,从第八层开始,售价x(元/平方米)与楼层n(8≤n<30)之间的关系如下表:则售价x(元/平方米)与楼层n之间的关系式为()A. x=2000+50nB. x=2000+50(n-8)C. n=2000+50(x-8)D. n=2000+50x【答案】B【考点】函数解析式18.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是()A. Q=8xB. Q=8x﹣50C. Q=50﹣8xD. Q=8x+50【答案】C【考点】函数关系式19.某同学带100元钱去买书,已知每册定价8.2元,买书后余下的钱y元和买的册数x之间的函数关系式是()A. y=8.2xB. y=100﹣8.2xC. y=8.2x﹣100D. y=100+8.2x【答案】B【考点】函数解析式20.把一个边长为3cm的正方形的各边长都增加x cm,则正方形增加的面积y(cm2)与x(cm)之间的函数表达式是()A. y=(x+3)2B. y=x2+6x+6C. y=x2+6xD. y=x2【答案】C【考点】函数关系式二、填空题(共15题;共17分)21.如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另个长方形的面积S(cm2)与x(cm)的关系式可表示为________.【答案】S=-6x+48【考点】函数解析式22.已知x3−2y=1,用含x的代数式表示y为:y=________.【答案】16x−12【考点】函数解析式23.夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为________.【答案】y=23-0.007x【考点】函数解析式24.为了积极响应习近平主席的号召,关注民生,为老百姓干实事,某工程队在某村修建一条长48km的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路的长度y(km)与施工时间x(天)之间的关系式为y=________.【答案】48−0.4x【考点】函数解析式25.某水库的水位在6小时内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤6)之间的关系式为________.【答案】y=0.2x+8【考点】函数解析式26.一辆小车由静止开始从光滑的斜面上向下滑动,通过观察记录小车滑动的距离s(m)与时间t(s)的数据如下表:则写出用t表示s的关系式s=________.【答案】2t2【考点】函数关系式27.设地面气温为20℃,如果每升高1km,气温下降6℃.如果高度用h(km)表示,气温用t(℃)表示,那么t随h的变化而变化的关系式为________.【答案】t=﹣6h+20【考点】函数解析式28.已知函数y=2x﹣1,当y=﹣9时,相应的自变量x的值是________.【答案】-4【考点】函数解析式29.梯形的上底长是x,下底长是16,高是8,则梯形的面积y与上底长x之间的关系式是________ .【答案】y=4x+64【考点】函数解析式30.一辆小车由静止开始从光滑的斜面上向下滑动,通过观察记录小车滑动的距离s(m)与时间t(s)的数据如下表:则写出用t表示s的关系式s=________.【答案】2t2【考点】函数关系式31.汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x (时)之间的函数关系式是________;【答案】y=30-4x【考点】函数解析式32.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把n个纸杯整齐叠放在一起时,它的高度h与n的函数关系是________.【答案】h=n+6【考点】函数解析式33.火车以40千米/时的速度行驶,它走过的路程s(千米)与时间t(小时)之间的关系式________ ,其中自变量是________,因变量是________ .【答案】s=40t;t;s【考点】函数解析式34.一列火车以60千米/时的速度行驶,它驶过的路程s(千米)是所用时间t(时)的函数,这个函数关系式可表示为________ .【答案】s=60t【考点】函数关系式35.小王在一家公司打工,报酬为20元/小时,设小王这个月工作的时间为t时,应得报酬为m元,则m 关于t的解析式是________.【答案】m=20t【考点】函数关系式三、解答题(共13题;共65分)36.写出下列函数关系式,并指出关系式中的自变量和函数:圆锥的底面半径为定值r,则圆锥的体积V 与圆锥的高h之间的关系.【答案】解:圆锥的体积公式为:V= πr2h,∴圆锥的体积V与圆锥的高h之间的函数关系式为:V= πr2h,函数自变量为h,V为自变量h的函数【考点】函数解析式37.某剧院的观众席的座位为扇形,且按下列分式设置:(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.【答案】解:(1)由图表中数据可得:当x每增加1时,y增加3;(2)由题意可得:y=50+3(x﹣1)=3x+47;(3)某一排不可能有90个座位,理由:由题意可得:y=3x+47=90,".解得:x="433故x不是整数,则某一排不可能有90个座位.【考点】函数解析式38.为响应教育局组织的三热爱教育活动,某学校要给每位学生印制一份宣传资料,甲印刷厂提出:每份收0.1元印刷费,另收100元制版费;乙印刷厂提出:每份收0.2元印刷费,不收制版费.(1)分别写出两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)当印制多少份资料时,两个印刷厂费用一样多?(3)如果该校有800人,那么应选哪家印刷厂划算?【答案】解:(1)y甲=0.1x+100,y乙=0.2x;(2)由题意得:y甲=y乙,∴0.1x+100=0.2x解之得:x=1000答:当印刷1000份时,两个印刷厂费用一样多.(3)当x=800时,y甲=0.1×800+100=180;y乙=0.2×800=160;∵180>160∴选择乙印刷厂划算.【考点】函数关系式39.一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这车辆在中途不加油的情况下最远能行驶多少千米?【答案】解:(1)y=﹣0.6x+48;(2)当x=35时,y=48﹣0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y=12时,48﹣0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.(3)令y=0时,则0=﹣0.6x+48,解得x=80(千米).故这车辆在中途不加油的情况下最远能行驶80千米.【考点】函数关系式40.一根80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米(1)写出弹簧总长度y (厘米)与所挂物体的质量x (千克)之间的数量关系.(2)若在这根弹簧上挂上某一物体后,弹簧总长为96厘米,求所挂物体的质量?【答案】解:(1)弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度,得y=2x+80,(2)当y=96时,2x+80=96,解得x=8,答:所挂重物的质量是8千克.【考点】函数解析式41.如图,正方形ABCD 的边长为4,P 为CD 边上一点(与点D 不重合).设DP=x ,△APD 的面积y 关于x 的函数关系式.【答案】解:△APD 的面积:y=12AD•DP=12×4x=2x (0<x≤4).【考点】函数解析式42.已知:如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,点P 在BC 上运动,点P 不与点B ,C 重合,设PC=x ,若用y 表示△APB 的面积,求y 与x 的函数关系式,并求自变量x 的取值范围.【答案】解:∵BC=8,CP=x ,∴PB=8﹣x ,∴S △APB =12PB•AC=12×(8﹣x )×6=24﹣3x自变量的取值范围是:0<x <8.【考点】函数关系式43.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q (立方米)与时间t (时)之间的函数关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?【答案】解:(1)Q=800﹣50t;(2)当t=6时,Q=800﹣50×6=500(立方米).答:6小时候,池中还剩500立方米;(3)当Q=200时,800﹣50t=200,解得t=12.答:12小时后,池中还有200立方米的水.【考点】函数关系式44.将若干张长为20里面、宽为10里面的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求2张白纸贴合后的总长度;那么3张白纸粘合后的总长度呢?4张呢?(2)设a张白纸粘合后的总长度为b里面,写出b与a之间的关系式,并求当a=100时,b的值.【答案】解:(1)2张白纸粘合后的总长度=2×20﹣2×1=40﹣2=38(厘米);3张白纸粘合后的总长度=3×20﹣2×2=60﹣4=56(厘米);4张白纸粘合后的总长度=4×20﹣2×3=80﹣6=74(厘米);(2)由题意得:b=20a﹣(a﹣1)×2=18a+2.当a=100时,b=18×100+2=1802.【考点】函数关系式45.在一次实验中,小华把一根弹簧上端固定,在其下端悬挂物体,弹簧挂上物体后的长度l(cm)与所挂物体的质量m(kg)之间的关系如下表:观察表中的数据,回答下列问题:(1)用关系式表示出弹簧的长度l(cm)与所挂物体的质量m(kg)之间的关系.(2)当所挂物体质量为3千克时弹簧的长度为多少cm?没挂物体时呢?(3)如果在允许范围内,弹簧的长度为36cm时,所挂物体的质量应为多少kg?【答案】解:(1)根据表格可知;所挂物体每增加1千克,弹簧伸长3厘米,∵弹簧长度=原长+伸长长度,∴l=15+3m(2)将m=3代入得l=24cm,没挂物体时,l=15cm;(3)将l=36代入得m=7,∴所挂物体的质量为7千克.【考点】函数解析式46.一个梯形,它的下底比上底长2cm,它的高为3cm,设它的上底长为xcm,它的面积为y cm2.(1)写出y与x之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x由5cm变到7cm时,y如何变化?(3)用表格表示当x从3cm变到10cm时(每次增加1cm),y的相应值.(4)当x每增加1cm时,y如何变化?说明理由.(5)这个梯形的面积能等于9cm2吗?能等于2cm2吗?为什么?【答案】解:(1)y=3x+3,x是自变量,y是因变量;(2)当x由5cm变到7cm时,y由18到24;(3)如图:(4)每增加1cm时,y增加3cm,理由3(x+1)+3﹣(3x+3)=3;(5)面积能等于9cm23x+3=9,解得:x=2,上底是2;面积不能等于2cm23x+3=2,底边不能是负数.解得:x=﹣13【考点】函数解析式47.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍一副定价60元,乒乓球每盒定价10元.今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买一副乒乓球拍赠两盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商品在甲商店购买需要y1元,在乙商店购买需要y2元.(1)请分别写出y1、y2与x之间的函数关系式(不必注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.【答案】解:(1)y1=10x+80,y2=9x+108;(2)当y1=y2时,∴10x+80=9x+108,∴x=28时,在甲商店购买所需商品和在乙商店购买所需商品一样便宜;当y 1<y 2时,10x+80<9x+108,而已知不少于4盒,∴4≤x <28时,在甲商店购买所需商品比较便宜;当y 1>y 2时,10x+80>9x+108,∴x >28时,在乙商店购买所需商品比较便宜;(3)最佳的购买方案是:到甲商店购买2付乒乓球拍,获赠4盒乒乓球;到乙商店购买16盒乒乓球.【考点】函数解析式48.圆柱的底面半径是2cm ,当圆柱的高h (cm )由大到小变化时,圆柱的体积V (cm 3)随之发生变化. (1)在这个变化过程中,自变量和因变量各是什么?(2)在这个变化过程中,写出圆柱的体积为V 与高h 之间的关系式?(3)当h 由5cm 变化到10cm 时,V 是怎样变化的?(4)当h=7cm 时,v 的值等于多少?【答案】解:(1)自变量是圆柱的高,因变量是圆柱的体积;(2)体积V 与高h 之间的关系式V=4πh ;(3)当h=5cm 时,V=20πcm 3;当h=10cm 时,V=40πcm 3 .当h 越来越大时,V 也越来越大;(4)当h=7cm 时,V=4π×7=28πcm 3 .【考点】函数解析式四、综合题(共2题;共20分)49.现代营养学家用体重指数判断人体的健康状况,这个指数等于人体质量(千克)与人体身高(米)的平方的商,一个健康人的体重指数在18.5〜26.9之间,体重指数低于18.5,属于不健康的消瘦;体重指数高于26.9,属于不健康的肥胖.(1)A 同志的体重为90千克,身高为1.6米,A 同志的健康状况如何?(2)B 同志的体重在65〜70千克之间,经测定该同志的体重指数为23,请估算B 同志的身高.【答案】 (1)解:A 同志的指数= 901.62 =35.16,身体质量指数高于26.9,所以A 同志属于不健康的胖; (2)解:B 同志的指数= 重量身高2 =23,身高2= 重量23,又∵B 同志的体重在65~70之间, 如果体重为65千克,则身高= √6523 =1.68(米);如果体重为70千克,则身高= √7023=1.74(米),∴B 同志的身高在1.68至1.74之间.【考点】函数解析式50.如图,在长方形ABCD 中,AB =4,BC =8.点P 在AB 上运动,设PB =x ,图中阴影部分的面积为y.(1)写出阴影部分的面积y与x之间的函数表达式和自变量x的取值范围.(2)当PB的长为多少时,阴影部分的面积等于20?【答案】(1)解:设PB=x,长方形ABCD中,AB=4,BC=8,(4-x+4)×8=32-4x(0≤x≤4).则图中阴影部分的面积为:y= 12(2)解:当y=20时,20=32-4x,解得x=3,即PB=3【考点】函数解析式。
