第8章 正交多项式回归设计
- 格式:ppt
- 大小:4.72 MB
- 文档页数:54
正交多项式一、正交函数系的概念高等数学中介绍傅立叶(Fourier)级数时,证明过函数系;1, cos x ,sin x ,cos2x ,sin2x ,…,con nx ,sin nx ,… (3.1)中任何两个函数的乘积在区间[-π ,π ]上的积分都等于0。
我们称这个函数中任何两个函数在[-π ,π ]上是正交的,并且称这个函数为一个正交函数系。
若对(7.1)中的每一个函数再分别乘以适当的数,使之成为:nx nx x x sin 1,cos 1,,,sin 1,cos 1,21πππππ(3.2)那么这个函数系在[-π ,π ]上不仅保持正交的性质,而且还地标准化的(规范的),亦即每一个函数自乘之积,在[-π ,π ]上的积分是1。
为了使讨论更具有一般性,先要介绍一些基本概念。
1.权函数的概念 定义3.1 设ρ (x )定义在有限或无限区间[a , b ]上,如果具有下列性质: (1) ρ (x ) ≥0,对任意x ∈[a , b ], (2) 积分dx x x nba)(ρ⎰存在,(n = 0, 1, 2, …),(3) 对非负的连续函数g (x ) 若⎰=badx x x g 0)()(ρ。
则在(a , b )上g (x ) ≡ 0,我们就称ρ (x )为[a , b ]上的权函数。
在正交多项式的讨论中,会遇到各种有意义的权函数,常用的权函数有: 1)(],1,1[],[=-=x b a ρ;211)(],1,1[],[xx b a -=-=ρx e x b a -=∞=)(],,0[],[ρ2)(],,[],[x e x b a -=∞+-∞=ρ等等。
正交性的概念 定义3.3 设f (x ),g (x ) ∈C [a , b ]若⎰==badx x g x f x g f 0)()()(),(ρ则称f (x )与g (x )在[a , b ]上带权ρ (x )正交。
定义3.4 设在[a , b ]上给定函数系{} ),(,),(),(10x x x n ϕϕϕ,若满足条件())(),1,0,(,0,0)(),((是常数k kk j A k j kj A kj x x ⎩⎨⎧==>≠= ϕϕ 则称函数系{ϕk (x )}是[a , b ]上带权ρ (x )的正交函数系,特别地,当A k ≡ 1时,则称该函数系为标准正交函数系。
JMP试验设计1.试验设计方法及其在国内的应用 (2)2.试验设计(DOE)就在你身边试验设计(DOE)就在你身边 (7)3.初识试验设计(DOE) (12)4.多因子试验设计(DOE)的魅力 (18)5.用DOE方法最优化质量因子配置 (25)6.顾此不失彼的DOE (32)7.试验设计(DOE)五部曲 (38)8.稳健参数设计的新方法 (44)9.JMP的试验设计优势——为什么用JMP做试验设计 (49)试验设计方法及其在国内的应用随着改革开放的深入,以市场经济为代表的西方先进文明及其方法论越来越多被国内企业界所接纳。
在质量管理、产品(医药,化工产品,食品,高科技产品,国防等)研发、流程改进等领域,统计方法越来越多成为企业运营的标准配置。
试验设计作为质量管理领域相对复杂、高级的统计方法应用,也开始在国内被逐渐接受,推广。
其实试验设计对于我国学术界来说并不陌生。
比如均匀设计,均匀设计是中国统计学家方开泰教授(下图左)和中科院院士王元首创,是处理多因素多水平试验设计的卓有成效的试验技术,可用较少的试验次数,完成复杂的科研课题开发和研究。
国内一些大学的数学系和统计系近年来已经逐渐开始开设专门的试验设计课程,比如清华大学,电子科技大学、复旦大学等高校。
国内一些行业领先的企业,比如中石化,华为科技,中石油,宝钢等企业,也开始在质量管理和产品研发、工艺改进等领域采用DOE方法。
尽管DOE越来越多的被国内产、学、研领域所接受,但是我们还是看到,国内对于DOE的研究和推广仍旧停留在比较浅的层次。
以上述企业为例,中石化下属的石化科学研究院和上海石化研究院应该是我国石油化工研究领域的王牌单位了,不过不管是北京的石科院,还是上海石化研究院,在油品研发、工艺改进、质量管理等领域,对于DOE的使用还仅仅停留在部分因子和正交设计层面。
