第3章正交多项式系
- 格式:ppt
- 大小:543.00 KB
- 文档页数:61
正交多项式正交函数族与正交多项式1、什么是权函数?定义4:设[a,b]是有限或无限区间,在[a,b]上的非负函数ρ(x)满足条件:(1)∫x k ρ(x )dx ba 存在且为有限值(k=0,1,…);(2)对[a,b]上的非负连续函数g(x),如果∫g (x )ρ(x )dx =0ba ,则g(x)≡0. 则称ρ(x )为[a,b]上的一个权函数。
2、什么是内积?内积:(f (x ),g (x ))=∫f (x )g (x )dx baρ(x)是[a,b]上的权函数,内积:(f (x ),g (x ))=∫ρ(x)f (x )g (x )dx ba ,常用ρ(x)≡1。
3、正交及正交函数族概念定义5若f (x ),g (x )∈C [a,b ],ρ(x )为[a,b]上的权函数且满足(f (x ),g (x ))=∫ρ(x )f (x )g (x )dx =0ba , (2.1)则称f(x)与g(x)在[a,b]上带权ρ(x )正交。
若函数族φ0(x ),φ1(x ),…,φn (x ),…满足关系(φj ,φk )=∫ρ(x )φj (x )φk (x )dx ={0 , j ≠k,A k >0,j =k.ba (2.2)则称{φk (x)}是[a,b]上带权ρ(x)的正交函数族;若Ak ≡1,则称为标准正交函数族。
例如,三角函数1,cos x ,sin x , cos 2x , sin 2x ,…解:在区间[−π,π]上的正交函数族,因为对k=1,2,…有(任意两个相同函数在区间[−π,π]上的内积k=j ):(1,1)=∫1×1dx =π−ππ−(−π)=2π(sin kx,sin kx )=∫sin k 2x π−πdkx =π同理(cos kx,cos kx,)=π任意两个不同函数在区间[−π,π]上的内积(k ≠j ):(cos kx,sin kx )=∫sin kx cos kx π−πdkx =0 (cos kx,cos jx )=∫cos jx cos kx π−πdx =0 同理(sin kx ,sin jx )=(cos kx,sin jx )=0因此三角函数族为在区间[−π,π]上带权的正交函数族。
正交多项式在数学中,正交多项式是一类特殊的多项式,其在一定的权重函数或内积定义下具有正交性质。
正交多项式在数学分析、物理学和工程学等领域中具有广泛的应用。
本文将介绍正交多项式的定义、性质以及常见的几种正交多项式。
定义给定定义在区间[a, b]上的一个非负的实数函数w(x)(权重函数),称一个多项式序列{φn(x)}n=0∞ 为正交多项式序列,如果满足以下条件:1.正交性:对于不同的i和j,若i≠j,则两个多项式的内积为0,即∫abφi(x)φj(x)w(x)dx = 0;2.单位性:多项式的平方在区间上的加权累积为1,即∫abφn2(x)w(x)dx = 1。
性质正交多项式具有许多重要的性质,如:1.正交性:正交多项式之间的内积为0,这个性质在数值计算和函数逼近中非常有用;2.生成公式:许多正交多项式都可以通过递推关系生成。
例如,勒让德多项式可通过勒让德微分方程的解得到,切比雪夫多项式可通过递推公式生成;3.逼近性:正交多项式在一定条件下能够将任意函数逼近为一个多项式级数,这在函数逼近和插值中是非常重要的性质;4.最小二乘逼近:利用正交多项式进行最小二乘逼近,可以得到最优逼近解。
常见的正交多项式勒让德多项式 (Legendre Polynomials)勒让德多项式是最常见的正交多项式之一,通常用Pn(x)表示,定义在区间[-1, 1]上,权重函数为w(x) = 1。
勒让德多项式可以通过勒让德微分方程生成,其前几个多项式表达式如下:•P0(x) = 1•P1(x) = x•P2(x) = (3x^2 - 1)/2•P3(x) = (5x^3 - 3x)/2•…切比雪夫多项式 (Chebyshev Polynomials)切比雪夫多项式是定义在区间[-1, 1]上的正交多项式,通常用Tn(x)表示。
切比雪夫多项式的权重函数为w(x) = (1 - x2)(-1/2)。
前几个切比雪夫多项式表达式如下:•T0(x) = 1•T1(x) = x•T2(x) = 2x^2 - 1•T3(x) = 4x^3 - 3x•…雅各比多项式 (Jacobi Polynomials)雅各比多项式是定义在区间[-1, 1]上的正交多项式,通常用P(α,β)n(x)表示,其中α和β是正实数,称为雅各比指数。