第十二章《变量之间的关系》水平测试一、选一选,看完四个选项后再做决定呀!(每小题3分,共24分)1.小明和他爸爸做了一个实验:由小明从一幢245m 高的楼顶随手扔下一只苹果,由他爸爸测量有关数据,得到苹果下落的路程和下落的时间有下面的关系: 下落时间t (s ) 1 2 3 4 5 6 下落路程S (m )5204580125180则下列说法错误的是( ) A .苹果每秒下落的路程不变 B .苹果每秒下落的路程越来越长 C .苹果下落的速度越来越快D .可以推测,苹果下落7s 后到达地面2.在以x 为自变量,y 为因变量的关系中,y 随x 的增大而减小的关系式是( ) A .2y x=-B .2y x=C .213y x =-+ D .223y x =-3.一辆汽车以平均速度60千米/小时的速度在公路上行驶,则它所走的路程S (千米)与所用的时间t (时)之间的关系式可表示为( ) A .60S t =+B .60S t=C .60t S =D .60S t =4. 一辆行驶中的汽车在某一分钟内速度的变化情况如图1,下列说法正确的是( ) A .在这一分钟内,汽车先提速,然后保持一定的速度行驶 B .在这一分钟内,汽车先提速,然后又减速,最后又不断提速 C .在这一分钟内,汽车经过了两次提速和两次减速D .在这一分钟内,前40s 速度不断变化,后20s 速度基本保持不变5.一件工作,甲、乙两人合作5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的关系如图2所示,那么甲、乙两人单独完成这件工作,下列说法正确的是( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定6.如下图所示,能大致刻画出下落过程中速度变化情况的是()A.B.C.D.7.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他修车前加快了骑车速度匀速行驶.下面是行驶路程s(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是()A.B.C.D.8.一个长方体的体积为12立方厘米,当底面不变,高增大时,长方体的体积发生变化,当高由原来的长度变为3倍时,体积为()A.12立方厘米B.24立方厘米C.36立方厘米D.48立方厘米二、填一填,要相信自己的能力!(每小题5分,共30分)1.匀速运动中,距离S一定时,若以时间t为自变量,速度v为因变量,则v与t之间的关系式为.2.市场上一种豆子每千克售2元,即单价是2元/千克,豆子总的售价y(元)与所售豆子的数量x kg之间的关系为,当售出豆子5kg时,豆子总售价为元;当售出豆子10kg时,豆子总售价为元.3.某人骑摩托车从北京出发到距离100千米的天津,如果每小时行驶40千米,那么此人与天津的距离y(千米)与出发时间t(小时)之间的关系式为.4.一棵树苗栽下去时高0.8米,以后10年内每年平均长高0.4米,x年后树高y米,(1)这个问题中的变量是;(2)生长了5年后树高米,生长了10年树高米.5.一个三角形的面积始终保持不变,它的一边的长为x cm,这边上的高为y cm,y与x的关系如图3,从图象中可以看出:(1)当x越来越大时,y越来越;(2)这个三角形的面积等于cm2;(3)可以想象:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x多么的大,y总是零(填“大于”、“小于”、“大于或等于”之一).6.假定甲、乙两人在一次赛跑中,路程S与时间t的关系如图4所示,看图填空:(1)这是一次米赛跑;(2)甲、乙两人中先到达终点的是;(3)乙在这次赛跑中的平均速度是m/s.三、做一做,要注意认真审题呀!(共66分)1.(12分) 2006年1~12月某地大米的平均价格如下表表示?月份 1 2 3 4 5 6 7 8 9 10 11 12平均价格2.3 2.4 2.4 2.5 2.4 2.2 2.0 1.9 1.8 1.8 1.9 2.0 (元/kg)(1)表中列出的是哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大?(3)该地哪一段时间大米平均价格在上涨?哪一段时间大米平均价格在下落?(4)从表中可以得到该地大米平均价格变化方面的哪些信息?平均比年初降低了,还是涨价了?2.(12分)图5中是购物中心食品柜在四月份营业情况统计图象,请根据图象回答下列问题:(1)这个月中,日最低营业额是在4月日,只有万元;(2)这个月中,日最高营业额是在4月日,达到万元;(3)这个月中从日到日营业情况较好,呈逐日上升趋势.3.(14分)如图6,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是100千米,请根据图象回答或解决下面的问题.(1)谁出发的较早?早多长时间?谁到达乙地早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)指出在什么时间段内两车均行驶在途中;在这段时间内的哪一个时间段(或时间点):①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面?4.(14分)如图7,搭1个正方形需要4根火柴棒.图7(1)按照图中的方式,搭2个正方形需要几根火柴棒,搭3个正方形需要几根火柴棒?(2)搭10个这样的正方形需要多少根火柴棒?(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流.5.(14分)某天早晨,王老师从家出发,骑摩托车前往学校,途中在路边一饭店吃早餐.图8所示的是王老师从家到学校这一过程中的行驶路程S(千米)与时间t(分)之间的关系.问:(1)学校离他家多远?从出发到学校,王老师用了多少时间?(2)王老师吃早餐用了多长时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少千米?参考答案一、1.A 2.C 3.D 4.C 5.A 6.C 7.C 8.C 二、1.S v t=2.2y x =,10,20 3.10040y t =-4.(1)x ,y ;(2)2.8,4.8 5.(1)小; (2)12xy ; (3)大于6.(1)100;(2)甲;(3)8 三、1.略. 2.(1)9,2; (2)21,5; (3)9,21.3.(1)自行车出发较早,早3个小时,摩托车到达乙地较早,早3个小时. (2)自行车:12.5千米/时;摩托车:50千米/时. (3)3<x <5.①3<x <4;②x =4; ③4<x <5. 4.(1)7,10(2)31(3)301(4)1+3x . 5.(1)10 千米,25 分钟; (2)10 分钟;(3)吃完早餐以后的速度快,最快时速达到 60千米 /时.。
六年级数学下册第九章变量之间的关系专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中,它的底边为a,底边上的高为h,则面积12S ah,若h为定长,则此式中().A.S,a是变量B.S,a,h是变量 C.a,h是变量D.以上都不对2、某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:现销售了105把水壶,则定价约为()A.115元B.105元C.95元D.85元3、在三角形面积公式S=12ah,a=2中,下列说法正确的是( )A.S,a是变量,12,h是常量B.S,h是变量,12是常量C.S,h是变量,1,a是常量2D.S,h,a是变量,1是常量24、2018年10月,历时九年建设的港珠澳大桥正式通车,住在珠海的小亮一家,决定自驾去香港旅游,经港珠澳大桥去香港全程108千米,汽车行进速度v为110千米/时,若用s (千米)表示小亮家汽车行驶的路程,行驶时间用t (小时)表示,下列说法正确的是()A.s是自变量, t是因变量B.s是自变量, v是因变量C.t是自变量, s是因变量D.v是自变量, t是因变量5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉. 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……. 用s1 、s2分别表示乌龟和兔子所行的路程, t 为时间,则下列图像中与故事情节相吻合的是()A.B.C.D.6、是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象可能是()A.B.C.D.7、下表是某报纸公布的世界人口数据情况:表中的变量()A.仅有一个,是时间(年份)B.仅有一个,是人口数C.有两个,一个是人口数,另一个是时间(年份) D.一个也没有8、用圆的半径r来表示圆的周长C,其式子为C=2πr,则其中的常量为()A.r B.πC.2 D.2π9、某次实验中,测得两个变量m和v之间的4组对应值如表,则m与之间的关系接近于下列各式中的()A.v=2m B.v=m²-1 C.v=3m+1 D.v=3m-110、刘师傅到加油站加油,如图是所用的加油机上的数据显示牌,则其中的变量是().A.金额B.单价C.数量D.金额和数量第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、邓教师设计一个计算程序,输入和输出的数据如表所示,当输入数据是正整数n 时,输出的数据是________.2、下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用_________枚棋子;(2)第n 个“上”字需用_________枚棋子.3、如果用总长为60m 的篱笆围成一个长方形场地,设长方形的面积为()2m S ,一边长为()m a ,那么在60,S ,a 中,变量有________________个.4、若球体体积为V ,半径为R ,则343V R π=.其中变量是_______、_______,常量是________.5、图书馆现有1500本图书供学生借阅,如果每个学生一次借3本,则剩下的数y (本)和借书学生人数x (人)之间的函数关系式是_____________.6、按下面的运算程序,输入一个实数3x =,那么输出值y =______.7、小颖准备乘出租车到距家超过3km 的科技馆参观,出租车的收费标准如下:则小颖应付车费y(元)与行驶里程数x(km)之间的关系式为____.8、一名老师带领x名学生到青青世界参观,已知成人票每张60元,学生票每张40元设门票的总费用为y元,则y与x的关系式为______.三、解答题(3小题,每小题10分,共计30分)1、小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是_________,因变量是_________,小南家到该度假村的距离是_____km.(2)小南出发___________小时后爸爸驾车出发,爸爸驾车的平均速度为___________km/h,图中点A 表示.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是___________km.2、某地移动公司的通话时间(分)和需要的电话费(元)之间有如下表所示的关系:(1)上面表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)用x表示通话时间,用y表示电话费,请写出随着x的变化,y的变化趋势是什么?3、如图,长方形ABCD的边长分别为AB=12cm,AD=8cm,点P、Q从点A出发,P沿线段AB运动,点Q沿线段AD运动(其中一点停止运动,另一点也随着停止),设AP=AQ=xcm在这个变化过程中,图中阴影部分的面积y(cm2)也随之变化.(1)写出y与x的关系式(2)当AP由2cm变到8cm,图中阴影部分的面积y是如何变化的?