笔者在网络上查询到电子科技大学的DOE课程目录如下:教材目录:第一章正交试验基本方法第二章正交试验结果的统计分析——方差分析法第三章多指标问题及正交表在试验设计中的灵活运用第四章Ltu(tq)型正交表的构造第五章2k和3k因子设计第六章优选法基础第七章回归分析法第八章正交多项式回归设计第九章均匀设计法第十章单纯形优化法第十一章鲍威尔优化法及应用第十二章三次设计第十三章稳定性设计目前业界常用的高端试验设计方法比如定制设计,筛选设计,空间填充设计等高级试验设计方法(Advanced DOE),无论在国内的统计教学、科研还是在产业界的应用,都还比较少见,但已有逐步扩大趋势.西方企业对于DOE的应用早已大规模开始,比如美国航天、航空设计的顶尖单位,乔治亚宇航设计中心,在开发导弹、战斗机等美国绝密武器系统的时候,无一例外的使用了定制设计(Customer Design)。
第8章 回归的正交设计教学目标:1. 掌握一次回归正交设计及统计分析方法2. 掌握二次回归正交组合设计及统计分析方法正交设计是一种重要的科学试验设计方法,它能够利用较少的试验次数,获得较佳的试验结果。
但是正交设计不能在一定的试验范围内,根据数据样本,去确定变量间的相关关系及其相应的回归方程。
如果使用传统的回归分析,又只能被动地去处理由试验所得到的数据,而对试验的设计安排几乎不提出任何要求。
这样不仅盲目地增加了试验次数,而且由数据所分析出的结果还往往不能提供充分的信息,造成在多因素试验的分析中,由于设计的缺陷而达不到预期的试验目的。
因而有必要引入把回归与正交结合在一起的试验设计与统计分析方法──回归正交设计。
回归设计就是在因子空间选择适当的试验点,以较少的试验处理建立一个有效的多项式回归方程,从而解决生产中的最优化问题,这种试验设计方法称为回归设计。
随着生产与科学技术的发展,在工农业生产中为了实现以较少的生产投资,获得最大的经济效益,经常需要寻求某种产品、材料试验的最佳配方、试验条件与工艺参数以及建立生产过程的数学模型。
特别是以较少的试验次数和数据分析去选择试验点,使得在每个试验点上能获得比较充分、有用的信息,减少试验次数,并使其数据分析能提供更为科学、充分、有用的信息。
解决上述问题比较理想的方法就是通过回归设计进行试验,建立相应的数学模型,寻求最佳生产条件和最优配方。
回归设计始于20世纪50年代初期,发展至今其内容已相当丰富,包括回归的正交设计、回归的旋转设计、回归的最优设计以及回归的混料设计等,本章只介绍回归的正交设计。
8.1一次回归正交设计与统计分析当试验研究的因变量(如加工罐头质量)与各自变量(如杀菌方式、产品配料等)之间呈线性关系时,可采用一次回归正交设计的方法。
8.1.1一次回归正交设计的一般方法一次回归正交设计的方法原理与正交设计类似,主要是应用二水平正交表进行设计,如)2(34L ,)2(78L ,)2(1112L ,)2(1516L 等,其设计的一般步骤为:⑴ 确定试验因素的变化范围。
8回归正交试验设计本章要点:主要讲述了一次回归正交试验设计、二次回归正交试验设计的原理、基本方法和统计分析步骤,并针对不同类型的回归正交试验给出了相应的计算案例。
重点:回归正交试验设计的方法,统计过程中方程的建立以及显著性分析检验。
难点:二次回归组合设计正交性的实现及其统计分析。
8.1 回归正交试验设计简介产品质量通常受多因素的综合影响,试验效应既包括因素的主效应,也包括因素间的交互作用,因此,在产品研究中总希望安排足够多的研究因素以使试验效应有充分的试验论据。
但因素和水平的增加造成试验规模庞大,特别是对于多指标分析的试验往往由于分析困难而无法实施。
线性反应试验一般是研究一个因素多水平的试验设计,面体反应试验是研究两个因素多水平的的试验设计。
当试验因素超过3个的多水平试验时,由于采用组合处理,处理数目等于因素水平间的乘积,它随因素的增加呈几何级数增加。
例如,一个3因素4水平的试验,总共有43=64个试验处理,而4因素5水平的试验就有54=625个处理,由于处理数目太大,不仅增加了试验误差,而且由于受试材和条件的限制,这对产品研究来说是难以实施的。
正交试验设计方法在产品工艺改进、新产品的试制中得到了广泛的应用,它能够利用较少的处理安排较多的试验因素,获得较佳的试验结果。
但是正交设计不能在一定的试验范围内,根据数据样本,去确定变量间的相关关系及相应的回归方程。
如果试验传统的回归分析,又只能被动地去处理由试验所得到的数据,而对试验的设计安排几乎不提出任何要求。
这样不仅盲目地增加了试验次数,而且由数据所分析出的结果还往往不能提供充分的信息,造成在多因素试验的分析中,由于设计的缺陷而达不到预期的试验目的。
因而回归正交试验设计应运而生。
回归正交试验设计是将试验安排与数据的回归分析结合起来考虑。
在试验中,通过适当地安排试验点,使得在每个试验点上获得的数据含有最大的信息,并且各自变量(因素)向量间满足正交性以便于回归分析。