正交多项式一、正交函数系的概念高等数学中介绍傅立叶(Fourier)级数时,证明过函数系;1, cos x ,sin x ,cos2x ,sin2x ,…,con nx ,sin nx ,… (3.1)中任何两个函数的乘积在区间[-π ,π ]上的积分都等于0。
我们称这个函数中任何两个函数在[-π ,π ]上是正交的,并且称这个函数为一个正交函数系。
若对(7.1)中的每一个函数再分别乘以适当的数,使之成为:nx nx x x sin 1,cos 1,,,sin 1,cos 1,21πππππ(3.2)那么这个函数系在[-π ,π ]上不仅保持正交的性质,而且还地标准化的(规范的),亦即每一个函数自乘之积,在[-π ,π ]上的积分是1。
为了使讨论更具有一般性,先要介绍一些基本概念。
1.权函数的概念 定义3.1 设ρ (x )定义在有限或无限区间[a , b ]上,如果具有下列性质: (1) ρ (x ) ≥0,对任意x ∈[a , b ], (2) 积分dx x x nba)(ρ⎰存在,(n = 0, 1, 2, …),(3) 对非负的连续函数g (x ) 若⎰=badx x x g 0)()(ρ。
则在(a , b )上g (x ) ≡ 0,我们就称ρ (x )为[a , b ]上的权函数。
在正交多项式的讨论中,会遇到各种有意义的权函数,常用的权函数有: 1)(],1,1[],[=-=x b a ρ;211)(],1,1[],[xx b a -=-=ρx e x b a -=∞=)(],,0[],[ρ2)(],,[],[x e x b a -=∞+-∞=ρ等等。
正交性的概念 定义3.3 设f (x ),g (x ) ∈C [a , b ]若⎰==badx x g x f x g f 0)()()(),(ρ则称f (x )与g (x )在[a , b ]上带权ρ (x )正交。
定义3.4 设在[a , b ]上给定函数系{} ),(,),(),(10x x x n ϕϕϕ,若满足条件())(),1,0,(,0,0)(),((是常数k kk j A k j kj A kj x x ⎩⎨⎧==>≠= ϕϕ 则称函数系{ϕk (x )}是[a , b ]上带权ρ (x )的正交函数系,特别地,当A k ≡ 1时,则称该函数系为标准正交函数系。
正交多项式在数学中的应用正交多项式是数学中一个重要的概念。
正交多项式可以用于许多领域,如物理学、统计学、工程学、经济学等,它们的应用非常广泛。
在本文中,我们将介绍正交多项式的定义、性质和应用。
一、正交多项式的定义正交多项式通常是指某一族多项式,它们彼此正交,并且在某一区间上具有完全正交性。
这里“正交”指的是在某一区间上两两相乘之后的积分为0。
具体的定义可以表示为:在某一区间[a,b]上,存在一族多项式φ0(x),φ1(x),φ2(x),…,满足下列条件:1.φn(x)是n次多项式;2.φn(x)的首项系数为1;3.对于任意不相等的n和m,有以下正交关系:∫a^b φn(x)φm(x)dx=0 (n≠m)4.对于任意n,有以下归一化公式:∫a^b φn(x)^2 dx=1这里的正交关系也可以表述为φn(x)在[a,b]上关于权函数w(x)正交。
另外,需要注意的是,具有正交性的多项式不只一个。
例如,在[a,b]上,有许多不同的正交多项式,如勒让德多项式、拉盖尔多项式、埃尔米特多项式、切比雪夫多项式等等。
每种不同的正交多项式,都有其独特的性质和应用。
二、正交多项式的性质正交多项式具有许多重要的性质,这里只讨论其中的一些。
1.正交多项式是线性无关的。
对于给定的正交多项式φ0(x),φ1(x),…,φn(x),任意一个次数不超过n的多项式P(x),都可以表示为P(x)=a0φ0(x)+a1φ1(x)+...+anφn(x)其中,a0,a1,…,an都是常数。
因此,正交多项式是线性无关的。
2.正交多项式是最佳近似多项式。
对于一个次数不超过n的多项式P(x),其在正交多项式的张成下的最佳近似多项式是Pn(x)=∑i=0^n [P(x),φi(x)]φi(x)其中[P(x),φi(x)]表示在区间[a,b]上P(x)与φi(x)的乘积之后再进行积分。
3.正交多项式满足递推关系。
对于同一族正交多项式φ0(x),φ1(x),φ2(x),…,它们满足以下递推关系:φ0(x)=1φ1(x)=x-b0φn+1(x)=(x-bn+1)φn(x)-cnφn-1(x)其中,bn和cn是常数。