请说明理由-参考答案-一、单选题1、A【解析】【分析】根据常量就是固定不变的量;变量就是随时变化的量.由三角形的面积12S ah=,若h为定长,就是说h为固定长的意思,即是常量;底边为a,长度具体是多长,不确定,是变量,S随a的变化而变化,也是变量.【详解】解:∵三角形的面积12S ah=,h为定长,即三角形的高不变;∴三角形的面积与底边的变化有关系,底边越大,面积越大.∴S和a是变量,h是常量.故选:A.【点睛】本题主要考查对变量和常量的理解把握情况.常量就是固定不变的量;变量就是随时变化的量.2、D【解析】【分析】根据表格中定价的变化和销量的变化即可解答.【详解】解:由表中数据可知,定价为90元时,销量达到最大为110把,而销售105把水壶,销量位于100把到110把之间,而当定价在80元到90元时,定价每增加1元,销量增加1把,销量呈递增趋势,当定价在90元到100元时,定价每增加1元,销量减少1把,销量呈递减趋势,故定价约为80+(105-100)÷1=85元,故选:D.【点睛】本题考查了用表格法表示两个变量之间的关系,解答的关键是读懂题意,能从表格中找到有效信息解决问题.3、C【解析】【分析】根据常量就是在变化过程中不变的量,变量就是可以取到不同数值的量求解即可.【详解】在三角形面积公式S=12ah,a=2中,S,h是变量,12,a是常量.故选C.【点睛】本题考查了常量与变量,根据实际问题的数量关系用解析式法表示实际问题中两变化的量之间的关系,常量和变量的定义,常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.4、C【解析】【分析】根据题意可知路程s是随着时间t的变化而变化的,联系因变量和自变量的概念解答即可【详解】题中有两个变量:t、s,由于变量路程s随着变量时间t的变化而变化,所以t是自变量,s是因变量.故选C.【点睛】本题主要考查了自变量和因变量的判定,回忆自变量和因变量的概念:在一个不断变化的数量中,如果一个变量y随着另一个变量x的变化而变化,那么我们把x叫做自变量,y叫因变量.5、A【解析】【分析】根据题意,兔子的路程随时间的变化分为3个阶段,由此即可求出答案.【详解】解:根据题意:s1一直增加;s2有三个阶段,第一阶段:s2增加;第二阶段,由于睡了一觉,所以s2不变;第三阶段,当它醒来时,发现乌龟快到终点了,于是急忙追赶,s2增加;∵乌龟先到达终点,即s1在s2的上方.故选:A.【点睛】本题考查变量之间的关系.能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.6、C【解析】【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降.【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加故答案选:C【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.7、C【解析】【分析】根据变量的定义直接判断即可.【详解】解;观察表格,时间在变,人口在变,故C正确;故选:C.【点睛】本题考查了变量的定义,解题关键是明确变量的定义,能够正确判断.8、D【解析】【分析】由常量与变量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可求得答案.【详解】∵C=2πr,π是圆周率,∴2π是常量,C与r是变量.故选:D.【点睛】此题考查了常量与变量.注意掌握常量与变量的定义是解此题的关键,注意π是圆周率,是常量.9、B【解析】【分析】利用已知数据代入选项中,得出符合题意的关系式.【详解】解:当m=1,代入v=m2-1,则v=0,当m=2,则v=3,当m=3,v=8,故m与v之间的关系最接近于关系式:v=m2-1.故选:B.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量;解题关键是分别把数据代入下列函数,通过比较找到最符合的函数关系式.10、D【解析】【分析】根据常量与变量的定义即可判断.【详解】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D .【点睛】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.二、填空题1、31n n - 【解析】【分析】观察表格中的数据可得:各个式子的分子是输入的数字,分母是输入数字的3倍减1,据此解答即可.【详解】解:因为各个式子的分子是输入的数字,分母是输入数字的3倍减1,所以当输入数据是正整数n 时,输出的数据是:31n n -. 故答案为:31n n -.【点睛】本题考查了利用表格表示变量之间的关系和数据规律的探求,分别找出式子的分子与分母的规律是解本题的关键.2、 22 4n+2【解析】【分析】将每个图形中的“上”字所用的棋子找出来,再寻找数字规律即可.【详解】第一个“上”字需用6枚棋子;第二个“上”字需用10枚棋子;第三个“上”字需用14枚棋子;发现6、10、14之间相差4,所以规律与4有关⨯⨯⨯...6=14+2,10=24+2,14=34+2,∴第五个“上”字需用54222n+枚棋子.⨯+=枚棋子,第n个“上”字需用42故答案为:(1)22;(2)42n+【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.3、2【解析】【分析】根据变量与常量的定义:变量是在某一变化过程中,发生变化的量,常量是某一变化过程中,不发生变化的量,进行求解即可【详解】解:∵篱笆的总长为60米,∴S =(30-a )a =30a -a 2,∴面积S 随一边长a 变化而变化,∴S 与a 是变量,60是常量故答案为:2.【点睛】本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量. 4、 R V43π 【解析】【分析】根据函数常量与变量的知识点作答.【详解】 ∵函数关系式为343V R π=, ∴R 是自变量,V 是因变量,43π是常量. 故答案为:R ,V ,43π. 【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.5、y=1500-3x【解析】【分析】由题知借走了3x本,则剩下1500-3x本,写出函数关系式即可.【详解】由题知借走了3x本,则剩下1500-3x本,则剩下的数y(本)和借书学生人数x(人)之间的函数关系式是y=1500-3x.【点睛】此题主要考查了函数关系式,正确理解题意是解题关键.6、9【解析】【分析】先根据图表列出函数关系式,然后计算当3x=时y的值.【详解】y x.当3x=时,(1)25(31)259故填9.【点睛】本题考查程序流程图、代数式求值和用关系式表示变量之间的关系,在本题中根据流程图列函数关系式,要注意减法和乘法要先算减法时,需给减法带上括号.7、y=1.8x+2.6(x≥3)【解析】【分析】根据3千米以内收费8元,超过3千米,每增加1千米收费1.8元列代数式即可解答.【详解】解:由题意得,所付车费y=1.8(x-3)+8=1.8x+2.6(x≥3).故答案为:y=1.8x+2.6(x≥3).【点睛】本题考查了通过列代数式确定函数解析式,读懂题意、列出代数式是解答本题的关键.8、6040y x =+【解析】【分析】根据学生人数乘以学生票价,可得学生的总票价,根据师生的总票价,可得函数关系式.【详解】依等量关系式“总费用=老师费用+学生费用”可得:6040y x =+.故答案是:6040y x =+.【点睛】本题考查了函数关系式.解题的关键是明确学生的票价加老师的票价等于总票价.三、解答题1、(1)t ,s ,60;(2) 1,60,小南出发2.5小时后,离家的距离为50km ;(3)30或45.【解析】【分析】(1)直接利用常量与变量的定义得出答案;直接利用函数图象结合纵坐标得出答案;(2)利用函数图象求出爸爸晚出发1小时,根据速度=路程÷时间求解即可;根据函数图象的横纵坐标的意义得出A 点的意义;(3)利用函数图象得出交点的位置进而得出答案.【详解】(1)自变量是时间或t ,因变量是距离或s ;小亮家到该度假村的距离是:60;(2)小亮出发1小时后爸爸驾车出发:爸爸驾车的平均速度为60÷1=km/h ; 图中点A 表示:小亮出发2.5小时后,离度假村的距离为10km ;(3)当20t=60(t-1),解得:t=1.5则离家20×1.5=30(千米)当20t=120-60(t-1),解得:t=2.25则离家20×2.25=45(千米)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是30或45.【点睛】此题主要考查了函数图象以及常量与变量,利用函数图象获取正确信息是解题关键.2、(1)上表反映了时间与电话费之间的关系;通话时间是自变量,电话费是因变量;(2)y 随着x 的增大而增大.【解析】【分析】(1)根据观察表格,可得变量,根据变量间的关系,可得自变量、因变量;(2)根据单价、时间、话费间的关系,可得函数关系式,根据正比例函数的性质,可得答案.【详解】解:(1)上表反映了时间与电话费之间的关系;通话时间是自变量,电话费是因变量;(2)由表格数据可知y =0.4x ,y 随着x 的增大而增大.【点睛】本题考查变量,解题关键是能够看出两个变量之间的变化关系.3、(1)21962y x =-;(2)y 由294cm 变到264cm ,理由见详解. 【解析】【分析】(1)表示出APQ 的面积,用长方形的面积减去APQ 的面积可得y 与x 的关系式;(2)当AP 由2cm 变到8cm ,由(1)中y 与x 的关系式计算出相应的y 的值,可知其变化.【详解】解:(1)21122APQ S AP AQ x =⋅=,长方形的面积为212896cm ⨯=,所以21962y x =-; (2)当AP 等于2cm 时,即2x =时,221962962942y cm =-⨯=-=,当AP 等于8cm 时,即8x =时,2219689632642y cm =-⨯=-=, 所以当AP 由2cm 变到8cm ,图中阴影部分的面积y 由294cm 变到264cm .【点睛】本题考查了和动点有关的图形的面积,灵活的表示出阴影部分的面积是解题的关键.。
一、基础知识1、常量:在一组数据中或者关系式中不会没发生变化的量;2、变量:变化的量(1)自变量:可以自己发生变化的量; (2)因变量:随自变量的变化而变化的量。
二、表示方式1、表格(1)借助表格可以感知因变量随自变量变化的情况;(2)从表格中可以获取一些信息,能够做出某种预测或估计; 2、关系式(1)能根据题意列简单的关系式; (2)能利用关系式进行简单的计算; 3、图像(1)识别图像是否正确;(2)利用图像尽可能地获取自变量因变量的信息。
第一节 小车下滑的时间课前引入1.小张从学校给妈妈打电话,在这个过程中,打电话的时间越长,电话费就越( )。
2.银行的年利率是2.25%,存入的本金越多,( )也越多,在这个问题中,( )是固定不变的。
( )随( )的改变而改变。
3.球的体积V 与球的半径的关系式V=34πr 3中,( )是一个定值。
( )随( )的改变而改变。
经典例题(分)温度(℃)60 65 70 75 80 85 90 95 100 100 100 100 100(2)上表反应了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (3)水的温度是怎样随时间变化的?(4)根据表格,你认为13分钟、14分钟时水的温度是多少?(5)为了节约能源,在烧开水时,你认为应在几分钟左右关闭煤气?第二节 变化中的三角形课前引入1.计划购买40元的某种文化用品,则所购买的总数N (个)和单价想X (元)的关系式为( )。
2.某种储蓄的月利率为0.2%,存入500元本今后,则本息和y (元)与所存月数x 之间的关系式为( )3.民用电费平均每度0.49元,则电费y(元)与用电度数x 之间的关系式为( )4.长方形的长为10厘米,宽为x 厘米,则面积y 平方厘米与x 厘米之间关系式为( )经典例题三角形底边为8 cm ,当它的高由小到大变化时,三角形的面积也随之发生了变化.1.在这个变化过程中,高是_________,三角形面积是_________.2.如果三角形的高为h cm ,面积S 表示为_________.3.当高由1 cm 变化到5 cm 时,面积从_________cm 2变化到_________cm 2.4.当高为3 cm 时,面积为_________cm 2.5.当高为10 cm 时,面积为_________cm 2.过手练习1.给定自变量x 与因变量y 的关系式xy 1-=,当x =2时,y = 。
六年级数学下册第九章变量之间的关系综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、圆的周长公式C=2πR中,下列说法正确的是()A.π、R是自变量,2是常量B.C是因变量,R是自变量,2π为常量C.R为自变量,2π、C为常量D.C是自变量,R为因变量,2π为常量2、用圆的半径r来表示圆的周长C,其式子为C=2πr,则其中的常量为()A.r B.πC.2 D.2π3、下表是某报纸公布的世界人口数据情况:表中的变量是( )A.仅有一个,是时间(年份) B.仅有一个,是人口数(亿)C.有两个,是时间和人口数D.一个也没有4、骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是( )A .沙漠B .体温C .时间D .骆驼5、邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x 册,需付款y (元)与x (册)的函数关系式为( )A .205%y x x =+B .20.5y x =C .20(15%)y x =+D .19.95y x =6、某次实验中,测得两个变量m 和v 之间的4组对应值如表,则m 与之间的关系接近于下列各式中的( )A .v=2mB .v=m²-1C .v=3m+1D .v=3m-17、一列慢车从甲地驶往乙地,一列快车从乙地驶往甲地,慢车的速度为100千米/小时,快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与慢车行驶时间t (小时)之间函数图象的是( )A .B .C .D .8、在ABC 中,它的底边为a ,底边上的高为h ,则面积12S ah =,若h 为定长,则此式中( ).A .S ,a 是变量B .S ,a ,h 是变量C .a ,h 是变量D .以上都不对9、以固定的速度0v (米/秒)向上抛一个小球,小球的高度h (米)与小球的运动时间t (秒)之间的关系式是20 4.9h v t t =-,下列说法正确的是( ) A .4.9是常量,t ,h 是变量 B .0v 是常量,t ,h 是变量C .0v 、4.9是常量,t ,h 是变量D .4.9是常量,0v 、t ,h 是变量10、设路程为()s km ,速度为()v km h ,时间为()t h ,当50s =时,50t v =,在这个函数关系式中( )A .路程是常量,t 是s 的函数B .速度是常量,t 是v 的函数C .时间是常量,v 是t 的函数D .50s =是常量,v 是自变量,t 是v 的函数第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、在公式50s t =中自变量是________,因变量是________.2、某电影院第x 排的座位数为y 个,y 与x 的关系如表格所示,第10排的座位数为___.3、球的表面积S 与半径R 之间的关系是S=4πR 2 . 对于各种不同大小的圆,请指出公式S=4πR 2中常量是________ ,变量是________4、在烧开水时,水温达到100℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间t (分)和温度T(℃)的数据:t<),温度T与时间t的关系式为__________.在水烧开之前(即105、当圆的半径r由小变大时,它的面积S也越来越大,它们之间的变化关系为2,在这个变化过πS r程中,自变量为______,因变量为______,常量为______.6、下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用_________枚棋子;(2)第n个“上”字需用_________枚棋子.7、小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______8、某人购进一批苹果到集贸市场零售,已知卖出的苹果数量x(千克)与售价y(元)之间的关系如下表:(1)变量x与y的关系式是_______________;(2)卖__kg苹果,可得14.5元;若卖出苹果10kg,则应得______元.三、解答题(3小题,每小题10分,共计30分)1、某风景区集体门票的收费标准是25人以内(含25人),每人10元,超过25人的,超过的部分每人5元,写出应收门票费y(元)与浏览人数x(人)之间的函数关系式.2、一根长80cm的弹簧,一端固定,如果另一端挂上物体,那么在弹性范围内,物体的质量每增加1kg,弹簧伸长2cm.(1)填写下表:(2)如何表示在弹性范围内所挂物体的质量(kg)与弹簧的总长度(cm)之间的数量关系?3、星期天小明和同学们去郊外爬山,得到如下数据:(1)当爬到120 m时,所用时间是多少?(2)爬坡速度随时间是怎样变化的?-参考答案-一、单选题1、B【解析】【详解】试题分析:常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.解:圆的周长公式C=2πR中,C是因变量,R是自变量,2π为常量,故选B.点评:本题主要考查了常量,变量的定义,是需要识记的内容.2、D【解析】【分析】由常量与变量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可求得答案.【详解】∵C=2πr,π是圆周率,∴2π是常量,C与r是变量.故选:D.【点睛】此题考查了常量与变量.注意掌握常量与变量的定义是解此题的关键,注意π是圆周率,是常量.3、C【解析】【分析】根据事物的变化过程中发生变化的量是变量,数值不变的量是常量,可得答案.【详解】解;观察表格,得时间在变,人口数在变,故C正确.故选C.【点睛】本题考查常量与变量,解题的关键是能够了解常量与变量的定义.【解析】【分析】根据自变量和因变量的概念,即可得到答案.【详解】∵骆驼的体温随时间的变化而变化,∴自变量是时间,因变量是体温,故选B .【点睛】本题主要考查函数的因变量和自变量的概念,掌握因变量是随着自变量的变化而变化的,是解题的关键.5、C【解析】【分析】根据题意可得购买一册书需要花费(20+20×5%)元,根据此关系式可得出购书x 册与需付款y (元)与x 的函数解析式.【详解】解:由题意得购买一册书需要花费(20+205%)⨯元,∴购买x 册书需花费(20205%)x +⨯元,即(20205%)20(15%)y x x =+⨯=+.故选C.【点睛】本题考查根据题意列方程的知识,要先表示出买一册书的花费,这样问题就迎刃而解了.【解析】【分析】利用已知数据代入选项中,得出符合题意的关系式.【详解】解:当m=1,代入v=m2-1,则v=0,当m=2,则v=3,当m=3,v=8,故m与v之间的关系最接近于关系式:v=m2-1.故选:B.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量;解题关键是分别把数据代入下列函数,通过比较找到最符合的函数关系式.7、A【解析】【分析】分三段讨论,①两车从开始到相遇,这段时间两车之间的距离迅速减小,②相遇后继续行驶到特快到达甲地,这段时间两车之间的距离迅速增加,③特快到达甲地至快车到达乙地,这段时间两车之间的距离缓慢增大,结合实际选符合的图象即可.【详解】解:①两车从开始到相遇,这段时间两车之间的距离迅速减小;②相遇后继续行驶到特快到达甲地这段时间两车之间的距离迅速增加;③特快到达甲地至快车到达乙地,这段时间两车之间的距离缓慢增大;结合图象可得A选项符合题意.故选:A.本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.8、A【解析】【分析】根据常量就是固定不变的量;变量就是随时变化的量.由三角形的面积12S ah=,若h为定长,就是说h为固定长的意思,即是常量;底边为a,长度具体是多长,不确定,是变量,S随a的变化而变化,也是变量.【详解】解:∵三角形的面积12S ah=,h为定长,即三角形的高不变;∴三角形的面积与底边的变化有关系,底边越大,面积越大.∴S和a是变量,h是常量.故选:A.【点睛】本题主要考查对变量和常量的理解把握情况.常量就是固定不变的量;变量就是随时变化的量.9、C【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【详解】解:h=v0t-4.9t2中的v0(米/秒)是固定的速度,4.9是定值,故v0和4.9是常量,t、h是变量,【点睛】本题考查了常量与变量的知识,属于基础题,变量是指在程序的运行过程中随时可以发生变化的量.10、D【解析】【分析】函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数,结合选项即可作出判断.【详解】解:在50tv=中,速度和时间是变量,路程S是常量,t是v的函数.故选D.【点睛】本题考查了函数关系式的知识,注意等式左边的那个字母表示自变量的函数.二、填空题1、t s【解析】【分析】根据自变量和因变量的定义即可得.【详解】在公式50s t=中自变量是t,因变量是s故答案为:t,s.【点睛】本题考查了自变量和因变量的定义,熟记定义是解题关键.2、41【解析】【分析】根据表格可以发现,当x每增加1时,y增加2,由此求解即可得到答案.【详解】解:第1排,有23个座位第2排,有25个座位第3排,有27个座位第4排,有29个座位由此可以发现,当x每增加1时,y增加2∴y=2(x-1)+23把x=10代入上式中得y=2×(10-1)+23=41故答案为:41.【点睛】本题主要考查了用表格表示两个量的关系,解题的关键在于能够根据表格发现两个量的关系规律,由此求解.3、4π S和R【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量,常量是数值始终不变的量,根据定义即可确定.【详解】解:公式是S=4πR2中常量是4π,变量是S和R.故答案是: 4π;S和R.【点睛】本题考查了常量与变量的定义,属于简单题,理解定义是关键.4、T=7t+30【解析】【分析】由表知开始时温度为30℃,再每增加2分钟,温度增加14℃,即每增加1分钟,温度增加7℃,可得温度T与时间t的关系式.【详解】解:∵开始时温度为30℃,每增加1分钟,温度增加7℃,∴温度T与时间t的关系式为:T=30+7t.故答案为T=7t+30.【点睛】本题考查了求函数的关系式,关键是得出开始时温度为30℃,每增加1分钟,温度增加7℃.5、r Sπ【解析】【分析】根据常量、变量的概念,通过对圆的面积公式中的各个量进行分析,即可确定答案.【详解】∵圆的半径r由小变大时,它的面积S也越来越大,∴自变量是圆的半径r,因变量是圆的面积S,常量是π.故答案为r,S,π.【点睛】本题考查变量与常量. 常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量. 自变量就是本身发生变化的量,因变量就是由于自变量发生变化而引起变化的量.6、 22 4n+2【解析】【分析】将每个图形中的“上”字所用的棋子找出来,再寻找数字规律即可.【详解】第一个“上”字需用6枚棋子;第二个“上”字需用10枚棋子;第三个“上”字需用14枚棋子;发现6、10、14之间相差4,所以规律与4有关⨯⨯⨯...6=14+2,10=24+2,14=34+2,∴第五个“上”字需用54222n+枚棋子.⨯+=枚棋子,第n个“上”字需用42故答案为:(1)22;(2)42n+【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.7、金额与数量【解析】【分析】根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.【详解】常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故答案为金额与数量.【点睛】本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.8、 y=1.2x+0.1 12 12.1【解析】【详解】【分析】根据表中所给信息,判断出卖出1千克苹果(1.2+0.1)元,每增加1千克增加1.2元,列出函数关系式即可;再代入已知量,可求未知量.【详解】由表中信息可知,卖出1千克苹果(1.2+0.1)元,每增加1千克增加1.2元,所以,卖出的苹果数量x(千克)与售价y(元)之间的关系是:y=1.2x+0.1.当y=14.5时,14.5=1.2x+0.1.解得x=12.当x=10时,y=1.2×10+0.1=12.1.故答案为(1)y=1.2x+0.1; (2)12; 12.1.【点睛】本题考核知识点:本题考查了函数关系式,解题的关键是从表中所给信息中推理出x与y的关系,推理时要注意寻找规律.再代入求值.三、解答题1、10(025)5125(25)x xyx x≤≤⎧=⎨+>⎩【解析】【分析】根据题意分别从当0≤x≤25时与当x>25时求解析式即可. 【详解】解:(1)当0≤x≤25时,y=10x ;当x >25时,y=5(x-25)+10×25=5x+125 (其中x 是整数),整理得10(025)5125(25)x x y x x ≤≤⎧=⎨+>⎩. 【点睛】此题考查了一次函数的应用.解题的关键是理解题意,根据题意求得函数解析式.2、(1)82 84 86 88;(2)(802)cm y x =+【解析】【分析】(1)根据题意,运用代数法即可完成.(2)根据弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度,可得函数解析式.【详解】解:(1)80+1×2=82;80+2×2=84;80+3×2=86;80+4×2=88;故答案为82 、84 、86 、88.(2)设所挂物体的质量为(0)kg x x ,弹簧从长度为y ;那么弹簧伸长的长度为2cm x ,所以弹簧的总长度: (802)cm y x =+.【点睛】本题考查了函数解析式,利用了弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度;解题的关键在于正确的审题.3、 (1)所用时间是9 min ;(2)爬坡速度随时间的增加而减小.【解析】【分析】(1)根据表中数据可以找到在爬坡长度为120m 时,爬坡时间是9 min ;(2)根据速度=爬坡长度 爬坡时间即可得出答案;【详解】(1)在表格的第一行中找到120 m,对应的时间是9 min,因此爬到120 m时,所用时间是9 min.(2)利用表格数据进行计算:前40 m用了2 min,平均每分钟爬20 m;又爬了40 m用了3 min,平均每分钟约爬13米;…;爬最后40 m用了10 min,平均每分钟爬4 m.由此可知:爬坡速度随时间的增加而减小.【点睛】此题主要考查了函数的表示方法,关键是认真观察表格,从表中得到正确信息.。
六年级数学下册第九章变量之间的关系综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用m 元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A .y =n (100m +0.6) B .y =n (100m )+0.6 C .y =n (100m +0.6) D .y =n (100m )+0.6 2、圆周长公式2C r π=,下列说法正确的是( ).A .C r 、、π是变量,2是常量B .C 是变量, r π、 是常量 C .r 是变量, C π、 是常量D .C r 、是变量 , 2π、是常量 3、小明带了2元钱去买笔,每支笔的价格是0.5元,那么小明买完笔后剩下的钱数y (元)与买到的笔的数量x (支)之间的函数图象大致是( ).A .B .C .D .4、某商场存放处每周的存车量为5000辆次,其中自行车存车费是每辆1元/次,电动车存车费是每辆2元/次,若自行车的存车量为x 辆次,存车的总收入为y 元,则y 与x 之间的关系式是( )A .25000y x =-+B .5000y x =+C .10000y x =-+D .10000y x =+5、将温度计从热茶的杯子中取出之后,立即被放入一杯凉水中.每隔5s 后读一次温度计上显示的度数,将记录下的数据制成下表:下述说法不正确的是( )A .自变量是时间,因变量是温度计的读数B .当10s t =时,温度计上的读数是31.0℃C .温度计的读数随着时间推移逐渐减小,最后保持不变D .依据表格中反映出的规律,35s t =时,温度计上的读数是13.0℃6、已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示,下列说法错误的是( )A .自变量是传播速度,因变量是温度B .温度越高,传播速度越快C .当温度为10℃时,声音10s 可以传播3360mD .温度每升高10℃,传播速度增加6m/s7、在ABC 中,它的底边为a ,底边上的高为h ,则面积12S ah =,若h 为定长,则此式中( ).A .S ,a 是变量B .S ,a ,h 是变量C .a ,h 是变量D .以上都不对8、佳佳花3000元买台空调,耗电0.7度/小时,电费1.5元/度.持续开x 小时后,产生电费y (元)与时间(小时)之间的函数关系式是( )A . 1.05y x =B .0.7y x =C . 1.5y x =D .3000 1.5y x =+9、下表反映的是某地区电的使用量x (千瓦时)与应交电费y (元)之间的关系,下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是x 的函数B .用电量每增加1千瓦时,电费增加0.55元C .若用电量为8千瓦时,则应交电费4.4元D .y 不是x 的函数10、李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是( )A .金额B .数量C .单价D .金额和单价第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、函数y=的自变量x的取值范围是______.2、摄氏温度C与华氏温度F之间的对应关系为5(32)9C F=-,则其中变量是________,常量是________.3、如图,是汽车加油站在加油过程中加油器仪表某一瞬间的显示,(其中数量用x升表示,金额用y 元表示,单价用a元/升表示),结合图片信息,请用适当的方式表示加油过程中变量之间的关系为:___________.4、小明早上步行去车站,然后坐车去学校.如图象中,能近似的刻画小明离学校的距离随时间变化关系的图象是_____.(填序号)5、拖拉机耕地,油箱内装有油42升,如果每小时耗油5升,写出所剩油量w(升)与时间t(小时)之间的函数关系式___,其中___ 是常量,___ 是变量.6、在面积为120m²的长方形中,它的长y(m)与宽x(m)的函数解析式是______.7、某人购进一批苹果到集贸市场零售,已知卖出的苹果数量x(千克)与售价y(元)之间的关系如下表:(1)变量x与y的关系式是_______________;(2)卖__kg苹果,可得14.5元;若卖出苹果10kg,则应得______元.8、夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.三、解答题(3小题,每小题10分,共计30分)1、某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程 s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?2、小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是_________,因变量是_________,小南家到该度假村的距离是_____km.(2)小南出发___________小时后爸爸驾车出发,爸爸驾车的平均速度为___________km/h,图中点A 表示.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是___________km.3、某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,按每吨1元收费;每月超过12吨时,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.(1)求每吨水的市场调节价是多少元;(2)设每月用水量为x (x >12)吨,应交水费为y 元,写出y 与x 之间的关系式;(3)小张家3月份用水28吨,他家应交水费多少元?-参考答案-一、单选题1、A【解析】【分析】 由题意可得每本书的价格为100m 元,再根据每本书需另加邮寄费6角即可得出答案; 【详解】解:因为用m 元钱在网上书店恰好可购买100本书, 所以每本书的价格为100m 元, 又因为每本书需另加邮寄费6角,所以购买n 本书共需费用y =n (100m +0.6)元; 故选:A .【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.2、D【解析】根据事物发生变化的过程中发生变化的量是变量,事物变化的过程中不变的量是常量,可得答案【详解】由2C r π=,得C 、r 是变量,2π是常量,故D 正确故选:D【点睛】此题考查常量与变量,难度不大3、D【解析】【分析】根据题意列出函数解析式,进而根据实际意义求得函数图像,注意自变量的取值范围.【详解】依题意,20.5y x =-(x 为正整数)x 可以取得1,2,3,对应的y 的值为1.5,1,0.5,故选D【点睛】本题考查了根据实际问题列出函数关系式,变量与函数图像,结合实际是解题的关键.4、C【解析】【分析】根据题意得:总收入为y 元=自行车存车费+电动车存车费,据此写出题目中的函数解关系式,从而可以解答本题.解:由题意可得,=+-⨯=-+,y x x x(5000)210000故选C.【点睛】本题考查函数关系式,解答本题的关键是明确题意,写出题目中的函数关系式.5、D【解析】【分析】根据题意和表格中的数据逐项判断即可.【详解】解:A、自变量是时间,因变量是温度计的读数,正确,不符合题意;t=时,温度计上的读数是31.0℃,正确,不符合题意;B、当10sC、温度计的读数随着时间推移逐渐减小,最后保持不变,正确,不符合题意;t=时,温度计上的读数可能低于12℃或者等于12℃,错误,符合D、依据表格中反映出的规律,35s题意,故选:D.【点睛】本题考查用表格表示变量间的关系,能从表格中获取有效信息是解答的关键.6、A【解析】【分析】根据所给表格,结合变量和自变量定义可得答案.解:A、自变量是温度,因变量是传播速度,故原题说法错误;B、温度越高,传播速度越快,故原题说法正确;C、当温度为10℃时,声音10s可以传播3360m,故原题说法正确;D、温度每升高10℃,传播速度增加6m/s,故原题说法正确;故选:A.【点睛】此题主要考查了常量与变量,关键是掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.7、A【解析】【分析】根据常量就是固定不变的量;变量就是随时变化的量.由三角形的面积12S ah=,若h为定长,就是说h为固定长的意思,即是常量;底边为a,长度具体是多长,不确定,是变量,S随a的变化而变化,也是变量.【详解】解:∵三角形的面积12S ah=,h为定长,即三角形的高不变;∴三角形的面积与底边的变化有关系,底边越大,面积越大.∴S和a是变量,h是常量.故选:A.【点睛】本题主要考查对变量和常量的理解把握情况.常量就是固定不变的量;变量就是随时变化的量.8、A【分析】根据耗电0.7度/小时,电费1.5元/度,列出函数关系式即可.【详解】解:由题意得: 1.50.7 1.05y x x =⨯=,故选A .【点睛】本题主要考查了列函数关系式,解题的关键在于能够准确理解题意.9、D【解析】【分析】结合表格中数据变化规律进而得出y 是x 的函数且用电量每增加1千瓦时,电费增加0.55元.【详解】A 、x 与y 都是变量,且x 是自变量,y 是x 的函数,正确,不合题意;B 、用电量每增加1千瓦时,电费增加0.55元,正确,不合题意;C 、若用电量为8千瓦时,则应交电费4.4元,正确,不合题意;D 、y 不是x 的函数,错误,符合题意.故选:D .【点睛】此题主要考查了函数的概念以及常量与变量,正确获取信息是解题关键.10、C【解析】根据常量与变量的定义即可判断.【详解】解:A、金额是随着数量的变化而变化,是变量,不符合题意;B、数量会根据李师傅加油多少而改变,是变量,不符合题意;C、单价是不变的量,是常量,符合题意;D、金额是变量,单价是常量,不符合题意;故选:C.【点睛】本题考查了常量与变量,解题的关键是正确理解常量与变量即:常量是固定不变的量,变量是变化的量,本题属于基础题型.二、填空题1、x≥-2【解析】【详解】由题意得20x+≥,2x∴≥-2、 C,F 5,32 9-【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.5(32)9C F =-,则其中的变量是C,F,常量是5,329-, 故答案为C,F; 5,329-;【点睛】此题考查常量与变量,解题关键在于掌握其定义3、y=6.80x【解析】【分析】首先根据题意可知加油过程中的变量为数量和金额,然后根据金额=数量×单价表示即可.【详解】∵加油过程中的变量为数量和金额,金额=数量×单价, 6.80y x ∴=,故答案为: 6.80y x =.【点睛】本题主要考查函数关系,找到题中的变量是关键.4、④【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】①距离越来越大,选项错误;②距离越来越小,但前后变化快慢一样,选项错误;③距离越来越大,选项错误;④距离越来越小,且距离先变化慢,后变化快,选项正确;故答案为:④.【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.5、 w=42−5t, 42,5, w,t.【解析】【分析】利用拖拉机耗油量进而得出所剩油量与时间t的函数关系式即可.【详解】由题意可得出:w=42−5t,其中42,5是常量,w,t是变量.故答案为w=42−5t,42,5,w,t.【点睛】此题考查常量与变量,函数关系式,解题关键在于掌握其性质定义.6、120 yx【解析】【分析】根据长方形的面积公式可得120xy,进而变形即可得y关于x的函数解析式. 【详解】∵长方形的面积=长×宽,∴120xy,∴120yx .【点睛】本题考查用关系式法表示变量之间的关系. 能利用矩形的面积公式中的等量关系列出关系式是解决此题的关键.7、 y=1.2x+0.1 12 12.1【解析】【详解】【分析】根据表中所给信息,判断出卖出1千克苹果(1.2+0.1)元,每增加1千克增加1.2元,列出函数关系式即可;再代入已知量,可求未知量.【详解】由表中信息可知,卖出1千克苹果(1.2+0.1)元,每增加1千克增加1.2元,所以,卖出的苹果数量x(千克)与售价y(元)之间的关系是:y=1.2x+0.1.当y=14.5时,14.5=1.2x+0.1.解得x=12.当x=10时,y=1.2×10+0.1=12.1.故答案为(1)y=1.2x+0.1; (2)12; 12.1.【点睛】本题考核知识点:本题考查了函数关系式,解题的关键是从表中所给信息中推理出x与y的关系,推理时要注意寻找规律.再代入求值.8、 y=23-0.007x 19.5 1000【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y的值;当y=16时,把y=16代入解析式求得x的值.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;当x=500时,y=23-0.007×500=19.5;当y=16时,23-0.007x=16,解得:x=1000.【点睛】考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.三、解答题1、(1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)【解析】【分析】(1)根据纵轴的最大值为2000,可得出学校离家的距离为2000米;根据横轴的最大值为20,可得出小明到达学校时共用时间20分钟;(2)用15-10可求出修车时间(3)根据速度=路程÷时间,分别求出修车前、后的平均速度.【详解】(1)∵纵轴的最大值为2000,∴学校离家的距离为2000米.∵横轴的最大值为20,∴小明到达学校时共用时间20分钟(2)15-10=5(分钟),小明修车用了5分钟.(3)修车前的骑行平均速度为1000÷10=100(米/分钟),修车后的骑行平均速度为(2000-1000)÷(20-15)=200(米/分钟)【点睛】此题考查了学生从图象中读取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.2、(1)t,s,60;(2) 1,60,小南出发2.5小时后,离家的距离为50km ;(3)30或45.【解析】【分析】(1)直接利用常量与变量的定义得出答案;直接利用函数图象结合纵坐标得出答案;(2)利用函数图象求出爸爸晚出发1小时,根据速度=路程÷时间求解即可;根据函数图象的横纵坐标的意义得出A点的意义;(3)利用函数图象得出交点的位置进而得出答案.【详解】(1)自变量是时间或t,因变量是距离或s;小亮家到该度假村的距离是:60;(2)小亮出发1小时后爸爸驾车出发:爸爸驾车的平均速度为60÷1=km/h;图中点A表示:小亮出发2.5小时后,离度假村的距离为10km;(3)当20t=60(t-1),解得:t=1.5则离家20×1.5=30(千米)当20t=120-60(t-1),解得:t=2.25则离家20×2.25=45(千米)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是30或45.【点睛】此题主要考查了函数图象以及常量与变量,利用函数图象获取正确信息是解题关键.3、(1)每吨水的市场调节价为2.5元;(2)y=2.5x−18;(3)他家应交水费52元.【解析】【分析】(1)设每吨水的市场调节价为a元,根据“每月超过12吨时,超过部分每吨按市场调节价收费”列出方程求解即可;(2)根据“每月超过12吨时,超过部分每吨按市场调节价收费”即可得出y与x之间的函数关系式;(3)根据用水量判断其在哪个范围内,代入相应的函数解析式求值即可.【详解】解:(1)设每吨水的市场调节价为a元,根据题意得:12×1+(24−12)a=42,解得:a=2.5,答:每吨水的市场调节价为2.5元;(2)当x>12时,y=12×1+(x−12)×2.5=2.5x−18,∴y与x之间的关系式是y=2.5x−18;(3)∵28>12,∴把x=28代入y=2.5x−18得:y=2.5×28−18=52,答:他家应交水费52元.【点睛】本题考查了用解析式表示变量之间的关系和一元一次方程的应用,正确理解收费标准是解题的关键.。
鲁教版六年级数学下册变量之间的关系单元测试卷一、选择题(共15小题;共75分)1. 表示皮球从高处落下时,弹跳高度与下落高度的关系如下表所示:则与之间的关系式为A. B. C. D.2. 根据如图所示程序计算函数值,若输入的A. B. C.3. 如图,射线、分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是A. 甲比乙快B. 乙比甲快C. 甲、乙同速D. 不一定4. 为了建设社会主义新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程(公里)与时间(天)的函数关系的大致图象是.A. B.C. D.5. 如图,一只蚂蚁以均匀的速度沿台阶爬行,那么蚂蚁爬行的高度随时间变化的图象大致是A. B.C. D.6. 某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校. 下图描述了他上学的情景,下列说法中错误的是A. 修车时间为分钟B. 学校离家的距离为米C. 到达学校时共用时间分钟D. 自行车发生故障时离家距离为米7. 某蓄水池的横断面示意图如图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度和放水时间之间的关系的是A. B.C. D.8. 如图,是张老师出门散步时离家的距离与时间之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是A. B.C. D.9. 图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中表示时间,表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是B. 张强在体育场锻炼了分钟C. 体育场离早餐店千米D. 张强从早餐店回家的平均速度是千米/小时10. 甲、乙两人在一次百米赛跑中,路程(米)与赛跑时间(秒)的关系如图所示,则下列说法正确的是A. 甲、乙两人的速度相同B. 甲先到达终点C. 乙用的时间短D. 乙比甲跑的路程多11. 2015年3月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直到录入完成.设从录入文稿开始所经过的时间为,录入字数为,下面能反映与的函数关系的大致图象是A. B.C. D.12. ,两地相距千米,甲、乙两人都从地去地,图中和分别表示甲、乙两人所走路程(千米)与时刻(小时)之间的关系.下列说法:①乙晚出发小时;②乙出发小时后追上甲;③甲的速度是千米 /小时;④乙先到达地.其中正确的个数是A. B. C. D.13. 如左图,在矩形中,动点从点出发,沿运动至点停止.设点运动的路程为,的面积为,如果关于的函数图象如右图所示,则的面积是A. B. C. D.14. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程关于时间的函数图象,那么符合小明行驶情况的图象大致是A. B.C. D.15. 小亮家与姥姥家相距,小亮8:00 从家出发,骑自行车去姥姥家.妈妈 8:30 从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程()与北京时间(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是A. 小亮骑自行车的平均速度是B. 妈妈比小亮提前小时到达姥姥家C. 妈妈在距家处追上小亮D. 9:30 妈妈追上小亮二、填空题(共5小题;共25分)16. 函数的三种常见表示方法:,,,这三种方法有时可以互相转化.17. 如果每盒圆珠笔有支,售价元,用(元)表示圆珠笔的售价,表示圆珠笔的支数,那么与之间的关系应该是.18. 如图,射线、分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中、分别表示行驶距离和时间,则这两人骑自行车的速度相差.19. 某人沿直路行走,设此人离出发地的距离与行走时间的函数关系如图,此人在这段时间内最快的行走速度是.20. 小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程(米)与时间(分)的函数图象,则小明回家的速度是每分钟步行米.三、解答题(共5小题;共50分)21. 某校组织学生到距离学校千米的博物馆去参观,小磊准备乘出租车去,出租车的收费标准如下:千米以下收费元;千米以上,每增加千米,加收元.(1)写出出租车行驶的里程数(大于千米)与费用(元)之间的关系式(2)小磊只带元钱,到博物馆够用吗?22. 某剧院的观众席的座位为扇形,且按下列方式设置:(1)按照上表所示的规律,当每增加时,如何变化?(2)写出座位数与排数之间的关系式;(3)按照上表所示的规律,某一排可能有个座位吗?说明你的理由.23. 如图为一位旅行者在早晨8时从城市出发到郊外所走的路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少?(2)他休息了多长时间?(3)他从休息后直至到达目的地这段时间的平均速度是多少?24. A,B两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中,表示两人离A地的距离与时间的关系,结合图象回答下列问题:(1)表示乙离A地的距离与时间关系的图象是(填或);甲的速度是;乙的速度是.(2)甲出发后多少时间两人恰好相距?25. “龟兔赛跑”的故事同学们非常熟悉,图中的线段和折线表示“龟兔赛跑”时路程与时间的关系.请你根据图中给出的信息,解决下列问题.(1)折线表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以米/分的速度跑向终点,结果还是比乌龟晚到了分钟,请你算算兔子中间停下睡觉用了多少分钟?答案第一部分1. B 【解析】由统计数据可知:是的倍,所以,.2. B 【解析】根据图中所示程序可知,当输入的时,.3. A 【解析】根据图象越陡峭,速度越快;可得甲比乙快.4. D5. B【解析】因为蚂蚁以均匀的速度沿台阶爬行,从的过程中,高度随时间匀速上升,从的过程,高度不变,从的过程,高度随时间匀速上升,从的过程中,高度不变,所以蚂蚁爬行的高度随时间变化的图象是 B.6. A7. A8. D9. C 【解析】C 体育场离早餐店千米.10. B【解析】结合图象可知,两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快.11. C 【解析】小华立即在电脑上打字录入这篇文稿,故函数在起始时是随的增大而增大;录入一段时间后因事暂停,说明函数在这个区域内值不变;过了一小会,小华继续录入并加快了录入速度,直至录入完成,说明函数的值增大的比起始时还要快.12. C 【解析】②乙出发小时后追上甲.13. A14. D15. D【解析】由图象可以看出,当时,两人路程一样,说明妈妈追上小亮,故D错.第二部分16. 关系式法,列表法,图象法17.18.20.第三部分21. (1)大于千米时, .出租车行驶的里程数于费用直角的关系式为 .(2)当千米时, .所以小磊带元钱不能到博物馆.22. (1)由表中数据知,当每增加时,增加.(2)由题意,得.(3)某一排不可能有个座位.理由:当时,解得.故不是整数,则某一排不可能有个座位.23. (1)看图可知,;(2)根据图象可得,路程没有变化,但时间在增长,故表示该旅行者在休息:小时分钟;(3)根据求平均速度的公式可求得.24. (1);;(2)设甲出发小时后,与乙相距,由题得或解得答:甲出发或者时,甲乙相距.25. (1)兔子;【解析】乌龟是一直跑的而兔子中间有休息的时刻;折线表示赛跑过程中兔子的路程与时间的关系;由图象可知:赛跑的路程为米;(2)结合图象得出:兔子在起初每分钟跑米.(米)乌龟每分钟爬米.(3)(分钟)乌龟用了分钟追上了正在睡觉的兔子.(4)(分钟),兔子中间停下睡觉用了分钟.1、学而不思则罔,思而不学则殆。
第九章变量之间的关系 检测题班级____________ 姓名_________ 学号__________ 等级_________一、选一选,看完四个选项后再做决定呀!(每小题5分,共30分)1、婴儿出生时体重是3400克,如果在1~6个月之间,婴儿的体重y 与月龄x 之间的关系式为y =700x +3400,那么( )A 、x 增加1,y 增加700B 、x 增加1,y 增加3400C 、x 增加1,y 增加4200D 、x 增加1,y 增加28002、一个周长为60cm 的长方形,一边长为x cm ,那么它的面积S (cm 2)与x 之间的关系式是( )A 、x )x 260(S ⋅-=B 、230S x x =-C 、21602S x =-D 、21302S x =-- 3、如图所示,△ABC 的底边边长BC =a ,当顶点A 沿BC 边上的高AD 向D 点移动到达E 点时,若DE =12AE ,△ABC 的面积将变为原来的( ) A 、12B 、13C 、14D 、19 4、经测量,人运动时心跳速率通常和人的年龄有关.如果用x 表示一个人的年龄,用y 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么就有y =10x -19,根据关系式计算一个18岁的青少年所能承受的每分钟心跳的最高次数是( )A 、80B 、100C 、162D 、1615、地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式2035+=x y 来表示,则y 随x 的增大而( )A 、增大B 、减小C 、不变D 、以上答案都不对6、甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离 S (千米)和行驶时间t (小时)之间的关系图象如图2所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地.其中符合图象描述的说法有( )A 、2个 B 、3个 C 、4个 D 、5个二、填一填,要相信自己的能力!(每小题5分,共25分)7、气温与海拔高度有关,一般情况下,每升高1km ,气温下降6℃.某山地面温度为28℃,请写出气温t (℃)与高度h (km )之间的关系式: .第3题图第6题图8、用总长为60m 的篱笆围成矩形场地,当矩形的一边长L (m )变化时,它的面积S (m 2)也随之变化.(1)在这个变化过程中,自变量是 ,因变量是 .(2)矩形的面积S 与一边长L 之间的关系式是 ;(3)当矩形的边长L 由10m 变化到15m 时,它的面积由 变化到 .9、已知关系式2y kx =+,且自变量3x =-时,因变量0y =,则当自变量9x =时,因变量y 的值是 .10、某气象研究中心观测一场沙尘暴从发生到结束的全过程.开始时风速平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速平均每小时增加4千米/时.一段时间,风速保持不变.当沙尘暴遇到绿色植被区时,其风速平均每小时减少1千米/时,最终停止.结合风速与时间的图象如图所示,回答下列问题:(1)在y 轴内填入相应的数值( );(2)沙尘暴从发生到结束,共经过 小时.)此表反映的是变量 随 的变化.(2)用x 表示y 的关系式为 .(3)气温为22 ℃时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地约相距 米.三、做一做,注意要认真审题呀!(共45分)(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h 表示距离地面的高度,用t 表示温度,那么随着h 的变化,t 是怎样变化的?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能猜出距离地面6千米的高空温度是多少吗?13.(15分)某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x 分钟,两种方式的费用分别为1y 元和2y 元.(1)写出1y 、2y 与x 之间的关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同?(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?14. (15分)某天早晨,王老师从家出发,骑摩托车前往学校,途中在路边一饭店吃早餐. 如图所示的是王老师从家到学校这一过程中的行驶路程S (千米)与时间t (分)之间的关系. 问:(1)学校离他家多远?从出发到学校,王老师用了多少时间?(2)王老师吃早餐用了多长时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少千米?。
六年级数学下册第九章变量之间的关系综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某居民小区电费标准为0.55元/千瓦时,收取的电费y (元)和所用电量x (千瓦时)之间的关系式为0.55y x ,则下列说法正确的是( )A .x 是自变量,0.55是因变量B .0.55是自变量,x 是因变量C .x 是自变量,y 是因变量D .y 是自变量,x 是因变量2、小明的微信红包原有80元钱,他在新年一周里抢红包,红包里的钱随着时间的变化而变化,在上述过程中,自变量是( )A .时间B .小明C .80元D .红包里的钱3、一列慢车从甲地驶往乙地,一列快车从乙地驶往甲地,慢车的速度为100千米/小时,快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与慢车行驶时间t (小时)之间函数图象的是( )A .B .C .D .4、在实验课上,小亮利用同一块木板测得小车从不同高度(h )与下滑的时间(t )的关系如下表:以下结论错误的是( )A .当h =40时,t 约2.66秒B .随高度增加,下滑时间越来越短C .估计当h =80cm 时,t 一定小于2.56秒D .高度每增加了10cm ,时间就会减少0.24秒5、从A 地向B 地打长途,不超过3分钟,收费2.4元,以后每超过一分钟加收一元,若通话时间t 分钟(3)t ≥,则付话费y 元与t 分钟函数关系式是( ).A . 2.43(3)y t t =+≥B .()2.433y t t =+≥C .0.6(3)y t t =-≥D .0.6(3)y t t =+≥ 6、在球的体积公式343V R π=中,下列说法正确的是( )A .V 、π、R 是变量,43为常量 B .V 、R 是变量,π为常量 C .V 、R 是变量,43、π为常量 D .V 、R 是变量,43为常量7、某商场存放处每周的存车量为5000辆次,其中自行车存车费是每辆1元/次,电动车存车费是每辆2元/次,若自行车的存车量为x 辆次,存车的总收入为y 元,则y 与x 之间的关系式是( )A .25000y x =-+B .5000y x =+C .10000y x =-+D .10000y x =+8、瓶子或者罐头盒等圆柱形的物体常常如图所示那样堆放着,随着层数的增加,物体总数也会发生变化,数据如表,则下列说法错误的是( )A .在这个变化过程中层数是自变量,物体总数是因变量B .当堆放层数为7层时,物体总数为28个C .物体的总数随着层数的增加而均匀增加D .物体的总数y 与层数n 之间的关系式为(1)2n n y += 9、小明家到学校5公里,则小明骑车上学的用时t 与平均速度v 之间的函数关系式是( )A .5t =vB .5v t =+C .5t v =D .5v t= 10、某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:现销售了105把水壶,则定价约为()A.115元B.105元C.95元D.85元第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、一辆汽车出发时邮箱内有油48升,出发后每行驶1 km耗油0.6升,如果设剩油量为y(升),行驶路程为x(km).则y与x的关系式为_________________;这辆汽车行驶35 km时,汽车剩油____升;当汽车剩油12升时,行驶了_______千米.2、购买单价为每支1.2元的铅笔,总金额y(元)与铅笔数n(支)的关系式可表示为y=_____,其中,_____是常量,_____是变量3、在烧开水时,水温达到100℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间t(分)和温度T(℃)的数据:t<),温度T与时间t的关系式为__________.在水烧开之前(即104、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是______ (把你认为正确结论的序号都填上)5、如图所示,在三角形ABC 中,已知16BC =,高10AD =,动点Q 由点C 沿CB 向点B 移动(不与点B 重合).设CQ 的长为x ,三角形ACQ 的面积为S ,则S 与x 之间的关系式为___________________.6、一空水池,现需注满水,水池深4.9m ,现以均匀的流量注水,如下表:由上表信息,我们可以推断出注满水池所需的时间是______h .7、按下面的运算程序,输入一个实数3x =,那么输出值y =______.8、每张电影票的售价为10元,某日共售出x 张票,票房收入为y 元,在这一问题中,_____是常量,_____是变量.三、解答题(3小题,每小题10分,共计30分)1、果实成熟从树上落到地面,它下落的高度与经过的时间有如下的关系:(1)上表反映了哪两个变量之间的关系?其中自变量是什么?因变量是什么?(2)请你按照表中呈现的规律,列出果子下落的高度h (米)与时间t (秒)之间的关系式;(3)现有一颗果子经过2秒后离地面一米,请计算这颗果子开始下落时离地面的高度是多少米?2、中国联通在某地的某套餐的月租金为59元,超出套餐部分国内拨打0.36元/分钟(不足1分钟按1分钟时间收费).下表是超出套餐部分国内拨打的收费标准:(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用x表示超出套餐部分的拨打时间,y表示超出套餐部分的电话费,那么y与x的关系式是什么?(3)由于业务多,小明的爸爸上个月拨打电话的时间超出套餐部分25分钟,他需付多少电话费?(4)某用户某月国内拨打电话的费用超出套餐部分的是54元,那么他该月拨打电话的时间超出套餐部分几分钟?3、光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:观察:(1)大约几时的光合作用最强?(2)大约几时的光合作用最弱?-参考答案-一、单选题1、C【解析】【分析】根据自变量和因变量的定义:自变量是指:研究者主动操纵,而引起因变量发生变化的因素或条件,因此自变量被看作是因变量的原因;因变量是指:在函数关系式中,某个量会随一个(或几个)变动的量的变动而变动,进行判断即可.【详解】解:A、x是自变量,0.55是常量,故错误;B、0.55是常量,x是自变量,故错误;C、x是自变量,y是因变量,正确;D、x是自变量,y是因变量,故错误.故选C.【点睛】本题主要考查了自变量和因变量、常量的定义,解题的关键在于能够熟练掌握三者的定义.2、A【解析】【分析】根据自变量、因变量的定义回答即可.【详解】因为红包里的钱随着时间的变化而变化,故时间是自变量,红包里的钱是因变量.故选A【点睛】本题考查的是自变量和因变量的定义,正确的区分自变量和因变量是关键.3、A【解析】【分析】分三段讨论,①两车从开始到相遇,这段时间两车之间的距离迅速减小,②相遇后继续行驶到特快到达甲地,这段时间两车之间的距离迅速增加,③特快到达甲地至快车到达乙地,这段时间两车之间的距离缓慢增大,结合实际选符合的图象即可.【详解】解:①两车从开始到相遇,这段时间两车之间的距离迅速减小;②相遇后继续行驶到特快到达甲地这段时间两车之间的距离迅速增加;③特快到达甲地至快车到达乙地,这段时间两车之间的距离缓慢增大;结合图象可得A选项符合题意.故选:A.【点睛】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.4、D【解析】【分析】根据表格中数量的变化情况,分别进行判断即可.【详解】解:当支撑物高度从10cm升高到20cm,下滑时间的减少0.24s,从20cm升高到30cm时,下滑时间就减少0.2s,从30cm升高到40cm时,下滑时间就减少0.15s,从40cm升高到50cm时,下滑时间就减少0.1s,因此,“高度每增加了10cm,时间就会减少0.24秒”是错误的,故选:D.【点睛】本题考查变量之间的关系,理解表格中两个变量之间的变化关系是正确判断的前提.5、C【解析】【分析】根据从A地向B地打长途,不超过3分钟,收费2.4元,以后每超过一分钟加收一元列出关系式即可.【详解】解:设通话时间t分钟(t≥3),由题意得:y=2.4+(t-3)=t-0.6(t≥3),故选C.【点睛】本题主要考查了根据实际问题列出关系式,解题的关键在于能够准确找到相应的关系.6、C【解析】【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.【详解】解:在球的体积公式343V R π=中,V 、R 是变量,43、π为常量 故选:C .【点睛】此题主要考查了常量和变量,熟练掌握常量和变量的定义是解题的关键.7、C【解析】【分析】根据题意得:总收入为y 元=自行车存车费+电动车存车费,据此写出题目中的函数解关系式,从而可以解答本题.【详解】解:由题意可得,(5000)210000y x x x =+-⨯=-+,故选C .【点睛】本题考查函数关系式,解答本题的关键是明确题意,写出题目中的函数关系式.8、C【解析】【分析】先根据表中数字的变化规律写出y 和n 之间的关系式,再根据每个选项的说法作出判断.【详解】解:∵物体总个数随着层数的变化而变化,∴A 选项说法正确,不符合题意,根据表中数字的变化规律可知y=()12n n+,当n=7时,y=28,∴B选项说法正确,不符合题意,根据表中数字的变化规律可知总数增加的越来越快,∴C选项说法错误,符合题意,根据表中数字的变化规律可知y=()12n n+,∴D选项说法正确,不符合题意,故选:C.【点睛】本题主要考查用列表表示函数的应用,关键是要能根据表中的数据写出y与n之间的关系式.9、D【解析】【分析】根据速度,时间与路程的关系得出5vt=,变形即可.【详解】解:根据速度,时间与路程的关系得5vt=∴5vt =.故选D.【点睛】本题考查列函数关系式,掌握速度,时间与路程的关系得出5vt=是解题关键.10、D【分析】根据表格中定价的变化和销量的变化即可解答.【详解】解:由表中数据可知,定价为90元时,销量达到最大为110把,而销售105把水壶,销量位于100把到110把之间,而当定价在80元到90元时,定价每增加1元,销量增加1把,销量呈递增趋势,当定价在90元到100元时,定价每增加1元,销量减少1把,销量呈递减趋势,故定价约为80+(105-100)÷1=85元,故选:D.【点睛】本题考查了用表格法表示两个变量之间的关系,解答的关键是读懂题意,能从表格中找到有效信息解决问题.二、填空题1、y=48-0.6x 27 60【解析】【详解】(1)由题意可得,y与x的关系式是:y=48−0.6x;(2)当x=35时,y=48−0.6×35=48−21=27,当y=12时,12=48−0.6x,解得,x=60,即这辆汽车行驶35km时,剩油27升;汽车剩油12升时,行驶了60千米.2、y=1.2n(n为自然数) 1.2 n、y【详解】由题意可得:(1)y 与x 间的函数关系是: 1.2y n =;(2)其中常量是:1.2;(3)变量是:n 、y. 故答案为(1) 1.2y n =;(2)1.2;(3)n 、y.3、T=7t+30【解析】【分析】由表知开始时温度为30℃,再每增加2分钟,温度增加14℃,即每增加1分钟,温度增加7℃,可得温度T 与时间t 的关系式.【详解】解:∵开始时温度为30℃,每增加1分钟,温度增加7℃,∴温度T 与时间t 的关系式为:T=30+7t .故答案为T=7t+30.【点睛】本题考查了求函数的关系式,关键是得出开始时温度为30℃,每增加1分钟,温度增加7℃.4、③【解析】【详解】分析:根据函数的图象即可确定在BC 段,所用的时间是5秒,路程是160米,则速度是32米/秒,即可判定答案.详解:在BC 段,所用的时间是5秒,路程是160米,则速度是32米/秒.故①错误;火车的长度是160米,故②错误;整个火车都在隧道内的时间是:45−5−5=35秒,故③正确;隧道长是:45×32−160=1280(米),故④错误.故答案是:③.点睛:本题考查了函数的图象.5、()5016S x x =<<【解析】【分析】 根据三角形的面积公式可知1=2AQC S AD CQ ⋅△,由此求解即可.【详解】∵AD 是△ABC 中BC 边上的高,CQ 的长为x , ∴1==52AQC S AD CQ x ⋅△,∴()5016S x x =<<.故答案为:()5016S x x =<<.【点睛】本题主要考查了列关系式,解题的关键在于能够熟练掌握三角形面积公式.6、3.5【解析】【分析】由表格中的数据得出注水时间每增加0.5个小时,水的深度就加深0.7m ,由此得出答案;【详解】解:由表格中的数据得出注水时间每增加0.5个小时,水的深度就加深0.7m ,∴注水时间每增加1个小时,水的深度就加深1.4m ,∴4.9÷1.4=3.5(小时)∴推断出注满水池所需的时间是3.5小时;故答案为:3.5【点睛】本题考查了用表格表示的变量之间的关系,正确理解题意、明确求解的方法是关键.7、9【解析】【分析】先根据图表列出函数关系式,然后计算当3x=时y的值.【详解】y x.当3x=时,(1)25(31)259故填9.【点睛】本题考查程序流程图、代数式求值和用关系式表示变量之间的关系,在本题中根据流程图列函数关系式,要注意减法和乘法要先算减法时,需给减法带上括号.8、电影票的售价电影票的张数,票房收入.【解析】【分析】根据常量,变量的定义进行填空即可.【详解】解:常量是电影票的售价,变量是电影票的张数,票房收入,故答案为电影票的售价;电影票的张数,票房收入.【点睛】本题考查了常量和变量,掌握常量和变量的定义是解题的关键.三、解答题1、(1)下落的角度h与经过的时间t之间的关系,自变量:经过的时间t,因变量:下落的高度h;(2)2=;(3)这颗果子开始下落时离地面高度为20.6m.h t4.9【解析】【分析】(1)根据自变量与因变量的定义即可求解;(2)根据表格中数据发现规律,即可得到果子落下的度h(米)与时间t(秒)之间的关系式;(3)根据一颗果子经过2秒后离地面一米计算即可求解.【详解】解:(1)下落的高度h与经过的时间t之间的关系自变量:经过的时间t因变量:下落的高度h(2)根据表格中数据可得到果子落下的度h(米)与时间t(秒)之间的关系式为2h t=;4.9(3)果子开始下落时离地面高度为2⨯+=m4.92120.6答:果子开始下落时离地面高度为20.6m.【点睛】本题考查了函数的图表示方法,考查了学生的探究能力,要求学生有较强的分析数据和描述数据的能力及从图象得出规律的能力.能够正确找到h和t的关系是解题的关键.2、(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)y=0.36x;(3)195元;(4)150分钟.【解析】【分析】(1)根据图表可以知道:电话费随时间的变化而变化,因而打电话时间是自变量、电话费是因变量;(2)费用=单价×时间,即可写出解析式;(3)把x=25代入解析式即可求得;(4)在解析式中令y=54即可求得x的值.【详解】解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)由题意可得:y=0.36x;(3)当x=25时,y=0.36×25=9(元),即如果打电话超出25分钟,需付186+9=195(元)的电话费;(4)当y=54时,x=540.36=150(分钟).答:小明的爸爸打电话超出150分钟.【点睛】本题考查了列函数解析式以及求函数值.列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.3、(1)上午10时;(2)早上7时和晚上18时.【解析】【分析】分析曲线图可知,光合作用强度随光照强度增强而增强;在夏日中午10时;光合作用强度随光照强度减弱而减弱,早上7时和晚上18时的光合作用最弱.【详解】观察得到:(1)大约上午10时的光合作用最强;(2)大约早上7时和晚上18时的光合作用最弱.【点睛】此题考查函数图象问题,关键是根据图象分析得出的信息.。
鲁教版数学六年级下册《变量之间的关系》水平测试A
一、选一选,看完四个选项后再做决定呀!
1.小明和他爸爸做了一个实验:由小明从一幢245m高的楼顶随手扔下一只苹果,由他爸爸测量有关数据,得到苹果下落的路程和下落的时间有下面的关系:
下落时间t(s) 1 2 3 4 5 6
下落路程S(m) 5 20 45 80 125 180
则下列说法错误的是()
A.苹果每秒下落的路程不变 B.苹果每秒下落的路程越来越长
C.苹果下落的速度越来越快 D.可以推测,苹果下落7s后到达地面
2.在以x为自变量,y为因变量的关系中,y随x的增大而减小的关系式是()
A.
2
y
x
=-B.
2
y
x
=C.
2
1
3
y x
=-+D.2
23
y x
=-
3.一辆汽车以平均速度60千米/小时的速度在公路上行驶,则它所走的路程S(千米)与所用的时间t(时)之间的关系式可表示为()
A.60
S t
=+B.
60
S
t
=C.
60
t
S=D.60
S t
=
4.一辆行驶中的汽车在某一分钟内速度的变化情况如图1,下列说法正确的是()A.在这一分钟内,汽车先提速,然后保持一定的速度行驶
B.在这一分钟内,汽车先提速,然后又减速,最后又不断提速
C.在这一分钟内,汽车经过了两次提速和两次减速
D.在这一分钟内,前40s速度不断变化,后20s速度基本保持不变
5.一件工作,甲、乙两人合作5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的关系如图2所示,那么甲、乙两人单独完成这件工作,下列说法正确的是()
A.甲的效率高B.乙的效率高 C.两人的效率相等D.两人的效率不能确定6.如下图所示,能大致刻画出下落过程中速度变化情况的是()
A.B.C.D.
7.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好
停下来修车.车修好后,因怕耽误上课,他修车前加快了骑车速度匀速行驶.下面是行驶路程s(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是()
A.B.C.D.
8.一个长方体的体积为12立方厘米,当底面不变,高增大时,长方体的体积发生变化,当高由原来的长度变为3倍时,体积为()
A.12立方厘米B.24立方厘米C.36立方厘米D.48立方厘米
二、填一填,要相信自己的能力!
1.匀速运动中,距离S一定时,若以时间t为自变量,速度v为因变量,则v与t之间的关系式为.
2.市场上一种豆子每千克售2元,即单价是2元/千克,豆子总的售价y(元)与所售豆子的数量x kg之间的关系为,当售出豆子5kg时,豆子总售价为元;当售出豆子10kg时,豆子总售价为元.
3.某人骑摩托车从北京出发到距离100千米的天津,如果每小时行驶40千米,那么此人与天津的距离y(千米)与出发时间t(小时)之间的关系式为.
4.一棵树苗栽下去时高0.8米,以后10年内每年平均长高0.4米,x年后树高y米,(1)这个问题中的变量是;
(2)生长了5年后树高米,生长了10年树高米.
5.一个三角形的面积始终保持不变,它的一边的长为x cm,这边上的高为y cm,y与x 的关系如图3,从图象中可以看出:
(1)当x越来越大时,y越来越;
(2)这个三角形的面积等于cm2;
(3)可以想象:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x多么的大,y总是零(填“大于”、“小于”、“大于或等于”之一).
6.假定甲、乙两人在一次赛跑中,路程S与时间t的关系如图4所示,看图填空:(1)这是一次米赛跑;
(2)甲、乙两人中先到达终点的是;
(3)乙在这次赛跑中的平均速度是m/s.
三、做一做,要注意认真审题呀!
1. 2016年1~12月某地大米的平均价格如下表表示?
月份 1 2 3 4 5 6 7 8 9 10 11 12 平均价格(元/kg)2.3 2.4 2.4 2.5 2.4 2.2 2.0 1.9 1.8 1.8 1.9 2.0 (1)的是哪两个变量之间的关系?哪个是自变量,哪个是因变量?
(2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大? (3)该地哪一段时间大米平均价格在上涨?哪一段时间大米平均价格在下落?
(4)从表中可以得到该地大米平均价格变化方面的哪些信息?平均比年初降低了,还是涨价了?
2.图5中是购物中心食品柜在四月份营业情况统计图
象,请根据图象回答下列问题:
(1)这个月中,日最低营业额是在4月日,只
有万元;
(2)这个月中,日最高营业额是在4月日,达
到万元;
(3)这个月中从日到日营业情况较
好,呈逐日上升趋势.
3.如图6,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是100千米,请根据图象回答或解决下面的问题.
(1)谁出发的较早?早多长时间?谁到达乙地早?早到
多长时间?
(2)两人在途中行驶的速度分别是多少?
(3)指出在什么时间段内两车均行驶在途中;在这段时
间内的哪一个时间段(或时间点):
①自行车行驶在摩托车前面;
②自行车与摩托车相遇;
③自行车行驶在摩托车后面?
4.如图7,搭1个正方形需要4根火柴棒.
图7
(1)按照图中的方式,搭2个正方形需要根火柴棒,搭3个正方形需要根火柴棒。
(2)搭10个这样的正方形需要根火柴棒?
(3)搭100个这样的正方形需要根火柴棒?你是怎样得到的?
(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要根火柴棒。
5.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路边一饭店吃早餐.图8所示的是王老师从家到学校这一过程中的行驶路程S(千米)与时间t(分)之间的关系.问:
(1)学校离他家多远?从出发到学校,王老师用了多少时
间?
(2)王老师吃早餐用了多长时间?
(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度
快?最快时速达到多少千米?
参考答案:
一、1.A 2.C 3.D 4.C 5.A 6.C 7.C 8.C
二、1.
S v
t =
2.2
y x
=,10,20 3.10040
y t
=-
4.(1)x,y;(2)2.8,4.8 5.(1)小;
(2)1
2 xy;
(3)大于
6.(1)100;(2)甲;(3)8
三、1.略.
2.(1)9,2;
(2)21,5;
(3)9,21.
3.(1)自行车出发较早,早3个小时,摩托车到达乙地较早,早3个小时.(2)自行车:12.5千米/时;摩托车:50千米/时.
(3)3<x<5.①3<x<4;②x=4;③4<x<5.
4.(1)7,10(2)31(3)301(4)1+3x.
5.(1)10 千米,25 分钟;
(2)10 分钟;
(3)吃完早餐以后的速度快,最快时速达到 60千米 /时.。